Next Article in Journal
Supported Catalysts for CO2 Methanation: A Review
Previous Article in Journal
Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr) Catalysts Supported on SBA-15 Silica
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessReview
Catalysts 2017, 7(2), 57; doi:10.3390/catal7020057

Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks

Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne, Switzerland
Received: 14 January 2017 / Accepted: 7 February 2017 / Published: 13 February 2017
View Full-Text   |   Download PDF [5030 KB, uploaded 23 February 2017]   |  

Abstract

Photocatalytic antibacterial sol-gel coated substrates have been reported to kill bacteria under light or in the dark. These coatings showed non-uniform distribution, poor adhesion to the substrate and short effective lifetime as antibacterial surfaces. These serious limitations to the performance/stability retard the potential application of antibacterial films on a wide range of surfaces in hospital facilities and public places. Here, the preparation, testing and performance of flexible ultra-thin films prepared by direct current magnetron sputtering (DCMS) at different energies are reviewed. This review reports the recent advancements in the preparation of highly adhesive photocatalytic coatings prepared by up to date sputtering technology: High Power Impulse Magnetron Sputtering (HIPIMS). These latter films demonstrated an accelerated antibacterial capability compared to thicker films prepared by DCMS leading to materials saving. Nanoparticulates of Ti and Cu have been shown during the last decades to possess high oxidative redox potentials leading to bacterial inactivation kinetics in the minute range. In the case of TiO2CuOx films, the kinetics of abatement of Escherichia coli (E. coli) and methicillin resistant Staphylococcus aureus (MRSA) were enhanced under indoor visible light and were perceived to occur within few minutes. Oligodynamic effect was seen to be responsible for bacterial inactivation by the small amount of released material in the dark and/or under light as detected by inductively-coupled plasma mass spectrometry (ICP-MS). The spectral absorbance (detected by Diffuse Reflectance Spectroscopy (DRS)) was also seen to slightly shift to the visible region based on the preparation method. View Full-Text
Keywords: catalytic thin films; sputtering; bacterial inactivation; surface characterization; metal oxides; interfacial charge transfer (IFCT); nanoparticulates catalytic thin films; sputtering; bacterial inactivation; surface characterization; metal oxides; interfacial charge transfer (IFCT); nanoparticulates
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Rtimi, S. Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks. Catalysts 2017, 7, 57.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top