

Article

Supplementary Materials: Terpyridine-Containing Imine-Rich Graphene for the Oxygen Reduction Reaction

Min Seok Lee¹, Mun Ho Yang¹, Jong S. Park² and Dong Wook Chang^{1,*}

- ¹ Department of Industrial Chemistry, Pukyong National University, Busan 48547, Korea; lms@pknu.ac.kr (M.S.L.); ymh@pknu.ac.kr (M.H.Y.)
- ² Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea; jongpark@pnu.ac.kr
- * Correspondence: dwchang@pknu.ac.kr; Tel.: +82-51-629-6444

Figure S1. XRD diffraction patterns of graphite, GO, and IrGO-Tpy with *d*-spacing.

Figure S2. Peroxide percentages of IrGO-Tpy, IrGO-Tpy, and Pt/C as a function of the electrode potential at 1600 rpm.

Calculation of electron transferred number (n)

The kinetic analysis for ORR was conducted according to Koutecky-Levich plots:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{0.5}}$$
(1)

where j_k is the kinetic current and *B* is Levich slope which is given by:

$$B = 0.2nF(D_{O_2})^{2/3} v^{-1/6} C_{O_2}$$
⁽²⁾

The constant 0.2 is generally adopted when the rotation speed is expressed in rpm. *n* is the number of electrons transferred for the reduction of one O₂ molecule, F is the Faraday constant (*F* = 96485 C/mol), *D*_{O2} is the diffusion coefficient of O₂ (D_{O2} =1.9×10⁻⁵ cm² s⁻¹), v is the kinematics viscosity for KOH (v = 0.01 cm² s⁻¹) and C_{O2} is concentration of O₂ in the solution (C_{O2} = 1.2 × 10⁻⁶ mol cm⁻³).

According to equations (1) and (2), the number of electrons transferred (n) can be obtained from the slope of Koutecky-Levich plot of j^{-1} vs. $\omega^{-1/2}$.

Calculation of electron transferred number (n) and the yield of peroxide (HO₂) by rotating ring disk electrode (RRDE)

The number of electron transferred (n);

$$n = \frac{(4 \times I_d)}{(I_d \times \frac{I_r}{N})}$$
(3)

Where Ir and Id are the current obtained from the ring and disk electrode, respectively.

N is the current collection efficiency of Pt ring electrode and is determined to be 0.424 using the redox reaction of K₃Fe(CN₆).

The yield of hydrogen peroxide;

$$\% HO_2^- = \frac{(200 \times \frac{l_T}{N})}{(l_d \times \frac{l_T}{N})} \tag{4}$$

Table S1. Elemental analyses of graphite, GO and IrGO-Tpy.

Materials	С	0	Η	Ν	Sum	C/O	C/N
Graphite	98.74	BDL ^a	0.11	BDL ^a	98.85	∞ ^b	∞ ^b
GO	53.19	42.10	2.30	BDL ^a	97.59	1.68	∞b
IrGO-Tpy	76.17	11.54	2.59	6.45	96.75	8.80	13.78

^a BDL = Below detection limit

 $b \infty =$ Unlimited

Table S2. Elemental compositions of IrGO-Tpy and IrGO-Tpy-Co obtained from XPS analysis.

Materials	С	0	Ν	Со	C1	Sum
IrGO-Tpy	85.59	8.95	5.47	BDL ^a	BDLª	100.00
IrGO-Tpy-Co	82.66	9.54	6.26	0.73	0.81	100.00

^a BDL = Below detection limit

Table S3. Onset potentials and current densities at -0.5 V of all samples on a rotating disk electrode at a rotation speed of 1600 rpm and a scan rate of 10 mVs⁻¹

Sample	Onset Potential (V)	Current Density (mA/cm ²) at -0.6 V			
IrGO-Tpy	-0.18	-2.71			
IrGO-Tpy-Co	-0.11	-3.80			
Pt/C	-0.01	-5.18			

Table S4. Electron transferred numbers (n) of all samples from K-L plots and RRDE measurements at different electrode potentials of -0.40 V, -0.50 V and -0.60 V.

Sample	K-L equation ^a			RRDE ^b		
	-0.40 V	-0.50 V	-0.60 V	-0.40 V	-0.50 V	-0.60 V
IrGO-Tpy	2.95	2.90	2.97	3.10	3.03	3.02
IrGO-Tpy-Co	3.73	3.73	3.72	3.66	3.63	3.62
Pt/C	4.00	3.97	3.94	3.97	3.96	3.96

^aCalculated by the equation of $\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{0.5}}$, $B = 0.2nF(D_{O_2})^{2/3}v^{-1/6}C_{O_2}$

^bCalculated by the equation of

$$n = \frac{(4 \times I_d)}{(I_d \times \frac{I_r}{N})}$$
(5)

 \odot 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).