Next Article in Journal
Morpholine-Modified Pd/γ-Al2O3@ASMA Pellet Catalyst with Excellent Catalytic Selectivity in the Hydrogenation of p-Chloronitrobenzene to p-Chloroaniline
Previous Article in Journal
Conductive Cotton Filters for Affordable and Efficient Water Purification
Previous Article in Special Issue
The Beneficial Sinergy of MW Irradiation and Ionic Liquids in Catalysis of Organic Reactions
Article Menu

Export Article

Open AccessArticle
Catalysts 2017, 7(10), 290; doi:10.3390/catal7100290

Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions

1
Department of Biological Engineering, University of Idaho, Moscow, ID 83844, USA
2
Division of Soil & Land Resources, University of Idaho, Moscow, ID 83844, USA
*
Author to whom correspondence should be addressed.
Received: 17 August 2017 / Revised: 12 September 2017 / Accepted: 25 September 2017 / Published: 29 September 2017
(This article belongs to the Special Issue Enabling Technologies toward Green Catalysis)
View Full-Text   |   Download PDF [1259 KB, uploaded 29 September 2017]   |  

Abstract

Crude glycerol from biodiesel production is a biobased material capable of co-producing biofuels and chemicals. This study aimed to develop a line of Ni catalysts supported on cerium–magnesium (Ce–Mg) to improve the process efficiency of glycerol hydrogenolysis for ethanol and 1,2-propanediol (1,2-PDO). Results showed that catalytic activity was greatly improved by changing the preparation method from impregnation to deposition precipitation (DP), and by adjusting calcination temperatures. Prepared via DP, the catalysts of 25 wt % Ni supported on Ce–Mg (9:1 mol/mol) greatly improved the effectiveness in glycerol conversion while maintaining the selectivities to ethanol and 1,2-PDO. Calcination at 350 °C provided the catalysts better selectivities of 15.61% to ethanol and 67.93% to 1,2-PDO. Increases in reaction temperature and time improved the conversion of glycerol and the selectivity to ethanol, but reduced the selectivity to 1,2-PDO. A lower initial water content led to a higher conversion of glycerol, but lower selectivities to ethanol and 1,2-PDO. Higher hydrogen application affected the glycerol conversion rate positively, but the selectivities to ethanol and 1,2-PDO negatively. A comparison to the commercial Raney® Ni catalyst showed that the Ni/Ce–Mg catalyst developed in this study showed a better potential for the selective co-production of ethanol and 1,2-PDO from glycerol hydrogenolysis. View Full-Text
Keywords: glycerol; ethanol; 1,2-propanediol; hydrogenolysis; supported Ni catalysts; catalytic conversion glycerol; ethanol; 1,2-propanediol; hydrogenolysis; supported Ni catalysts; catalytic conversion
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Menchavez, R.N.; Morra, M.J.; He, B.B. Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions. Catalysts 2017, 7, 290.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top