Supplementary Materials: Aziridine- and Azetidine-Pd Catalytic Combinations. Synthesis and Evaluation of the Ligand Ring Size Impact on Suzuki-Miyaura Reaction Issues

Hamza Boufroura, Benjamin Large, Talia Bsaibess, Serge Perato, Vincent Terrasson, Anne Gaucher and Damien Prim

S1. Materials and Methods

Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without purification. Petroleum ether was distilled under Argon. NMR spectra were recorded on a 300 MHz and 200 MHz Brucker spectrometers (Bruker BioSpin GmbH, Rheinstetten, Germany). Chemical shifts were reported in ppm relative to the residual solvent peak (7.27 ppm for CHCl₃) for ¹H spectra and (77.00 ppm for CDCl₃) for ¹³C spectra. High Resolution Mass spectroscopy data were recorded on an Autospec Ultima (Waters/Micromass) device (Waters, Gyancourt, France,) with a resolution of 5000 RP at 5%. Thin-layer chromatography (TLC) was carried out on aluminium sheets precoated with silica gel 60 F254. Column chromatography separations were performed using silica gel (0.040–0.060 mm). (*N*-benzyl)-2-cyanoazetidine **1** and (*N*-benzyl)-2-cyanoaziridine **2** have been prepared according to references [24,25]

S1.1. General Procedure for Addition/Reduction Sequence

The phenylmagnesium chlorde (2 mmol) was added to a solution of 2-cyanoderivative **1** or **2** (1 mmol) in dry THF (10 mL) at 0 °C under argon. After stirring for 20 min, MeOH (10 mL) and NaBH₄ (1.2 mmol) were successively added. After a further 1 h, the reaction was quenched with saturated aqueous NH₄Cl solution (5 mL), and extracted with EtOAc (3×10 mL). The combined organic extracts were washed with brine, dried with magnesium sulfate and concentrated under reduced pressure. Amines **3** and **4** were purified by silica gel column chromatography using cyclohexane/Et₂O 1:1 as the eluant.

Synthesis of azetidine **3.** ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.71 (m, 1H), 1.94 (brs, 2H, NH₂), 2.18 (quint., *J* = 9.2 Hz, 1H), 2.66 (m, 1H), 3.16–3.31 (m, 4H), 3.69 (d, *J* = 5.2 Hz, 1H), 7.11–7.26 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 18.8, 51.1, 57.8, 62.4, 71.8, 127.1, 127.2, 127.3, 128.4, 128.5, 128.9, 138.6, 142.9. SM-HR (ESI, *m*/*z*): [*M* + H]⁺ calcd for C₁₇H₂₁N₂: 253.1705; found: 253.1698.

Synthesis of aziridine **4.** ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.25 (d, *J* = 6.4 Hz, 1H), 1.62 (m, 1H), 1.79 (d, *J* = 3.5 Hz, 1H), 1.89 (brs, 2H, NH₂), 3.13 (d, *J* = 13.3 Hz, 1H), 3.33 (d, *J* = 13.3 Hz, 1H), 3.71 (d, *J* = 5.4 Hz, 1H), 7.07–7.19 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 30.9, 45.2, 56.0, 64.1, 126.6, 126.8, 127.0, 127.8, 128.0, 128.1, 138.8, 143.4. SM-HR (ESI, *m*/*z*): [*M* + H]⁺ calcd for C₁₆H₁₈N₂: 239.1548; found: 239.1540.

S1.2. General Complexation Procedure

To a stirred solution of ligand **1–4** (0.25 mmol) in 5 mL of freshly distilled MeOH was added Na₂PdCl₄ (74 mg, 0.25 mmol). The mixture was stirred at room temperature for 1 to 16 h and filtered over a celite pad. The filtrate was removed by evaporation under vacuum. The residue was then purified over silica gel pad eluting first with cyclohexane/EtOAc 7:3 to remove traces of free ligand, then with EtOAc for ligands **3** and **4** and with AcOEt/MeOH 95:5 for ligands **1** and **2**. Complexes may be obtained as mixtures of diasteromers due to heterocyclic nitrogen lone pair inversion during complexation process.

S2 of S9

Complex **A.** ¹H NMR (300 MHz, DMSO-d⁶) δ (ppm): 1.86 (m, 1H), 2.89 (m, 1H), 3.20 (quint., *J* = 9.9 Hz, 1H), 3.44–3.56 (m, 2H), 4.14 (t, *J* = 8.1 Hz), 4.28 (m, 1H), 4.57 (d, *J* = 11.6 Hz, 1H), 5.49 (m, 1H, NH), 5.67 (t, *J* = 11.0 Hz, 1H, NH), 7.15 (d, *J* = 7.7 Hz, 2H), 7.26–7.32 (m, 3H), 7.57–7.64 (m, 3H), 8.29 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (75 MHz, DMSO-d⁶) δ (ppm): 17.3, 59.4, 63.8, 64.2, 75.0, 127.3, 128.4, 128.9, 129.2, 129.5, 132.0, 134.6, 135.2. SM-HR (ESI, *m/z*): [*M*–Cl–HCl]⁺ calcd for C₁₇H₁₉N₂Pd: 357.0590; found: 357.0595.

Complex **B**. ¹H NMR (300 MHz, DMSO-d⁶) δ (ppm): 2.67 (dd, *J* = 2.1 et 7.3 Hz, 1H), 2.79 (d, *J* = 13.0 Hz, 1H), 2.99 (m, 1H), 3.55 (dd, *J* = 2.1 and 5.2 Hz, 1H), 4.33 (m, 1H), 4.72 (d, *J* = 13.0 Hz, 1H), 5.02 (t, *J* = 10.5 Hz, 1H, NH), 5.39 (m, 1H, NH), 7.34–7.36 (m, 3H), 7,43–7.51 (m, 5H), 7.93–7.96 (m, 2H). ¹³C NMR (75 MHz, DMSO-d⁶) δ (ppm): 38.6, 48.3, 60.9, 61.2, 128.2, 128.6, 128.9, 129.0, 129.1, 130.4, 136.0, 136.2. SM-HR (ESI, *m/z*): [*M*-Cl-HCl]⁺ calcd for C₁₆H₁₇N₂Pd: 343.0433; found: 343.0434.

Complex C. ¹H NMR (300 MHz, DMSO-d⁶) δ (ppm): 2.62 (m, 1H), 2.96 (quint., *J* = 9.6 Hz, 1H), 3.56 (d, *J* = 11.8 Hz, 1H), 3.65 (m, 4H), 4.18 (m, 1H), 4.28 (d, *J* = 11.8 Hz, 1H), 5.05 (t, *J* = 8.6 Hz, 1H), 7.47–7.53 (m, 3H), 8.07 (dd, *J* = 1.9 and 7.7 Hz, 2H), 8.37 (brs, 1H, NH). ¹³C NMR (75 MHz, DMSO-d⁶) δ (ppm): 22.6, 57.4, 59.4, 64.5, 71.2, 129.1, 129.4, 131.9, 134.0, 177.8. SM-HR (ESI, *m*/*z*): [*M*-Cl-HCl]⁺ calcd for C₁₂H₁₅N₂OPd: 309.0024; found: 306.0238.

Complex **D**. ¹H NMR (300 MHz, DMSO-d⁶) δ (ppm): 2.71 (d, *J* = 12.9 Hz, 1H), 2.89 (d, *J* = 7.7 Hz, 1H), 3.52 (d, *J* = 4.2 Hz, 1H), 3.86–3.89 (m, 4H), 4.62 (d, *J* = 12.9 Hz, 1H), 7.46–7.53 (m, 3H), 7.90 (d, *J* = 7.5 Hz, 2H), 8.43 (brs, 1H, NH). ¹³C NMR (75 MHz, DMSO-d⁶) δ (ppm): 44.4, 44.9, 58.1, 61.0, 129.0, 129.1, 130.9, 135.3, 175.3. SM-HR (ESI, *m/z*): [*M*–Cl–HCl]⁺ calcd for C11H13N2OPd: 295.0067; found: 295.0073.

S1.3. General Suzuki Coupling Procedure

To a stirred solution of aromatic halide (0.5 mmol), boronic acid (0.6 mmol) and Cs₂CO₃ (407 mg, 1.25 mmol) in 1 mL of DMF/H₂O (95:5) was added the palladium complex as a solid or in solution in DMF/H₂O (95:5). The mixture was stirred at room temperature or 100 °C (refer to Table 1). 10 mL of EtOAc and 10 mL of water were then added and the aqueous phase was extracted with EtOAc (3×5 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under vacuum, the crude product was purified by flash chromatography on silica gel to give the biaryl product.

4-Nitro-4'-methylbiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 2.44 (s, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 2H), 8.28 (d, *J* = 9.0 Hz, 2H). Data in accordance with previously reported results [26].

2,4-Dimethoxy-4'-nitrobiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 3.84 (s, 3H), 3.88 (s, 3H), 6.61 (m, 2H), 7.28 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 8.23 (d, *J* = 8.3 Hz, 2H). Data in accordance with previously reported results [27].

4-Formyl-2'-methylbiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 2.30 (s, 3H), 7.25–7.33 (m, 4H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.95 (d, *J* = 8.6 Hz, 2H), 10.08 (s, 1H). Data in accordance with previously reported results [28].

4-Formyl-3'-nitrobiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 7.67 (t, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.94–8.03 (m, 3H), 8.22-8.28 (m, 1H), 8.47 (t, *J* = 2.0 Hz, 1H), 10.08 (s, 1H). Data in accordance with previously reported results [29].

4-Phenylacetophenone

¹H NMR (200 MHz, CDCl₃) δ (ppm) 2.64 (s, 3H), 7.37–7.53 (m, 3H), 7.60–7.72 (m, 4H), 8.05 (d, *J* = 8.8 Hz, 2H). Data in accordance with previously reported results [29].

4-Phenylphenol

¹H NMR (200 MHz, CDCl₃) δ (ppm) 4.99 (s, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.28–7.59 (m, 7H). Data in accordance with previously reported results [30].

4-Methoxybiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 3.91 (s, 3H), 7.06 (d, *J* = 8.8 Hz, 2H), 7.34–7.54 (m, 3H), 7.58–7.69 (m, 4H). Data in accordance with previously reported results [30].

2-Cyano-2'-methylbiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 2.22 (s, 3H), 7.21–7.42 (m, 5H), 7.47 (td, *J* = 1.4 and 7.6 Hz, 1H), 7.65 (td, *J* = 1.4 and 7.6 Hz, 1H), 7.77 (dd, *J* = 1.4 and 7.7 Hz, 1H). Data in accordance with previously reported results [31].

4-Cyano-2'-methylbiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 2.29 (s, 3H), 7.19–7.35 (m, 4H), 7.45 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.7 Hz, 2H). Data in accordance with previously reported results [28].

4-Methoxy-2'-formylbiphenyl

¹H NMR (200 MHz, CDCl₃) δ (ppm) 3.86 (s, 3H), 7.00 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.47 (m, 2H), 7.61 (td, *J* = 1.6 and 7.3 Hz, 1H), 8.01 (m, 1H), 10.00 (s, 1H). Data in accordance with previously reported results [32].

NMR spectra for compounds 3, 4 and complexes A–D

S5 of S9

160 150 140 130 120 st 110 55 100 150 90 st 80 s 70 s 60 to 50 st 40 s 30 s 20 s

7.0 .140 (ppm)