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Abstract: Pt(Cu)/C and Pt-Ru(Cu)/C electrocatalysts with core-shell structure supported on Vulcan
Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the
support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the
electrodeposition time of the different species has been modified and the obtained electrocatalysts
have been characterized using electrochemical and structural techniques. The High Resolution
Transmission Electron Microscopy (HRTEM), Fast Fourier Transform (FFT) and Energy Dispersive
X-ray (EDX) microanalyses allowed the determining of the effects of the electrodeposition time on
the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV)
corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu)/C of 0.41 and 0.32 V
vs. the Reversible Hydrogen Electrode (RHE), respectively, which were smaller by about 0.05 V
than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were
about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was
related to its electronic effect on the Pt shells and also to the generation of new active sites for CO
oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation
on the core-shell Pt-Ru(Cu)/C electrocatalysts were identified. When compared to previous results
in literature for methanol, ethanol and formic acid oxidation on Pt(Cu)/C catalysts, the present
results suggest an additional positive effect of the deposited Ru species due to the introduction of the
bifunctional mechanism for CO oxidation.

Keywords: core-shell Pt(Cu)/C electrocatalysts; core-shell Pt-Ru(Cu)/C electrocatalysts;
potentiostatic deposition of Cu; Pt deposition by galvanic exchange; Ru spontaneous deposition;
CO oxidation; methanol oxidation

1. Introduction

Direct Methanol Fuel Cells (DMFCs) operating under ambient temperature are gaining interest
due to their safe and profitable use as portable power in the market for mobile phones, laptops and
other portable electric devices [1-3]. However, the attractive low temperature DMFCs possess presents
certain drawbacks. The anodic electrooxidation of methanol maintains unfavorable slow kinetics,
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which coupled with the tendency of methanol to migrate across the proton exchange membrane and
oxidize at the cathode ultimately results in reduced operative capacity [4]. High surface area Pt-based
nanostructured electrocatalysts are commonly employed. However, the methanol electrooxidation is a
self-poisoning reaction because the electrogenerated CO intermediate strongly adsorbs onto the Pt
surface, thus limiting the methanol adsorption [4-7]. CO interacts with the platinum surface in a linear,
bridge and three fold configuration where each CO molecule strongly adsorbs onto one, two and three
Pt atoms, respectively [8]. The carbon supported Pt becomes around 50% less efficient even on trace
levels of CO [5]. Hence, widespread research has been conducted to prepare suitable nanostructured
electrocatalysts to mitigate the problematic slow kinetics and self-poisoning.

CO poisoning can be addressed by alloying Pt with transition metals such as Ru, Mo, Re, W and
others [5-10]. Ru appears between the most interesting ones [2,6,7,10,11]. The high tolerance to
CO exhibited by the Pt-Ru alloys has been explained by two different mechanisms. The first one
considers the favored oxidation of CO adsorbed on Pt by the Ru-OH species, which are formed by
water dissociation on Ru at lower potentials than on Pt (bifunctional mechanism). The second one
establishes the Pt-CO bond weakening via the electronic effect induced by Ru on Pt.

Currently, attention has been focused on synthesizing electrode materials with lower Pt content,
thus allowing decreasing the cost of the catalyst and/or improving the catalyst performance [12-30].
They have been applied for very different reactions of interest including hydrogen, borohydride,
methanol, CO, ethanol and formic acid oxidation and also oxygen reduction. Different nanoparticulate
catalysts have been synthesized by deposition of a core of transition metal on carbon support which
can be partially replaced by Pt through galvanic exchange [14-24,26-28,30]. This method is based on
the displacement of the less noble metal by the nobler one under open circuit conditions. Particularly,
Cu has been often used as the core metal in acidic solutions because the potential of the Cu®*/Cu pair
is sufficiently low but at the same time more positive than the potential of the standard hydrogen
electrode (SHE) [14,16,18,20,24,26-28,30]. The displacement of Cu is not then complicated by hydrogen
evolution. The galvanic exchange of Cu with PtClg?~ can be represented as follows:

2Cu + PtClg>™ — Pt + 2Cu®* + 6C1~ 1)

which has a standard cell potential of E° = 0.404 V vs. SHE. The most part of the Pt-Cu/C
catalysts in which the galvanic exchange has been used, have been prepared starting from Cu/C
precursors obtained by chemical reduction of Cu®* [24,26-28,30]. They have been mainly applied
to methanol [24,28], ethanol [27] and formic acid oxidation [25,30] and oxygen reduction [26]
The synthesis of nanoparticle catalysts starting from the electrochemical reduction of Cu?* is scarcely
found in the literature [18]. There is also an additional interest in studying whether there is a further
positive effect in the introduction of Ru deposited species.

The suitable potential for the potentiostatic deposition of Cu core nanoparticles on carbon Vulcan
XC72R to synthesize Pt(Cu)/C and Pt-Ru(Cu)/C core-shell electrocatalysts with a tentative constant
Cu electrodeposition charge has been studied by us in a previous work [18]. The respective CO
stripping peak potentials were about 0.1 and 0.2 V more negative than those corresponding to Pt/C
and Ru-decorated Pt/C, thus indicating the higher activity of the Pt and the Pt-Ru shells towards
the CO oxidation. This increased activity was explained by the structural effect induced by the
Cu core. Moreover, the use of the Cu cores allowed the Pt economy in these catalysts. The main
objective of this work is to study the effect of the electrodeposition times in the synthesis of these
nanostructured electrocatalysts, i.e. time of Cu electrodeposition, galvanic exchange with Pt and
spontaneous deposition of the Ru species. The morphology, particle size distribution and composition
of the relevant specimens have been determined by means of Transmission Electron Microscopy (TEM),
High Resolution (HR) TEM, Electron Diffraction, Fast Fourier Transform (FFT), and Energy Dispersive
X-ray Spectroscopy (EDS). The electrochemical performance of the catalysts prepared for the CO and
methanol oxidation has been tested using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry
on a Rotating Disk Electrode (RDE).
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2. Results and Discussion

2.1. Charge of Cu Electrodeposition in the Synthesis Sequence i

Different catalysts were obtained starting from Cu electrodeposition at —0.1 V by changing the
electrodeposition charge (qcy) between 20 and 50 mC. The measured deposition efficiencies were
always close to 100%, in agreement with previous results of the authors [18]. The resulting Cu loads
were in the range of 93-232 pugc, cm~2. After each Cu electrodeposition, the different specimens were
prepared following the sequence i. Some examples of the cyclic voltammograms recorded for the
Pt(Cu)/C and the Pt-Ru(Cu)/C electrocatalysts in 0.5 M H,SO4 and for CO stripping are depicted in
Figure la and b. The cyclic voltammograms depicted in Figure 1a present the same essential features
as those previously reported for Pt-exposed surfaces [10,18,31]. Thus, the cyclic voltammogram for
Pt(Cu)/C of Figure 1la shows the hydrogen adsorption/desorption region in the potential range
from 0.0 to 0.3 V [31], the Pt oxidation formation about 0.65 V in the anodic sweep and the reduction of
the Pt oxide around the cathodic peak potential of 0.8 V. Figure 1a also shows that the profile of the
cyclic voltammogram for Pt-Ru(Cu)/C was quite similar, although the anodic and cathodic currents
for the hydrogen adsorption/desorption region were smaller due to the partial blocking of the Pt sites
by the Ru species.
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Figure 1. (a) Cyclic voltammograms of Pt(Cu)/C (curve a) and Pt-Ru(Cu)/C (curve b) in deaerated
0.5 M H;,SO; after a Cu electrodeposition charge (4cy) of 30 mC following the sequence i; (b) CO
stripping experiments on Pt(Cu)/C for qcy, of 45 (curve a) and 20 mC (curve c) and on Pt-Ru(Cu)/C for
gcu = 45 mC (curve b). Sweep rate 20 mV s~ L.
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The nature of the Ru species formed on Pt by spontaneous deposition was determined using
commercial Pt/C [32] and only oxidized Ru species (RuO, and RuO,H,) were found. Considering that
the atomic hydrogen is not adsorbed on the Ru species [7], the Pt coverage (6) in the Pt-Ru(Cu)/C
electrocatalyst can be estimated according to the following equation [33]:

0 = (Qmuo—Qm,1)/Qmypo )

where Qp g and Q1 are the mean charges involved in the hydrogen adsorption/desorption, after
substracting the double layer charge, before and after the deposition of the Ru species, respectively.
Note that the anodic and cathodic currents for Pt-Ru(Cu)/C in the potential region between 0.3
and 0.55 V, related to the double layer charge, were relatively greater than for Pt(Cu)/C. This can be
explained by the pseudocapacitive behavior related to the hydroxylation of the Ru species [34,35].
The experimental results showed Ru coverages in the range 0.2-0.35 for gc, values between 20
and 40 mC. These values indicate that more than the half of the Pt surface was free from Ru species,
falling in the suitable range for the best catalytic activity of the Pt-Ru/C catalysts in front of the CO,
methanol and ethanol oxidation, which were about 0.25-0.3 for the Pt-Ru/C catalysts obtained by
spontaneous deposition of Ru species on commercial Pt/C [36].

Figure 1b shows some examples of the CO stripping experiments both, for Pt(Cu)/C (curve a) and
Pt-Ru(Cu)/C (curve b). The anodic sweep always starts at 0.0 V with negligible currents. Adsorbed
hydrogen, if present, would be oxidized in the potential region between 0.0 and 0.3 V. However,
the Pt sites for hydrogen adsorption are now blocked by strongly adsorbed CO, which is oxidized
at potentials in the range of 0.4-0.8 V [36,37]. Pt can be oxidized in the Pt sites where CO has been
removed, between 0.6 and 1.0 V. In the reverse sweep, Pt oxide is reduced to Pt (cathodic peak potential
at about 0.8 V) and in the potential region between 0.3 and 0.0 V, hydrogen can be adsorbed on the
Pt sites. Note that CO oxidation on Pt(Cu)/C (curve a) occurs at more positive potentials than on
Pt-Ru(Cu)/C (curve b) because the Ru species favor the CO oxidation by means of the bifunctional
mechanism [6,7,10]. We have included in this figure curve ¢, which corresponds to the catalyst
preparation with a Cu electrodeposition charge of only 20 mC. This curve presents an anodic peak
in the potential range 0.2-0.4 V, which is not found for electrodeposition charges of 30 mC or higher.
According to previous work of the authors [18], it is due to the copper oxidation, thus indicating that
there are Cu sites exposed to the electrolyte and therefore, Cu electrodeposition charges of 20 mC
are not adequate to produce the core-shell electrocatalysts studied in this work. Previous work of
Podlovchenko et al. [14,16] about the galvanic exchange between Cu and Pt reported that in some
cases, depending on the amount of deposited Cu, on the solution stirring rate, and on the oxidation
state of Pt in the complex, Pt was not able to completely cover the Cu surface. The reason for this
is not clear. However, we may imagine that for very small Cu nanoparticles, the Pt complex is not
able to sufficiently approach the Cu atoms which are partially occluded by the surface Pt metal atoms
already deposited. Moreover, according to Equation 1, two Cu atoms per Pt complex are needed in the
galvanic exchange. In addition we may suppose that Cu nuclei can be generated at relatively occluded
points in the carbon. Probably, when they are too small, the Cu nuclei could not be easily reached by
the Pt complex also by steric hindrance. Conversely, these partially occluded Cu atoms could probably
be easily oxidized in the acidic aqueous environment.

Figure 2a collects the peak potential for CO oxidation on Pt(Cu)/C and on Pt-Ru(Cu)/C, curves a
and b respectively, as a function of the Cu electrodeposition charge. It is shown here that the respective
minimum peak potentials for CO oxidation on Pt(Cu)/C and Pt-Ru(Cu)/C are about 0.72 and 0.55 V.
It is worth mentioning that these values are significantly more negative than those measured for
the catalysts without the Cu core. Thus, the peak potential for CO oxidation on carbon-supported
cubo-octahedral Pt nanoparticles was about 0.8 V [37], whereas on the carbon-supported Pt-Ru alloys
they were in the range of 0.65-0.75 V [36]. This means that the Cu core-shell catalysts have higher CO
tolerance than those without the Cu core. The ligand (electronic) effect of Cu on Pt would explain the
shift of these potentials to more negative values, in agreement with previously reported results [26].
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Note in addition to the CO stripping peaks in the core-shell, catalysts appear to be composed of at
least two peaks (see curve b in Figure 1b). This indicates that there are Pt sites of different nature in the
catalyst where CO can be adsorbed. The CO molecules are then oxidized at different potentials on
the different sites, depending on their adsorption energy. As long as there is only one peak for CO
oxidation for cubo-octahedral Pt and Pt-Ru alloy, we may conclude that such different Pt sites would
result from the effect of the Cu core.
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Figure 2. (a) Peak potentials for CO oxidation on Pt(Cu)/C (curve a) and on Pt-Ru(Cu)/C (curve b),
and onset potentials for CO (curve c) and methanol oxidation (curve d) on Pt-Ru(Cu)/C, as a function
of the electrodeposition charge gc; (b) Dependence of the electrochemical surface area (ECSA) for
CO oxidation on g¢y, for Pt(Cu)/C (curve a) and for Pt-Ru(Cu)/C (curve b). The electrocatalysts were
prepared according to sequence i.

The onset potentials for CO and methanol oxidation on Pt-Ru(Cu)/C are also depicted in
Figure 2a, curves c and d, respectively. They were identified as the potentials in which the current
significantly increased from the base line. As shown in curve d of Figure 2a, the onset potential
for the methanol oxidation on the Pt-Ru(Cu)/C electrocatalyst followed the same trend as for CO
(curve c), with minimum values of 0.32 and 0.41 V at about 40 mC, also respectively. These values are
about 0.05 V smaller than those obtained for Ru-decorated Pt/C catalysts [36], in agreement with the
higher reactivity for the present core-shell structure.

Figure 2b depicts the electrochemical surface area (ECSA) values for CO oxidation after
normalization by the actual amount of electrodeposited Cu (determined from the Cu electrodeposition
charge after correcting by the Cu electrodeposition efficiency). They were calculated from dividing the
ECSA by the amount of copper in order to determine the conditions in which the nanoparticles with
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the highest ECSAs for CO oxidation were obtained. It is apparent from this figure that the normalized
ECSAs for Pt(Cu)/C (curve a) and Pt-Ru(Cu)/C (curve b) depended on the Cu electrodeposition
charge. Note in addition that the ECSAs for the Pt(Cu)/C and Pt-Ru(Cu)/C catalysts prepared with
Cu electrodeposition charges in the range of 30-45 mC are nearly coincident. It seems strange because
in the Pt-Ru(Cu)/C nanoparticles the Pt surface must be partially covered by Ru species, all of them in
oxidized form [32] and not able to adsorb CO [38]. Moreover, the successive cycling of Pt-Ru(Cu)/C
in the same electrolyte was repetitive, thus indicating that such oxidized species remained on the
Pt surface without being dissolved into the electrolyte [32]. However, they can be at least partially
reduced to Ru metal during the potential cycling [36,39] and as long as CO can be adsorbed not only
on the Pt sites but also on the Ru metal [10], CO adsorption is not only restricted to surface Pt, but also
takes place on the Ru metal surface. The ECSA for CO oxidation on Pt-Ru(Cu)/C may then approach
the value obtained for Pt(Cu)/C.

Figure 2b shows similar values for the ESCAs in the range of 3040 mC but they are significantly
smaller for 20, 45 and 50 mC. As a result, and within the experimental error (about 5%), the ECSA
vs. gcy curves could be tentatively adjusted to a parabolic form. To gain a further insight into this
behavior, the specimens prepared with gc, equal to 45 mC were examined by means of the TEM.
The corresponding images together with the size distribution and the HRTEM and FFT analyses of
Cu/C, Pt(Cu)/C, and Pt-Ru(Cu)/C are shown in Figures 3 and 4. According to Figure 3, the mean
sizes of the nanoparticles were 4.3 £ 1.3,4.9 & 1.5, and 4.9 £ 1.4 nm, respectively. These values were
somewhat higher than 3.9 and 3.6 nm for Cu/C and Pt-Ru(Cu)/C respectively, previously reported for
gcu =40 mC [18]. The parabolic form of the curves depicted in Figure 2a can then be explained by a
size effect. The nanoparticle size increased with g, and thus, when referring the ECSA per mol of Cu,
the active area for the CO adsorption decreased. For the same reason, at ¢, as low as 20 mC, the Cu
nanoparticles were probably too small to allow for building up stable Pt(Cu)/C and Pt-Ru(Cu)/C
electrocatalysts. The nanoparticles cannot be completely covered by Pt in these conditions and then,
Cu dissolution in the potential cycling cannot be avoided, as discussed above in relation to the curve c
depicted in Figure 1b.

Counts

Figure 3. Cont.
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Figure 3. TEM analysis of the nanoparticles supported on Vulcan carbon XC72R prepared from
a Cu electrodeposition charge of 45 mC and following the sequence i. (a) Cu/C; (b) Pt(Cu)/C;
(c) Pt-Ru(Cu)/C. The insets show the size distribution of the nanoparticles.

Another interesting point resulting from Figures 3 and 4 is the composition of the electrocatalysts.
The FFT analysis of the Cu nanoparticles exemplified in Figure 4a leads to an interplanar space
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of 0.215 nm, which clearly matches (relative error of about 2%) with the value of 0.219 nm corresponding
to the Cu(111) crystallographic planes [40].

Figure 4. Cont.
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Figure 4. High Resolution Transmission Electron Microscopy (HRTEM) images of the: (a) Cu/C;
(b) Pt(Cu)/C; (c) Pt-Ru(Cu)/C electrocatalysts of Figure 3. The insets depict the Fast Fourier Transform
(FFT) analyses of the marked zones.

The interplanar spacings resulting from the FFT analysis of the marked region in Figure 4b,c are
of 0.2244 and 0.2216 nm for Pt(cu) and Pt-Ru(Cu)/C, respectively, which can all be assigned to the
Pt(111) planes [40] (relative errors of about 1 and 2%, also respectively). This indicates that Pt has
essentially the same lattice structure as pure Pt, thus suggesting that the performance improvement
in the CO and methanol oxidation discussed above is mainly due to the electronic effect of Cu on Pt.
However, this is compatible with the generation of active Pt sites of different nature due to the Cu core
effect. The corresponding EDS analyses of Pt(Cu)/C and Pt-Ru(Cu)/C gave Pt:Cu atomic ratios of
about 1.4, that is somewhat smaller than the value of 1.6 obtained for the specimens prepared with gcy
equal to 40 mC [18]. The smaller relative Pt content of the former can also be explained by the different
nanoparticle size, because in the core-shell structure a higher relative amount of Cu is expected to
remain under the Pt shell when increasing the nanoparticle size. These EDS results together with the
absence of Cu oxidation peaks in the cyclic voltammograms of Figure 1a,b (curves a and b) clearly
indicate the formation of the core-shell structures.

Figure 2 also allows concluding about the best preparation conditions of the Pt-Ru(Cu)/C catalysts
for CO and methanol electrooxidation. These should be at least those leading to the most negative onset
potentials for CO and methanol oxidation. According to this figure, this approximately corresponds to
the most negative peak potential of CO stripping and also to the maximum ECSA for CO oxidation.
The coincidence of the catalyst preparation conditions to obtain the lowest onset potentials for methanol
oxidation together with the maximum ECSA values for CO oxidation is in agreement with the
participation of CO as intermediate in the electrooxidation of methanol. Parallel results were also found
for Pt-Ru/C catalysts obtained by spontaneous deposition of Ru species on commercial Pt/C [36],
in which case the most negative potential for the CO stripping peak corresponded to the greatest
ECSA for CO oxidation together with the highest currents for the methanol oxidation. According to
the curves b—d in Figure 2a and curve b in Figure 2b, the most suitable Cu electrodeposition charge is
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estimated to be of 38 & 2 mC, which corresponds to a Cu load of 5.4 (£ 0.3) x 10> mC cm~2. It has
been determined in these conditions that 0.38 mol Pt is deposited per mol of electrodeposited Cu [18]
and, therefore, the corresponding specific Pt load would be of 0.21 mgp; cm 2, which falls in the range
of suitable Pt loads for catalytic purposes.

2.2. Pt Deposition Time by Galvanic Exchange in the Synthesis Sequence ii

After identifying the suitable Cu deposition charge, this was applied to obtain the Pt(Cu) core-shell
structure with different times of galvanic exchange between Cu and Pt, following the synthesis
sequence ii. Figure 5 depicts the CO stripping voltammograms for Pt(Cu)/C and Pt-Ru(Cu)/C for
different times of galvanic exchange, showing the same essential features as those of Figure 2a, that is,
CO stripping peaks at about 0.72 and 0.55 V for the former and for the latter respectively, in agreement
with the better CO tolerance of Pt-Ru(Cu)/C. These stripping peak potentials are depicted in Figure 6,
curves a and c, for both electrocatalysts at different times of galvanic exchange. As can be seen,
these values did not significantly depend on the immersion time in the Pt(IV) solution. Figure 5
highlights that the highest stripping currents were obtained for 30 min. In fact, they increased from 10
to 30 min and then they remained almost constant or even decreased slightly. The same change takes
place with the corresponding anodic charges. Note that the stripping voltammograms recorded for 30
(curves b and e) and 60 min (curves ¢ and f) were very similar. As long as the charges of these anodic
peaks approached to the ECSAs of CO oxidation, one can conclude that 30 min appeared to be the most
adequate time for the Pt exchange with Cu. Increasing the immersion time in the Pt(IV) solution did
not significantly affect the catalyst performance, most probably because no more Cu can be exchanged
and the nanoparticles remain the same.

E/V

Figure 5. CO stripping curves for the different electrocatalysts recorded after different times of Pt
exchange following the synthesis sequence ii: 20 (curves a and d), 30 (curves b and ¢) and 60 min
(curves c and f). Curves a, b and ¢ correspond to Pt(Cu)/C and curves d, e and f, to Pt-Ru(Cu)/C.
Sweep rate 20 mV s~ 1.
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Figure 6. CO stripping peak potentials as a function of the immersion time in the Pt(IV) solution
following the sequence ii (spontaneous deposition of the Ru species for 30 min, curves 2 and ¢) and in
the Ru(III) solution following the sequence iii (galvanic exchange with Pt(IV) species for 30 min, curves
b and d). Curves a and b refer to Pt-Ru(Cu)/C and curves c and d, to Pt(Cu)/C. In all cases, gcy was
of 38 mC.

2.3. Spontaneous Deposition Time of Ru Species on Pt in the Synthesis Sequence iii

In this case, after 38 mC of Cu electrodeposition and 30 min of galvanic exchange with Pt,
the spontaneous deposition of Ru species were allowed for different times in the quiescent solution.
Representative CO stripping curves of the resulting Pt-Ru(Cu)/C catalysts are depicted in Figure 5.
The CO stripping peak potentials for the Pt(Cu)/C and the Pt-Ru(Cu)/C catalysts as a function of
the immersion time in the Ru(III) solution are represented in curves b and d of Figure 6, respectively.
No important changes in these parameters were found when compared to the different immersion
times in the Pt(IV) solution.

Figure 7 shows that the currents increased when passing from 10 to 20 min of spontaneous
deposition of the Ru species and then, the stripping profile presented small changes. In fact, the
ECSAs for CO oxidation are 1.11 x 103 m? molc, ! for 10 min and increases to 1.70 x 10°> m? molc, !
for 20 min, being 1.71 x 10° m? molc, ~! for 50 min (see Figure 8a). In addition, the onset potentials for
CO and methanol oxidation were minimal and about 0.41 and 0.32 V respectively, for about 22 + 2 min
of spontaneous deposition of the Ru species (see Figure 8b). At the same time, the coverage by the
Ru species increased from about 0.2 after 10 min of spontaneous deposition to about 0.5 after 40 min.
This variation of the onset potential for methanol oxidation on the Ru coverage is probably due to
the deposition of the Ru species on active sites of the Pt shell structure. Again, suitable coverage
of Ru species of about 0.3 were found for 20-30 min of spontaneous deposition of Ru(Ill) species,
as discussed above.
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200

Figure 7. CO stripping curves for the different Pt-Ru(Cu)/C electrocatalysts obtained after different
times of spontaneous deposition of Ru species following the synthesis sequence iii: 10 (curve a), 20 (b),
30 (c) and 50 (d) min. Sweep rate 20 mV s L
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Figure 8. (a) Electrochemical surface areas for CO oxidation per mol of electrodeposited Cu on the
Pt-Ru(Cu)/C (curve a) and the Pt(Cu)/C (curve b) electrocatalysts; (b) onset potentials for CO (curve a)
and methanol oxidation (curve b) on the Pt-Ru(Cu)/C electrocatalyst in front of the spontaneous
deposition time of Ru species from the quiescent solution.

Considering that 0.38 mol Pt are produced per mol of electrodeposited Cu [18], the voltammograms
of the methanol oxidation were recorded and are shown in Figure 9, represented as specific currents
per unit mass of Pt (mass activities). Note that the current density vs. potential curves referred to the
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electrode section (i.e. prior to the normalization by the Pt mass), presented the same sequence as that
shown in this figure because the nanoparticles contained the same amount of Pt, only changing the
amount of spontaneously deposited Ru species. It can be mentioned however, that the current density
at 0.7 V corresponding to the curve a in Figure 9 was of 76 mA cm~2. In agreement with the onset
potentials for methanol oxidation, the best performance can be observed for 22 min of spontaneous
deposition of the Ru(IIl) species. From these findings, the sequence iii with g¢c, of 38 mC with a rotation
rate of 100 rpm, a galvanic exchange with the Pt(IV) solution for 30 min also at 100 rpm and finally a
spontaneous deposition time of 22 min in the quiescent Ru(III) solution were identified to be the best
conditions for the electrochemical preparation of the present core-shell electrocatalysts.

400 .

0.3 0.4 0.5 0.6 0.7
E/V

Figure 9. Linear sweep voltammograms corresponding to the methanol oxidation in 1.0 M CH30H +
0.5 M H,SO;, on different Pt-Ru(Cu)/C electrocatalysts synthesized from spontaneous deposition
times of 22 (curve a), 30 (curve b), 10 (curve c) and 40 min (curve d), following the sequence iii.
Sweep rate 20 mV s~ 1.

Figure 9 also shows that the best mass activity achieved at 0.7 V was 375 mA mgp; !,
corresponding to a spontaneous deposition time of Ru species of 22 min. The direct comparison
with previous results in the literature is not possible because there are too many variables to fix.
However, we have selected some values from literature in order to have a rough approach. Thus,
for 2.0 M CH3OH + 0.1 M H,SO4 on Pt(Cu)/C core-shell electrocatalysts, the best mass activity at 0.7 V
and 50 mV s~! was about 250 mA mgpt’l, for a Pt:Cu molar ratio of 0.17:0.83 [24]. Note that the linear
sweep voltammograms in Figure 9 have been obtained at 20 mV s~! and 1.0 M CH3OH. The mass
activity reported for methanol oxidation at the same potential for Pt-Cu core-shell alloy with 9.5 wt %
Ptat5mV s~!in 0.5 M CH3;OH + 1 M HCIO,4 was about 140 mA rngpt’1 [28]. Therefore, the results
reported in curve a of Figure 9 can be considered good. Other works report on different fuels. The best
mass activity for ethanol oxidation at the same potential for Pt-Cu core-shell catalysts with similar
content in Pt and Cu at 20 mV s~ ! in 0.17 M CH3CH,OH + 0.5 M H,SO, was about 4 mA mgpt’l [27].
In the case of formic acid oxidation, the mass activity also at 0.7 V for highly dispersed Pt-Cu/C
catalysts via surface substitution and etching separation at 50 mV s~! in 0.25 M HCOOH + 0.5 M
H,S504 was about 250 mA mgpt_1 [30]. In a different synthesis process, novel excavated rhombic
dodecahedral PtCuz nanocrystals with (110) facets prepared by a wet chemical route, gave about
600 mA mgp, ! in the same conditions of potential, sweep rate and electrolyte than the latter [25].
In all these cases, the mass activity in front of the fuel oxidation was always much better than that for
commercial Pt/C and also with much better stability under cycling than the latter, assigned to the
superior catalytic activity and selectivity of the Pt-Cu alloy in decreasing the generation of CO [30].
The ligand effect of Cu has also been argued to explain the superior activity of Pt-Cu for oxygen
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reduction [26]. In the present paper, the positive results can be assigned not only to the electronic effect
of Cu but also to the positive effect of the deposited Ru species, which are easily hydroxylated and
allow enhancing the CO oxidation due to the bifunctional mechanism [7,35,36,41]:

RuO,H, (OH) + Pt-CO — RuOH, + Pt + CO, + H* + e~ 3)

Ru(OH) + Pt+-CO—Ru + Pt + CO; + H" + e~ 4)
in which RuO,H,(OH) and Ru(OH) result from the hydroxylation of RuOyHy and Ru respectively.

3. Experimental Section

3.1. Materials and Reagents

The supporting carbon was Vulcan XC72R produced by Cabot Corporation, Boston, MA, USA
(mean particle size and specific surface area of about 30 nm and 250 m? g~ ! respectively [42]). It was
deposited onto a Metrohm glassy carbon (GC) tip of 3 mm in diameter (section of 0.071 cm?), previously
polished with Micropolish II deagglomerated a-alumina (0.3 pm) and y-alumina (0.05 um) on a
PSA-backed White Felt cloth from Buehler, Coventry, UK. The solutions were prepared using Millipore
Milli Q high-purity water from Merck KGaA, Darmstadt, Germany (resistivity >18 M() cm at 25 °C),
analytical grade 96 wt % H;SO4 from Acros Organics, HCIO,, hydrated RuCls, and H,PtClg from
Merck, and CuSO4-5H,0, and NaySO4 from Panreac. N, and CO gases were Linde 3.0 (purity > 99.9%).

3.2. Working Electrodes

The preparation and testing of the electrodes were performed by means of a PGSTAT100
potentiostat-galvanostat commanded by the NOVA 1.10 software both from Metrohm Autolab B.V.,
Utrecht, The Netherlands. The electrochemical cell was Metrohm 200 mL-volume with a double wall,
which was connected to a MP-5 thermostat from JULABO GmbH, Seelbach, Germany to maintain the
temperature to 25.0 & 0.1 °C. A double junction Ag | AgCl | KCl(sat) (0.199 V vs. SHE at 25 °C) and a Pt
rod were used as the reference and the auxiliary electrodes respectively. However, all the potentials
given in this paper have been referred to the RHE. The electrocatalysts were prepared on the carbon
support deposited on the GC tip, which was coupled to a RDE from Metrohm Autolab B.V., Utrecht,
The Netherlands. N, was bubbled through the electrolyte before the deposition of Cu, Pt and the Ru
species and also before the CV experiments. N, was passed over the electrolyte during the deposition
processes and the electrochemical testing.

The Pt(Cu)/C and Pt-Ru(Cu)/C working electrodes were prepared as follows, based on the
electrodeposition method previously described [18]. First, 20 pL of the carbon suspension (4 mg in 4 mL
of water, sonicated for at least 45 min) were deposited onto the polished GC tip (0.28 mgc cm~2)
and dried under the heat of a lamp. Afterwards, it was cleaned on the RDE in deaerated 0.5 M
H,504 by CV scans within the limits of 0.0 and 1.0 V at 100, 50 and 20 mVs~! for 10, 5 and 3 cycles,
respectively (cleaning protocol). The electrodeposition of the catalysts consisted in the following
consecutive steps: (a) potentiostatic Cu electrodeposition at —0.1 V and 100 rpm in 1.0 mM CuSOy +
0.1 M NaySO4 + 0.01 M HySOy4 (Cu/C electrode); (b) Pt deposition on the Cu nuclei by galvanic
exchange in 1 mM H,PtClg + 0.1 M HClOy at 100 rpm (Pt(Cu)/C); (c) spontaneous deposition of Ru
species on the Pt(Cu)/C electrode in aged (for at least one week) and quiescent 8.0 mM RuCl3 + 0.1 M
HCIOy4 (Pt-Ru(Cu)/C). The Cu electrodeposition efficiency was determined through the Cu oxidation
charge in the same solution after sweeping the potential from 0.0 to 1.0 V at 10 mV s~!. The variables
studied were:

(i) Cu electrodeposition between 20 and 50 mC followed by the galvanic exchange with Pt
for 30 min and the spontaneous deposition of Ru species for 30 min.

(1) Galvanic exchange with Pt from 10 to 60 min after the best Cu electrodeposition charge
(obtained from sequence i), followed by the spontaneous deposition of the Ru species for 30 min.
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(iif) Spontaneous deposition of the Ru species between 10 and 60 min after the best Cu
electrodeposition charge (from sequence i) and the best time of galvanic exchange with Pt (from
sequence if).

Immediately after preparation, the Cu/C electrode was carefully cleaned in water, whereas the
Pt(Cu)/C and Pt-Ru(Cu)/C ones were submitted to the cleaning protocol described above. The CV
profiles obtained from this protocol were always practically stationary after the second scan, confirming
their stability and cleanliness.

3.3. Electrochemical Testing

The CO tolerance of the electrocatalysts was studied by CV in 0.5 M H,SO4. CO gas was first
bubbled through the solution for 15 min while setting the electrode potential at 0.1 V. Afterwards,
the dissolved CO was removed by Nj bubbling through the solution for 30 min and then, the adsorbed
CO was stripped by sweeping the potential between 0.0 and 1.0 V at 20 mV s~! without stirring.
The ECSA for the CO oxidation was estimated taking into account that the oxidation of a CO monolayer
on polycrystalline Pt needs 420 uC cm 2 [4,9,43]. After CO stripping, the activity of the Pt(Cu)/C
and Pt-Ru(Cu)/C catalysts was recovered as demonstrated by the consecutive cyclic voltammograms,
which retraced those obtained before the CO adsorption.

The methanol oxidation performance for the different Pt-Ru(Cu)/C electrocatalysts was
characterized by CV in a previously deaereated 1.0 M CH3OH + 0.5 M H;S0y solution between 0.0
and 0.7 V at 20 mVs~ 1. The CV experiments before and after the methanol oxidation analyses in the
deaerated 0.5 M H,SOy confirmed that there was not loss of catalyst loading.

3.4. Structural Characterization

The morphological and structural characterization of the catalysts was performed by means of
the TEM and HRTEM techniques using a 200 kV JEM 2100 LaBg transmission electron microscope
from JEOL, Peabody, MA, USA, furnished with EDS facilities. For the microscopic examination,
the electrocatalysts prepared on the GC tip were dispersed in 3 mL of n-hexane for 10 min
by ultrasonication. A drop of the suspension was then placed on a holley-carbon Ni grid.
The electrocatalyst was ready for examination after the solvent evaporation under the heat of a 40 W
lamp for 5 min. The TEM and HRTEM images were taken using an Orius MultiScan 794 charge-coupled
device (CCD) camera from Gatan, Pleasanton, CA, USA. More than one hundred nanoparticles were
counted to depict their size distribution. The interplanar spacing of the nanoparticles was determined
from the digital treatment of the HRTEM pictures by means of the Digital Micrograph software,
version 3.7.0, from Gatan, Pleasanton, CA, USA. First, the Fourier diffractogram was obtained by the
Fast Fourier Transform of the HRTEM images of selected areas performed with this software. Then,
the reciprocal value of the interplanar spacing was given by the distance between each identified spot
and the center of the diffractogram. The interplanar spacing thus calculated was contrasted with the
results listed in the MinCryst Database of the Institute of Experimental Mineralogy, Chernogolovka,
Moscow region, Russia, revision of August 2008 [40].

4. Conclusions

This work studied the performance of carbon-supported core-shell Pt(Cu)/C and Pt-Ru(Cu)/C
electrocatalysts, obtained by Cu electrodeposition, galvanic exchange with Pt(IV) and spontaneous
deposition of Ru species. The Cu electrodeposition potential was —0.1 V vs. RHE and the variables
explored were Cu electrodeposition charge, time of galvanic exchange with Pt(IV) and time of
spontaneous deposition of Ru species. The ECSA for CO oxidation was determined per mol of
electrodeposited Cu in order to identify the preparation conditions to obtain the most suitable
core-shell nanoparticles. It was found that these normalized ECSA values were practically the same
for Cu electrodeposition charges gcy in the range of 30-40 mC. However, they decreased for gcy
equal to or greater than 45 mC. The HRTEM analyses indicated that the nanoparticle size increased
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for gcy exceeding 40 mC, thus justifying the concomitant decrease in the ECSA. Electrodeposition
charges about 20 mC were insufficient to create suitable core-shell nanoparticles probably because
a significant number of Cu atoms were partially occluded in the Pt shells and in the carbon. In this
case, the steric hindrance impeded the Pt complex approach. However, the further Cu oxidation in
these points could be easier. Based on the peak potentials for CO oxidation and the onset potentials
for CO and methanol oxidation together with ECSA values, the suitable Cu electrodeposition charge
to obtain the Pt-Ru(Cu)/C electrocatalysts was 38 = 2 mC. The most suitable time for galvanic
exchange of Cu by Pt(IV) was 30 min, the Pt shells completely covering the Cu cores. Under these
conditions, maximum ECSA values for CO oxidation, normalized per mol of electrodeposited Cu
on the Pt-Ru(Cu)/C electrocatalyst were achieved. A spontaneous deposition time of the Ru species
on Pt(Cu)/C of 22 £ 2 min led to the smallest onset potentials for CO and methanol oxidation,
which were about 0.05 V smaller than those determined for Ru-decorated commercial Pt/C catalysts.
These conditions yielded the highest normalized ECSA values for CO oxidation and the best specific
anodic current for methanol oxidation. For these best conditions, surface coverage of Pt by the Ru
species in the Pt-Ru(Cu)/C electrocatalyst were determined and their normalized ECSA values for
CO oxidation were comparable to those of Pt(Cu)/C, thus suggesting that the deposited Ru species
were partially reducible to Ru metal during the cyclic scans. The positive effect of Cu was related
to the electronic effect of the Cu core on the Pt shells and also to the generation of new active sites
for CO oxidation. The best mass activities obtained for the methanol oxidation were compared to
those previously reported in literature for the same fuel and also for ethanol and formic acid oxidation
on Pt(Cu)/C catalysts prepared by different procedures. The present results strongly indicate an
additional positive effect of the Ru spontaneously deposited species due to the bifunctional mechanism
for CO oxidation.
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