Abstract: Photocatalytic water splitting for \(\text{H}_2 \) production and photocatalytic oxidation of 2-propanol, an example of volatile organic compounds, were investigated over \(\text{TiO}_2 \) catalysts loaded with gold and/or ceria. In the water splitting reaction the presence of gold only slightly affected the performance of \(\text{TiO}_2 \) whereas the presence of \(\text{CeO}_2 \) had a more remarkable positive effect. In the 2-propanol oxidation \(\text{Au/TiO}_2 \) was the most active sample in terms of alcohol conversion whereas \(\text{Au/TiO}_2-\text{CeO}_2 \) exhibited the highest \(\text{CO}_2 \) yield. On the basis of characterization experiments (X-Ray Diffraction (XRD), Energy Dispersive X-ray Analysis EDX, surface area measurements, Diffuse Reflectance Spectroscopy (DRS) and Raman spectroscopy), it was suggested that the interaction of Au with \(\text{TiO}_2 \) causes an increase in the charge separation between the photo-excited electron/hole pairs, leading to an enhanced photocatalytic activity (to acetone over \(\text{Au/TiO}_2 \) and to \(\text{CO}_2 \) over \(\text{Au/TiO}_2-\text{CeO}_2 \)), whereas the presence of ceria, acting as a hole trap, positively mainly affects the formation of hydrogen by water splitting.

Keywords: photocatalysis; gold; titanium dioxide; cerium oxide; \(\text{H}_2 \) production

1. Introduction

Since the publication of Fujishima and Honda [1], \(\text{TiO}_2 \) has extensively been used as a photocatalyst with growing interest both from an academic and industrial point of view. During this time, photocatalysis with \(\text{TiO}_2 \) was applied with various success to several reactions, among them \(\text{H}_2 \) production by water splitting or abatement of undesired and harmful organic compounds in air or water [2–8]. The good quantum yield and stability, high oxidative power, low cost and easy production [9–11] are the key reasons for the success of \(\text{TiO}_2 \).

By increasing the environmental concern, the removal of organic contaminants from air and water has become a key issue. Among eco-friendly methods of destroying recalcitrant organic pollutants, the advanced oxidation processes (AOPs) represent a valid alternative to conventional chemical methods. AOPs are based on in situ generation of reactive radical species, mainly \(\text{OH}^+ \), by means of solar, chemical or other forms of energy [12,13]. In this field the photocatalytic oxidation (PCO) in the presence of \(\text{TiO}_2 \) to give total or partial oxidation of liquid or gaseous contaminants to benign substances is one of the most promising environmentally friendly techniques for the abatement of volatile organic compounds (VOCs) [14,15]. In fact, the formation of electron-hole pairs on \(\text{TiO}_2 \) by light irradiation with a suitable light source plays a key role in the mineralization of VOCs into \(\text{CO}_2 \) and \(\text{H}_2\text{O} \).
Another important application of heterogeneous photocatalysis is the production of hydrogen by water splitting. Hydrogen, in fact, is regarded as an ideal fuel in sustainable clean energy production, being suitable for fuel cell technology. Unfortunately, at present, H\textsubscript{2} is mainly obtained from fossil fuels, such as natural gas, through the steam reforming process. Photochemical hydrogen generation via splitting of water by ultraviolet (UV) or visible light represents a total green alternative to its production.

\textit{TiO}\textsubscript{2}, however, presents some drawbacks: its wide band-gap energy (ca. 3.2 eV for anatase and 3.0 eV for rutile) makes it possible to use only about 5\% of the solar spectrum and the high electron-hole recombination rate limits its photo-activity. In this regard, doping with metals or metal oxides could provide two positive effects: firstly, it could cause a decrease in the band gap energy, thus shifting the absorption band towards the visible region; secondly, the electron-hole recombination rate could be reduced by metal nanoparticles (NPs) acting as electron traps. In fact, several examples of titania doping with metals such as Fe [16,17], Pd [18], Pt [19,20], Cu [21] or other oxides as CeO\textsubscript{2} [22,23], ZnO [24,25] or SiO\textsubscript{2} [26] were reported in the literature.

Recently gold nanoparticles were used as an efficient doping system of TiO\textsubscript{2} [22,27–33]. Au-TiO\textsubscript{2} NPs showed, in fact, a strong absorption of the visible light due to the surface resonance plasmon (SPR) of their free electrons [27,28]. Therefore, the Au-TiO\textsubscript{2} plasmonic photocatalyst exhibited high efficiency in UV or visible light photo-activated reactions such as 2-propanol degradation [22,29], chemo-selective oxidation of alcohols [30], CO\textsubscript{2} reduction [31] and water splitting for H\textsubscript{2} and O\textsubscript{2} generation [32,33].

The enhancement of the performance under UV irradiation was ascribed to the more efficient interfacial charge transfer in the presence of metallic NPs whereas the emergence of high activity under visible irradiation was attributed to the occurrence of the SPR effect, which allows the absorption of visible light. To explain the above effects, two different roles of Au nanoparticles have been claimed in the literature: on the one hand, the photo-excited electrons of the gold surface plasmon can be injected into the TiO\textsubscript{2} conduction band, thus creating separated electron holes and then increasing their lifetime by hindering the recombination process [34]; on the other hand, Au NPs can favor electron transfer from the TiO\textsubscript{2} surface to the adsorbed molecular oxygen. The SPR phenomenon has been reported to be affected by the size, the shape, the content and the neighboring environment of gold NPs [29,35].

The above features of gold are particularly useful for photocatalytic water splitting; in fact, using excitation wavelengths matching the gold plasmon band, Au NPs absorb photons and inject electrons into the conduction band of the TiO\textsubscript{2}. This latter effect is not common for a metal, but the nanometer size of Au particles and the occurrence of quantum size effects could be responsible for this mechanism and can explain the good activity of the Au/TiO\textsubscript{2} system for this reaction [32,33].

This work aims to evaluate how the presence of gold and/or ceria affects the chemico-physical properties and the photocatalytic activity of TiO\textsubscript{2} in the production of hydrogen by overall water splitting and in the oxidation of 2-propanol (chosen as the VOCs model).

2. Results and Discussion

2.1. \(\text{H}_2\) Generation by Photocatalytic Water Splitting

The photo-activity of all investigated catalysts in the water splitting reaction \((\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2)\), evaluated in terms of hydrogen evolution versus reaction time, is compared in Figure 1. For all samples, we observed the formation of \(\text{O}_2\) in an almost stoichiometric amount (half moles than \(\text{H}_2\)), with only a slight defect of oxygen. By taking into account that the experiments were carried out in pure water without sacrificial agents, this confirms the occurrence of the water splitting reaction.
For all samples it is possible to note that, after a short induction period (around 10 min), due to the stabilization of lamp irradiation and/or water saturation with evolved gases [36], hydrogen production firstly undergoes an almost linear increment for up to 40 min, followed by a moderate decrease of the production rate. According to the literature [37,38] this can be the result of two fundamental effects: (1) a recombination of charge carriers, namely the photo-generated electron-hole pairs, as electrons of the conduction band can quickly recombine with holes of the valence band, thus releasing energy as unproductive heat or photons; (2) a fast backward reaction, namely the recombination of hydrogen and oxygen into water. It is noteworthy that repetitive photocatalytic tests, using the same sample three times in succession, gave the same catalytic profile, with good data reproducibility, thus ruling out that hydrogen might partially arise from the presence of organic residues due to the synthesis, acting as sacrificial agents.

Interestingly, both bare TiO₂ (black line) and CeO₂ (brown line) samples showed some activity in the production of hydrogen which was found to increase in the presence of gold. The coupling of CeO₂ with TiO₂ positively affected the photocatalytic activity with a further increase obtained by the deposition of gold particles in the binary system of TiO₂-CeO₂. In fact, both TiO₂-10%CeO₂ (green line) and Au/TiO₂-10%CeO₂ (blue line) catalysts showed better performance than bare TiO₂ (H₂ evolution around two times higher) and Au/TiO₂ (H₂ evolution around 25% higher). As reported in the literature, despite the bulk ceria and titanias not having a similar crystal structure, cerium ions (Ce³⁺ and Ce⁴⁺) can replace the Ti⁴⁺ ions, modifying the physicochemical properties of TiO₂. Such an interaction between the CeO₂ and TiO₂ frameworks could be the key factor explaining the enhancement of the photocatalytic activity of this mixed oxide system towards water splitting [39,40]. The metal atoms, instead, pile up the electrons from the TiO₂ conduction band and transfer them to hydrogen protons, acting as H₂ evolution centers.

2.2. Photocatalytic Oxidation of 2-Propanol

Figure 2 shows the activity data at 25 °C of the 2-propanol photocatalytic oxidation on all tested catalysts in terms of alcohol conversion (Figure 2a), selectivity to acetone (Figure 2b), selectivity to CO₂ (Figure 2c), and yield to CO₂ (Figure 2d). It must be noted that the first point was taken after 20 min to allow the lamp to reach a stable energy status.
The partial oxidation of 2-propanol can proceed with two reaction pathways [41,42]: the oxidative dehydrogenation to acetone and water or the dehydration to propene. Over Au/CeO2 and CeO2 catalysts no propene was formed during the photocatalytic tests, whereas over TiO2-based samples (TiO2, TiO2-10%CeO2, Au/TiO2 and Au/TiO2-10%CeO2) the formation of propene occurred to a very low extent (1%–3% selectivity). In this latter case, the formation of propene can be ascribed to the more acidic character of TiO2 with respect to CeO2 [43,44].

Considering the conversion of 2-propanol (Figure 2a), the best results were found over the Au/TiO2 catalyst (violet line), which was more active than, in order, TiO2 (black line), Au/TiO2-10%CeO2 (blue line) and TiO2-10%CeO2 samples (green line). The increase of TiO2 photocatalytic activity in the presence of Au particles can be ascribed to the different Fermi levels of the two species leading to an increased charge separation between the excited electron (e−) and the hole (h+) [45–47]. The high activity of the Degussa P25 TiO2 used in this work can be due to the occurrence of an interaction between the two phases of TiO2 (80% anatase, 20% rutile) that increases both the charge carrier (electron-hole) separation and the total photo-efficiency [48,49]. The bare CeO2 (dark red curve) and the Au/CeO2 (orange curve) samples exhibited a low activity for the conversion of 2-propanol (maximum conversion of around 30%), while the presence of ceria negatively affected the performance of TiO2, the maximum conversion being, in fact, lower on TiO2-10%CeO2 (50%) compared to TiO2 (70%). Differently from TiO2, the presence of gold did not affect the CeO2 performances, with the 2-propanol conversion being almost the same for CeO2 and Au/CeO2 samples.

The selectivity to acetone (Figure 2b) generally showed a slight decrease over time, with a corresponding increase in the selectivity to CO2. The bare TiO2 displayed the highest selectivity
according to data reported in the literature for this reaction [18,49], whereas the presence of CeO$_2$ or Au had a negative effect on the acetone selectivity, causing a decrease of the maximum value from 95% over TiO$_2$ to 70% over Au/TiO$_2$, 50% over TiO$_2$-10%CeO$_2$ and 40% over Au/TiO$_2$-10%CeO$_2$. Consequently, the selectivity for CO$_2$ (Figure 2c) and the yield of CO$_2$ (Figure 2d), defined as the product of the 2-propanol conversion and the CO$_2$ selectivity, had a reverse trend, with the Au/TiO$_2$-10%CeO$_2$ system exhibiting the highest values of CO$_2$ selectivity. These results suggest that the presence of gold and/or CeO$_2$ improved the total oxidation of 2-propanol to CO$_2$ more than its selective oxidation to acetone.

2.3. Discussion

The catalytic activity data reported in the preceding section clearly pointed out that gold and/or CeO$_2$ affected the photocatalytic performance of TiO$_2$ differently, depending on the reaction taken into consideration.

In particular, in the photocatalytic water splitting (Figure 1), the presence of gold produced an increase of the hydrogen production both on TiO$_2$ and on CeO$_2$. The rate of H$_2$ production was further enhanced by using ternary Au/TiO$_2$-CeO$_2$ systems, the co-presence of gold and ceria leading to the highest hydrogen evolution.

Also in the photocatalytic 2-propanol oxidation (Figure 2), the presence of gold was necessary to obtain a good performance, with Au/TiO$_2$ being the most active sample for the alcohol conversion and Au/TiO$_2$-10%CeO$_2$ being the catalyst showing the best mineralization yield. The effect of CeO$_2$ addition to TiO$_2$ was instead detrimental for the 2-propanol conversion, resulting, however, in a considerable increase in the CO$_2$ yield.

The chemico-physical characterization of the investigated Au/TiO$_2$-CeO$_2$ catalysts helped us to rationalize the above results. The main properties of the catalysts are displayed in Table 1. As revealed by XRD measurements, and reported by some of us in a previous paper [22], TiO$_2$ anatase was the main crystal phase for all samples, and the presence of CeO$_2$ and/or Au caused a slight decrease in the crystallites’ size. The Raman spectra (Figure 3a), exhibiting bands at around 150 cm$^{-1}$, 403 cm$^{-1}$, 524 cm$^{-1}$ and 647 cm$^{-1}$, confirmed that anatase was the main TiO$_2$ polymorphic phase in these samples [50,51]. The Au/TiO$_2$ sample (red line) showed the same bands of bare TiO$_2$ (black line). In the TiO$_2$-10%CeO$_2$ sample (green line) the signal at 466 cm$^{-1}$ was associated with the cubic phase of the CeO$_2$ fluorite [52–54] and the small component at 600 cm$^{-1}$ was assignable to intrinsic O vacancies in ceria as a result of its non-stoichiometric composition due to the presence of Ce$^{3+}$ in the lattice [54,55].

Table 1. Chemico-physical properties of Au/TiO$_2$-CeO$_2$ catalysts.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface Area (m2/g)</th>
<th>E_g (eV)</th>
<th>Crystallite Size (nm) a</th>
<th>Crystal Phase a</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>44.8</td>
<td>2.98</td>
<td>24</td>
<td>TiO$_2$ Anatase-Rutile</td>
</tr>
<tr>
<td>CeO$_2$</td>
<td>110.2</td>
<td>2.90</td>
<td>10</td>
<td>CeO$_2$ Fluorite</td>
</tr>
<tr>
<td>TiO$_2$-10%CeO$_2$</td>
<td>47.5</td>
<td>2.93</td>
<td>22</td>
<td>TiO$_2$ Anatase-Rutile</td>
</tr>
<tr>
<td>Au/TiO$_2$</td>
<td>46.4</td>
<td>2.97</td>
<td>21</td>
<td>TiO$_2$ Anatase-Rutile</td>
</tr>
<tr>
<td>Au/CeO$_2$</td>
<td>112.7</td>
<td>2.95</td>
<td>11</td>
<td>CeO$_2$ Fluorite</td>
</tr>
<tr>
<td>Au/TiO$_2$-10%CeO$_2$</td>
<td>50.5</td>
<td>2.96</td>
<td>19</td>
<td>TiO$_2$ Anatase-Rutile, CeO$_2$ Fluorite</td>
</tr>
</tbody>
</table>

a Estimated by XRD measurements.

Interestingly, over the Au/TiO$_2$-10%CeO$_2$ sample, the peak associated with cubic CeO$_2$ was less intense, broader and shifted to lower frequencies compared to over the TiO$_2$-10%CeO$_2$ sample (Figure 3b, orange and green lines, respectively). This could be due to a less crystalline and more...
defective structure of ceria in the presence of gold. In fact, Raman has been reported to be sensitive to the degree of crystallinity of samples, with broader, less intense Raman peaks in the case of less crystalline material [56].

![Raman spectra and images](image)

Figure 3. (a) Vibrational modes of Raman spectra of TiO₂ (—), Au/TiO₂ (—), TiO₂-10%CeO₂ (—), and Au/TiO₂-10%CeO₂ (—) samples; (b) Raman shift of the signal of cubic CeO₂ in TiO₂-10%CeO₂ (—), and Au/TiO₂-10%CeO₂ (—) samples; (c) Raman shift of the main E₉ vibrational mode of TiO₂ anatase in TiO₂ (—), Au/TiO₂ (—), TiO₂-10%CeO₂ (—), and Au/TiO₂-10%CeO₂ (—) samples.

Figure 3c shows the position of the main vibrational mode of anatase E₉, pointing out that there was only a slight red shift (about 2 cm⁻¹) on the TiO₂-10%CeO₂ and Au/TiO₂-10%CeO₂ samples. By considering that the E₉ anatase mode at 148 cm⁻¹ is associated with the O-Ti-O vibration, the presence of CeO₂ in the TiO₂ lattice could probably cause a bond distortion resulting in the observed shift of the vibration band.

To analyze the distribution of cerium oxide on TiO₂ a Raman mapping analysis was performed. This technique allows non-destructive and non-invasive analysis of features such as the separation of chemical species in multi-component samples. Chemical maps of TiO₂ and CeO₂ nanostructures performed on the TiO₂-10%CeO₂ sample, based on the detailed Raman image (over a 15 μm × 15 μm image scan, with 150 points per line and 150 lines per image), are presented in Figure 4.

![Raman mapping image](image)

Figure 4. Confocal Raman mapping image of TiO₂-10%CeO₂ sample.
Representative spectra of two different regions are reported in red and violet color scales. The spectra show almost identical features but with very different intensities. The CeO₂ characteristic band (466 cm⁻¹) of higher intensity was recorded in the red region, while in the violet region TiO₂ peaks (150 cm⁻¹, 403 cm⁻¹, 524 cm⁻¹ and 647 cm⁻¹) are very visible with the ceria band of decreased intensity (according to the 10%), pointing out that the ceria was not homogenously dispersed on the TiO₂ bulk.

The band-gap energy values (Table 1), estimated by reporting the modified Kubelka-Munk function, [F(Rₓ*) hν]¹/² against the exciting light energy [57], showed that the TiO₂-10%CeO₂ sample had a lower E_g (2.93 eV) compared to the bare TiO₂ (2.98 eV). This can be related to the replacement of Ti⁴⁺ cations by Ce⁴⁺ or Ce³⁺ cations in the TiO₂ network [51,54,58]. Moreover, looking at the DRS spectra of the investigated samples in the visible region (Figure 5), it can be seen that all gold-loaded samples (Au/TiO₂, Au/CeO₂ and Au/TiO₂-10%CeO₂) exhibit a clear absorbance band at around 550 nm, attributed to the plasmon resonance of gold nanoparticles [59]. As reported in the literature, the photo-excited electrons of the gold surface plasmon can be injected to the TiO₂ conduction band, thus creating separated electrons and holes and then increasing their lifetime by hindering the recombination process [29,32–35]. It must be underlined that no significant variation in the surface area (Brunauer-Emmett-Teller (BET) analysis) of investigated samples was detected in the presence of gold and/or CeO₂. It must also be noted that the bare TiO₂ showed a surface area of 44.8 m²g⁻¹, lower than the values found in the literature for P25 TiO₂ (50–54 m²g⁻¹), reasonably due to the thermal pretreatment of TiO₂ (calcination at 350 °C) [60].

![Figure 5](image.png)

Figure 5. Diffuse Reflectance Spectroscopy (DRS) spectra (visible region) of CeO₂ (●), TiO₂ (—), TiO₂-10%CeO₂ (—), Au/TiO₂ (—), Au/CeO₂ (—) and Au/TiO₂-10%CeO₂ (—) samples.

The surface EDX analysis of investigated samples is reported in Figure 6. It is possible to note that the signals related to cerium (at 4.8 and 5.3 KeV, the first one overlapped with the signal of Ti) were more intense for the Au/TiO₂-10%CeO₂ system. Moreover, the elemental composition of these catalysts showed that on Au/TiO₂-10%CeO₂, the Ce atomic percentage is about four times greater than that found on TiO₂-10%CeO₂ (5.1% and 1.2%, respectively), indicating that the presence of gold on TiO₂-CeO₂ oxide leads to a remarkable cerium surface enrichment.
The different role of gold and CeO₂ in affecting the properties and the catalytic behavior of TiO₂ in the photo-oxidation and the photoreduction reactions investigated here could be rationalized by taking into account the surface active species involved in these reactions. As for the photocatalytic water/air oxidative purification, the photocatalytic hydrogen production essentially requires photo-generation of hole/electron pairs. Nevertheless, the role of holes/electrons, as well as the surface reactions involved, are different. In fact, in the photocatalytic oxidation, valence band (VB) holes are the key elements involved in the removal of contaminants, whereas in H₂ production via photocatalytic water splitting reducing Conduction Band (CB) electrons becomes crucial as their role is mainly that of reducing protons to hydrogen molecules.

The addition of gold to TiO₂ results in an enhancement of the photocatalytic activity towards 2-propanol oxidation, due to an increase in the charge separation between the excited electron and the hole of the titania [45,46,61]. The proposed scheme of the electron transfer phenomena taking place in the Au/TiO₂-CeO₂ system is illustrated in Figure 7. We must underline that under the irradiation conditions used in this work (medium pressure Hg lamp, providing UV and to a lesser extent visible photons), the SPR effect of Au nanoparticles, involving an inverse transfer of electrons from Au to the CB of TiO₂, should play a minor role, becoming important only when visible light is used as the irradiation source. Interestingly, when the cerium oxide was also present, photo-generated active species (superoxide oxygen and hydroxyl radicals) could allow an easier re-oxidation of ceria, thus speeding up its redox process [22,23]. These processes were beneficial for the complete oxidation to CO₂. Furthermore, the basic and redox characteristics of CeO₂ sites with respect to the more acid TiO₂ sites could facilitate the direct combustion of 2-propanol to CO₂ [42,62], resulting in the highest CO₂ yield over the Au/TiO₂-10%CeO₂ system.

The surface mechanisms induced by gold were less efficient for the photocatalytic water splitting. In fact, even if the photo-generated electrons and holes have potentials which are thermodynamically adequate for the water splitting, they tend to recombine with each other if the number of surface active sites for the redox reaction is not sufficient. In this case, the substitution of cerium ions (Ce³⁺ and Ce⁴⁺) in the TiO₂ framework, as suggested by DRS measurements, was the key factor for having a good performance. The cerium defects act, in fact, as hole traps [39,40,63], avoiding the recombination of active electrons and holes and thus favoring the reduction of water. In this case, gold positively affects the photocatalytic performance, both increasing the defective structure of ceria, as shown by Raman, and favoring the enrichment of ceria on the surface of TiO₂, as shown by EDX, thus explaining the highest H₂ production rate of the Au/TiO₂-10%CeO₂ system.

Figure 6. EDX (Energy-dispersive X-ray spectroscopy) spectra of (a) Au/TiO₂, (b) TiO₂-10%CeO₂ and (c) Au/TiO₂-10%CeO₂ samples.
Figure 7. Scheme of the electron transfer phenomena taking place in the Au/TiO₂-CeO₂ system by irradiation with UV light.

3. Materials and Methods

3.1. Catalyst Preparation

TiO₂ used in this work was commercial P25 Degussa (Degussa, Frankfurt, Germany). CeO₂ was instead prepared by precipitation with KOH 0.1 M (Fluka, Buchs, Switzerland) from Ce(NO₃)₃·6H₂O (Fluka, Buchs, Switzerland) water solution, filtration and treatment in air at 450 °C for 4 h of the obtained powder. Mixed TiO₂-CeO₂ composites were prepared with 10 wt. percent of CeO₂, according to the following procedure: aliquots of TiO₂ were impregnated with an appropriate amount of Ce(NO₃)₃·6H₂O solution, the obtained slurries were stirred for 4 h, dried at 120 °C and finally treated in air at 350 °C for 4 h. Calcination in air at 350 °C for 4 h was also carried out on the bare TiO₂.

Gold (1 wt %) was loaded on the bare or mixed TiO₂-CeO₂ oxides by deposition-precipitation. After the pH of the aqueous solution of the Au precursor (HAuCl₄, Sigma-Aldrich, Buchs, Switzerland) was adjusted to the value of 8 by 0.1 M aqueous solution of KOH, the support was added under stirring (500 rpm), keeping the slurry at 70 °C for 3 h, then digesting for 24 h, filtering and washing several times (until chlorides disappearance), drying at 110 °C and finally grounding before use.

3.2. Catalyst Characterization Experiments

X-ray diffraction (XRD) was performed with a Bruker AXS5005 XRD (Bruker, Karlsruhe, Germany) instrument using Cu Kα radiation. Peaks of crystalline phases were compared with those of standard compounds of the JCPDS Data File (Bruker, Diffrac. Suite™ Software package Karlsruhe, Germany).

Energy-dispersive X-ray spectroscopy (EDX) was carried with an INCA Energy Oxford solid state detector (Oxford Instruments plc, Tubney Woods, Abingdon, Oxfordshire, United Kingdom). A field emission gun scanning electron microscopy (FE-SEM, (Carl Zeiss SMT AG Company, Oberkochen, Germany) equipped with a ZEISS SUPRA 55 VP microscope was used to determine the morphologies of the investigated samples.

Raman spectra were recorded with a WITec alpha 300 confocal Raman system (WITec Wissenschaftliche Instrumente und Technologie GmbH Ulm, Germany). The excitation source for Raman measurement was a 532 nm laser line of a Coherent Compass Sapphire Laser. All measurements were performed at low irradiation power to avoid laser induced heating. A 100× objective lens with a NA = 0.90 was used.

UV-VIS reflectance spectra were performed by diffuse reflectance spectroscopy (DRS, with a Shimadzu UV-2401 PC instrument (Shimadzu Corporation, Kyoto, Japan), recording spectra in the range 200–800 nm and using BaSO₄ as reference sample.
Surface area measurements were carried out with a Sorptomatic series 1990 (Thermo Quest, Milano, Italy) instrument using the BET nitrogen adsorption method. All samples were previously outgassed \(10^{-3}\) Torr at 120 °C.

3.3. Photocatalytic Activity Experiments

The 2-propanol photo-oxidation was performed in a home-made Pyrex cylindrical shape photo-reactor (diameter 58 mm, height 100 mm) at 25 °C and atmospheric pressure in gas–solid regime. Then 300 mg of catalyst were placed inside the reactor with a porous inlet glass septum allowing homogeneous distribution of the inlet gas mixture. This mixture consisted of 2-propanol (0.1 mM) and air (flow rate of 20 cm\(^3\)min\(^{-1}\)). An UV Helios-Italquartz 125 W medium pressure Hg lamp (Helios Italquartz Srl, Milano, Italy) was used as the irradiation source. Water flowed through a jacket surrounding the lamp to cut-off the infrared radiation and to maintain constant the temperature inside the reactor. The lamp radiant power in the range 300–400 nm, measured by a radiometer Delta Ohm DO9721 (Delta Ohm Srl, Padova, Italy), was equal to 1.5 mW cm\(^{-2}\). The evolution of the species formed during the runs was followed by withdrawing 500 µl of gas from the reactor by a gas-tight syringe. The 2-propanol and acetone were detected by a Shimadzu GC 2010 (Shimadzu Corporation, Kyoto, Japan) equipped with a Phenomenex Zebron Wax-Plus (30 µm × 0.32 µm × 0.53 µm) column and a FID detector while CO\(_2\) was measured by a HP 6890 Series GC (Agilent Technologies, Santa Clara, CA, US) System equipped with a Supelco packed column GC 60/80 Carboxen™-1000 and a thermal conductivity detector using Helium as carrier gas. The carbon balance was always higher than 95%.

Hydrogen generation by photocatalytic water splitting was performed in a home-made Pyrex jacketed reactor thermostated at 30 °C. The reactor headspace was linked to an inverted buret, filled with water at atmospheric pressure. This allows the quantification of the evolved gas. The evolution of H\(_2\) was confirmed by analyzing the effluent gases with an online gas chromatograph (HP 68900 Series GC System, Agilent Technologies, Santa Clara, CA, US) equipped with a packed column (Carboxen 1000) and thermal conductivity detector. Specifically, the catalyst (50 mg) was placed inside the photo-reactor, with 100 mL of deionized water under stirring. The suspension was purged with a nitrogen flow for at least 30 min before irradiation in order to remove dissolved air. The suspension was then irradiated for 80 minutes using a 100 W mercury lamp.

4. Conclusions

The photocatalytic performance of the Au/TiO\(_2\)-CeO\(_2\) system was studied both in the oxidation of 2-propanol and in the water splitting reaction. Characterization experiments (XRD, EDX, surface area measurements, DRS and Raman spectroscopy) allowed us to suggest that the interaction of gold with TiO\(_2\) causes an increase in the photocatalytic oxidation activity, due to a charge separation enhancement between the excited electron and the hole of TiO\(_2\). The co-existence of Au and both TiO\(_2\) and CeO\(_2\) oxides favors the mineralization of the alcohol. In the water splitting reaction, the presence of ceria, acting as a hole trap, is essential to have a high hydrogen production rate, while Au conveys the electron transfer from TiO\(_2\) to the H\(^+\) ions. Notably, the SPR effect of Au nanoparticles could induce electron transfer to the CB of TiO\(_2\), but the SPR, described as relevant when visible light is used, would play a minor role in our case (both UV and visible light irradiation).

Acknowledgments: Authors would like to acknowledge the Bio-nanotech Research and Innovation Tower (BRIT) project that supports this research activity.

Author Contributions: R.F. and M.B. conceived and performed the photocatalytic experiments and XRD, EDX, DRS and BET characterization, L.D. e G.C. performed and discussed Raman analysis, S.S. and L.P. conceived the idea of writing the paper, supervised the work and edited the article.

Conflicts of Interest: The authors declare no conflict of interest.
References

5. Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. *Catalysts* 2013, 3, 189–218. [CrossRef]

