Supplementary Materials: Organocatalytic, Asymmetric [2+2+2] Annulation to Construct Six-Membered Spirocyclic Oxindoles with Six Continuous Stereogenic Centers

Zhi-Long Li, Chao Liu, Rui Tan, Zhi-Ping Tong and Yan-Kai Liu

	EtOOC					O ₂ N	он		
			H 1) Cat.,	, Acid, Solve	nt → Į	Ph			n Ph TMS
	Boc		2) Ph	· ≫ ^{NO2} ,B	ase	N N	C	Cat.	
	1a	2a		3a		BOC	4a		
Acid	:		Base:		1	∕ ∕⊳Ņ		CI	-3
A ₁ A ₂ A ₃ A ₄	R = 4-NO ₂ R = H R = 4-OMe R = 2-F	RUCOOH	$B_1 = Ethy$ $B_2 = Triet$ $B_3 = Triet$ $B_4 = K_2CC$	ldiisopropylan hylamine hylenediamin O ₃	nine e 🦯		"OH (S N N	CF3
			l			B ₅		B ₆	
Entry		Solvent		Acid	Base	t1 [h]	t2 [h]	Yield ^[b] [%]	ee [c] [%]
1		MeCN		A_1	B 1	12	12	81	93
2		MeCN		A 2	B 1	16	12	76	93
3		MeCN		A 3	B 1	16	12	79	93
4		MeCN		A_4	B 1	12	12	81	93
5		MeCN		A_1	B ₂	12	12	84	97
6		MeCN		A_1	B ₃	12	10	84	97
7		MeCN		A_1	\mathbf{B}_4	12	6	77	97
8		MeCN		A_1	B 5	12	24	67	98
9		MeCN		A_1	B 6	12	48	65	99
10		Toluene		A_1	B ₂	24	12	88	93
11		CH ₂ Cl ₂		A_1	B 2	24	12	75	97
12		Et ₂ O		A_1	B ₂	36	12	85	95
13		THF		A_1	B ₂	36	12	75	97
14		EtOH		A 1	B ₂	2	12	75	95
15		DMF		A_1	B ₂	36	12	trace	-
16	Et	OH with 5% H	0	A_1	B ₂	1	12	82	97
17	Et	OH with 10% H	2O	A_1	B ₂	2	12	82	96
18	Et	OH with 20% H	2O	A_1	B ₂	12	12	87	97
19	EtOH wi	ith 5% H2O and	10% Cat	A_1	B ₂	1	12	83	97
20	EtOH w	vith 5% H2O and	l 5% Cat	A_1	B ₂	3	12	88	98
21	EtOH w	vith 5% H ₂ O and	l 1% Cat	A_1	B ₂	72	12	80	93

Table S1. Screening of reaction conditions [a].

Notes: [a] Unless noted otherwise, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.12 mmol), catalyst **Cat.** (0.02 mmol), and acid **A** (0.02 mmol) in 0.4 mL of solvent at room temperature for specified time (t₁), and then **3a** (0.12 mmol) and base (0.04 mmol) were added to react for another time (t₂); [b] Isolated yield of **4a**; [c] Determined by HPLC analysis on chiral column; dr > 20:1 as determined by ¹H NMR spectroscopic and HPLC analysis.

1. The Confirmation of Absolute Configuration

Figure S1. Crystal data for racemate compounds **5g** (CCDC 1468094 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre).

Bond Precision:	C–C = 0.0035 A	Wavelen	gth = 0.71073
Call	a = 11.4531(9)	b = 11.770(1)	c = 13.6961(11)
Cell:	alpha = 106.493(3)	beta = 90.763(3)	gamma = 108.221(2)
Temperature:		296 K	

Table S2. The information of crystal of racemate compound 5g.

Parameter	Calculated	Reported
Volume	1671.0(2)	1670.9(2)
Space group	P-1	P-1
Hall group	–P 1	-P 1
Moiety formula	C34 H35 Cl N2 O9	C34 H35 Cl N2 O9
Sum formula	C34 H35 Cl N2 O9	C34 H35 Cl N2 O9
Mr	651.09	651.09
Dx,g cm⁻³	1.294	1.294
Z	2	2
Mu (mm ⁻¹)	0.170	0.170
F000	684.0	684.0
F000′	684.65	
h,k,lmax	14,15,17	14,15,17
Nref	7737	7705
Tmin,Tmax	0.973,0.983	0.696,0.746
Tmin'	0.957	

Table S3. The information of crystal of racemate compound 5g.

Table S4. The information of crystal of racemate compound 5g.

Correction method = # Reported T Limits: Tmin = 0.696 Tmax = 0.746 AbsCorr = MULTI-SCAN				
Data completeness = 0.996	Theta(max) = 27.581			
<i>R</i> (reflections) = 0.0476(3049)	wR2(reflections) = 0.1083(7705)			
<i>S</i> = 0.844	Npar = 452			

2. NMR Spectra and HPLC Traces

Figure S2. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5a.

Figure S3. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5a.

 $\label{eq:chrom-Type: Fixed WL Chromatogram, 210 nm} Peak Quantitation: AREA Calculation Method: AREA \%$

No.	RT	Area	Area %	BC
1 2	4.887 9.193	8861512 10047385	46.864 53.136	BB BB
		18908897	100.000	

Figure S4. The HPLC profiles of racemate 5a

BE	98.874	8103194	4.860	1
BB	1.126	92256	9.107	2
	100.000	8195450		

Figure S5. The HPLC profiles of 5a.

ВC

Figure S6. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5b.

Figure S7. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5b.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.447 8.613	3528337 3871204	47.683 52.317	BB BB
		7399541	100.000	

Figure S9. The HPLC profiles of 5b.

Figure S10. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5c.

Figure S11. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5c.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.520 9.273	1618406 1697026	48.814 51.186	BB BB
		3315432	100.000	

Figure S12. The HPLC profiles of racemate 5c.

ο.	RT	Area	Area %	BC
1 2	4.500 9.207	8115357 118035	98.566 1.434	BB BB
		8233392	100.000	

Figure S13. The HPLC profiles of 5b.

Figure S14. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5d.

Figure S15. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5c.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.800 12.120	3166968 3313859	48.867 51.133	BB BB
		6480827	100.000	

Figure S16. The HPLC profiles of racemate 5d.

No.	RT	Area	Area %	BC
1 2	5.760 12.080	16022658 475860	97.116 2.884	BB BB
		16498518	100.000	

Figure S17. The HPLC profiles of 5d.

Figure S19. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5e.

No.	RT	Area	Area %	BC
1	10.360	546990	48.449	BB
2	19.620	582005	51.551	BB
		1128995	100.000	

No.	RT	Area	Area %	BC
1 2	10.293 19.547	708447 2393	99.663 0.337	BB BB
		710840	100.000	

Figure S21. The HPLC profiles of 5e.

Figure S22. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5f.

Figure S23. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5f.

BC

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.940 9.353	6579125 7261316	47.536 52.464	BB BB
		13840441	100.000	

1	4.920	10176763	97.690	BB
2	9.400	240648	2.310	BB
		10417411	100.000	

Figure S25. The HPLC profiles of 5f.

Figure S26. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5g.

Figure S27. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5g.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.880 10.820	5503582 5803385	48.674 51.326	BB BB
		11306967	100.000	

Figure S28. The HPLC profiles of racemate 5g.

Figure S29. The HPLC profiles of 5g.

Figure S31. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5h.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.327 7.093	3062569 3328455	47.920 52.080	BB BB
		6391024	100.000	

Figure S33. The HPLC profiles of 5h.

7509312

100.000

Figure S35. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5i.

 $\label{eq:Chrom Type: Fixed WL Chromatogram, 210 nm} Peak Quantitation: AREA Calculation Method: AREA \%$

No.	RT	Area	Area %	BC
1 2	5.933 9.853	9590023 10650524	47.380 52.620	BB BB
		20240547	100.000	

Figure S37. The HPLC profiles of 5i.

Figure S39. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5j.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.240 11.427	3702816 3889841	48.768 51.232	BB BB
		7592657	100.000	

Figure S41. The HPLC profiles of 5j.

Figure S43. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5k.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.173 8.780	3373619 3686193	47.786 52.214	BB BB
		7059812	100.000	

Figure S45. The HPLC profiles of 5k.

Figure S47. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 51.

No.	RT	Area	Area %	BC
1 2	4.467 8.293	6258823 6867895	47.680 52.320	BB BB
		13126718	100.000	

Figure S49. The HPLC profiles of 51.

Figure S51. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5m.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.287 10.207	6511358 7278412	47.219 52.781	BB BB
		13789770	100.000	

Figure S52. The HPLC profiles of racemate 5m.

Figure S53. The HPLC profiles of 5m.

Figure S55. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5n.

1

2

5.987

11.367

ВC

ΒB

BΒ

98.979

100.000

1.021

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.293 10.453	13697185 17205002	44.324 55.676	BB BB
		30902187	100.000	

Figure S57. The HPLC profiles of 5n.

1151310

1163187

11877

Figure S59. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 50.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.467 15.227	3319889 3910341	45.917 54.083	BB BB
		7230230	100.000	

No.	RT	Area	Area %	BC
1 2	5.453 15.187	10938321 460919	95.957 4.043	BB BB
		11399240	100.000	

Figure S61. The HPLC profiles of 5n.

Figure S63. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5p.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.333 11.327	4116716 4398092	48.348 51.652	BB BB
		8514808	100.000	

Figure S64. The HPLC profiles of racemate 5p.

Figure S65. The HPLC profiles of 5p.

Figure S67. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5q.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	6.407 15.753	710145 724866	49.487 50.513	BB BB
		1435011	100.000	

Figure S68. The HPLC profiles of racemate 5q.

Figure S69. The HPLC profiles of 5q.

Figure S71. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5r.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.587 10.047	3645347 3924350	48.157 51.843	BB BB
		7569697	100.000	

Figure S73. The HPLC profiles of 5r.

Figure S75. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5s.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.107 8.280	5404546 5909001	47.771 52.229	BB BB
		11313547	100.000	

No.	RT	Area	Area %	BC
1 2	4.533 7.640	6301212 106141	98.343 1.657	BB BB
		6407353	100.000	

Figure S77. The HPLC profiles of 5s.

Figure S79. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5t.

BC

ΒB

BΒ

100.000

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.367 7.127	3863525 4138241	48.283 51.717	BB BB
		8001766	100.000	

Figure S80. The HPLC profiles of racemate 5t.

Figure S81. The HPLC profiles of 5t.

7884236

Figure S82. ¹H NMR spectrum (CDCl₃, 500 MHz) of 5u.

Figure S83. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5u.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	6.947 13.813	7943804 8458041	48.432 51.568	BB BB
		16401845	100.000	

Figure S85. The HPLC profiles of 5u.

Figure S87. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5v.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.773 8.580	2264981 2418480	48.361 51.639	BB BB
		4683461	100.000	

Figure S88. The HPLC profiles of racemate 5v.

Figure S89. The HPLC profiles of 5v.

Figure S91. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5w.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	3.847 8.067	9046442 12463284	42.057 57.943	BB BB
		21509726	100.000	

Figure S93. The HPLC profiles of 5w.

Figure S95. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 5x.

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	8.987 11.327	15693315 14832332	51.410 48.590	BB BB
		30525647	100.000	

Figure S97. The HPLC profiles of 5x.

Figure S99. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 7.

No.	RT	Area	Area 🏅	BC
1 2	9.373 13.400	4745723 4347083	52.192 47.808	BB BB
		9092806	100.000	

Figure S100. The HPLC profiles of racemate 7.

Figure S101. The HPLC profiles of racemate 7.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).