Supplementary Material: Hydrogenolysis of Glycerol to 1,2-Propanediol and Ethylene Glycol over Ru-Co/ZrO₂ Catalysts

Jian Feng, Youquan Zhang, Wei Xiong, Hao Ding and Bai He

Catalyst	Conversion (%)								
		1,2-PDO	EG	1-PO	2-PO	1,3-PDO	EO	MO	LCD (%)
ZrO ₂	<1.0	-	-	-	-	-	-	-	-
Ru/ZrO ₂	67.5	41.1	29.8	11.8	4.7	2.6	5.9	4.1	18.2
Ru-Co/ZrO ₂	56.2	70.3	18.0	6.7	2.2	0.2	1.5	1.1	10.7
Co/ZrO ₂	22.7	83.2	7.3	3.1	1.4	-	2.8	2.2	4.1

Table S1. Catalytic performance of the prepared catalysts in glycerol hydrogenolysis.

This is the full list of product selectivity corresponding to Table 1. 1,2-PDO: 1,2-propanediol, EG: ethylene glycol, 1-PO: 1-propanol, 2-PO: 2-propanol, 1,3-PDO: 1,3-propanediol, EO: ethanol, MO: methanol; LCB: loss of carbon balance.

Table S2. Effect of calcination temperature on the catalytic performance of Ru-Co/ZrO2.

Calcination	$C_{\text{commutation}}(0/)$	Selectivity (%)							LCB
Temperature (°C)	Conversion (%)	1,2-PDO	EG	1-PO	2-PO	1,3-PDO	EO	MO	(%)
250	58.7	64.8	24.4	4.9	2.0	0.8	1.9	1.2	15.0
350	56.2	70.3	18.0	6.7	2.2	0.2	1.5	1.1	10.7
450	43.5	68.9	15.3	8.8	3.1	0.5	2.6	0.8	7.9
550	29.1	71.8	16.9	5.4	1.8	1.2	1.9	1.0	5.2

This is the full list of product selectivity corresponding to Table 3.

Table S3. Effec	t of reduction	temperature of	on the catalytic	performance	of Ru-Co/ZrO ₂ .
Tuble obt Ellet	e of reduction	temperature (on the cultury the	periormance	01100 00/2102.

Reduction	$C_{\text{oppussion}}(9/)$	Selectivity (%)							LCB
Temperature (°C)	Conversion (%)	1,2-PDO	EG	1-PO	2-PO	1,3-PDO	EO	MO	(%)
Unreduced	43.0	62.2	26.7	4.5	1.7	0.9	2.7	1.3	5.9
250	56.2	70.3	18.0	6.7	2.2	0.2	1.5	1.1	10.7
300	42.6	71.8	16.5	6.1	1.0	0.7	2.5	1.4	8.4
400	28.7	74.0	10.3	4.3	1.2	1.4	5.9	2.9	5.5
500	14.8	78.5	11.6	2.7	0.9	1.8	3.1	1.4	3.8

This is the full list of product selectivity corresponding to Table 4.

Figure S1. Co 2p XPS spectrum of Ru-Co/ZrO2 reduced at 300 °C.

Figure S2. Co 2p XPS spectrum of Ru-Co/ZrO2 reduced at 400 °C.

Figure S3. Co 2p XPS spectrum of Ru-Co/ZrO₂ reduced at 500 °C.

Figure S4. Ru 3d XPS spectrum of Ru/ZrO2 reduced at 250 °C.

Figure S5. Ru 3d XPS spectrum of Ru-Co/ZrO2 reduced at 250 $^{\circ}\mathrm{C}.$

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).