Supplementary Materials: Hydrogen Evolution Reaction of γ-Mo_{0.5}W_{0.5} C Achieved by High Pressure High Temperature Synthesis

Yingfei Hu, Gan Jia, Shuailing Ma, Jianqiang Hu, Pinwen Zhu, Tian Cui, Zhaosheng Li and Zhigang Zou

Figure S1. Energy dispersive spectrometer (EDS) mapping images of γ-Mo05W05C sample.

Figure S2. Photograph of γ -Mo_{0.5}W_{0.5}C electrode collected with a hydrogen evolution reaction.

Figure S3. Polarization curve of the γ -Mo_{0.5}W_{0.5}C electrode in 1 M NaOH.

In addition to the incompressible γ -Mo_{0.5}W_{0.5}C, the physical properties and HER performances of η -MoC were investigated. The XRD pattern of η -MoC was exhibited in Figure S3. It is clear that η -MoC (Figure S3) shows four basic diffraction peaks at around 35.5°, 37.2°, 39.8°, and 43.1°, which can be indexed as (101), (006), (103), and (104) diffraction planes (JCPDS 08-0384). Figure S4 exhibits the surface morphologies of η -MoC. It is obvious that the surface of both η -MoC is massive and dense. The polarization curves and Tafel plots of the electrodes are shown in Figures S5 and S6. The Tafel slope of η -MoC is 93 mV·dec⁻¹.

Figure S4. X-ray diffraction (XRD) pattern and standard PDF data of η -MoC.

Figure S5. Surface morphology of η-MoC.

Figure S6. Polarization curve of the η-MoC electrode in 0.5 M H₂SO₄. The data were iR corrected.

Figure S7. Tafel plot of the η -MoC electrode.

Table S1. Comparison of hydrogen evolution reaction (HER) performance in acid media for γ -Mo_{0.5}W with other transition metal carbides (TMCs) electrocatalysts.

TMCs	Onset η (mV)	Tafel Slope (mV·dec ⁻¹)	Current Density (j, mA·cm ⁻²)	η at the Corresponding j (mV)	Reference
Mo ₂ C/CNT	63	-	10	152	[1]
np-Mo2C NW	70	53	60	200	[2]
Mo ₂ C/GCSs	120	62.6	10	200	[3]
Mo ₂ C NWs	160	55.8	10.2	200	[4]
Mo ₂ C NSs	160	64.5	5.3	200	[4]
Mo ₂ C nanocomposite	150	110–235	4	250	[5]
γ-MoC	270	121.6	2	320	[6]
β-Mo2C	180	120	2	240	[8]
Incompressible	240	74	10	265	This work
γ-M00.5W0.5C			50	320	THIS WORK

References

- Chen, W.F.; Wang, C.H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J.T.; Zhu, Y.; Adzic, R.R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. *Energy Environ. Sci.* 2013, *6*, 943–951.
- Liao L.; Wang S.N.; Xiao J.J.; Bian X.J.; Zhang Y.H.; Scanlon M.D.; Hu X.L.; Tang Y.; Liu B.H.; Girault H.H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. *Energy Environ. Sci.* 2014, *7*, 387–392.
- 3. Cui W.; Cheng N.Y.; Liu Q.; Ge C.J.; Asir A. M.; Sun X.P. Mo₂C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. *ACS Catal.* **2014**, *4*, 2658–2661.
- 4. Ge C.J.; Jiang P.; Cui W.; Pu Z.H.; Xing Z.C.; Asiri A. M.; Obaid A.Y.; Sun X.P.; Tian J. Shape-controllable synthesis of Mo₂C nanostructures as hydrogen evolution reaction electrocatalysts with high activity. *Electrochim. Acta* **2014**, *134*, 182–186.
- 5. Alhajri N.S.; Anjum D.H.; Takanabe K. Molybdenum carbide–carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution. *J. Mater. Chem. A* **2014**, *2*, 10548–10556.
- 6. Wan C.; Regmi Y.N.; Leonard B.M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. *Angew. Chem. Int. Ed.* **2014**, *53*, 6407–6410.