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Abstract: The massive consumption of fossil fuels and associated environmental issues are leading
to an increased interest in alternative resources such as biofuels. The renewable biofuels can
be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and
hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel
production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel.
Although advances have been achieved, the deactivation and regeneration of catalysts still remains
a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst
application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,
and regeneration for improving catalyst activity and stability are discussed. Some suggestions for
future research including catalyst mechanism, catalyst development, process integration, and biomass
modification for the production of hydrocarbon biofuels are provided.

Keywords: biomass; biofuel; pyrolysis; bio-oil; catalyst; catalytic cracking; hydrodeoxygenation;
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1. Introduction

More than 80% of global energy supplies come from fossil fuels including coal, petroleum, and
natural gas [1]. However, environmental issues such as global warming and air pollution due to fossil
fuel consumption, growing energy demand, and depletion of fossil fuels have stimulated the demand
for renewable liquid fuels [2].

Biomass is a promising eco-friendly alternative source of renewable energy in the context of
current energy scenarios [3]. Biomass is a form of carbon–neutral energy because the CO2 released
during its utilization is equal to the CO2 absorbed from the atmosphere during its growth through
photosynthesis. It also has lower contents of sulfur, nitrogen, and heavy metals than coal [4]. Therefore,
utilization of biomass-derived fuels is crucial to reducing the carbon dioxide emission and air
pollution problems caused by fossil fuels. Compared to fossil fuels, the production of biofuels is
more environmentally friendly and sustainable since biomass is readily available, annually renewable,
and inexpensive. The challenges of fossil fuel depletion, climate change, and other environmental
concerns may be addressed if biomass can be efficiently converted into valuable biofuels and chemicals
with a low carbon footprint.

Biomass can be converted to liquid biofuels through thermochemical processes. Within the last
decades biomass fast pyrolysis has emerged as one of the most promising processes for thermochemical
conversion of lignocellulosic biomass to liquid bio-oils. During pyrolysis, biomass is heated up to
400–650 ◦C in the absence of air and thus broken down into three products: liquid bio-oil and a
small amount of solid bio-char and non-condensable gas (also named syngas). Biomass fast pyrolysis
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is a simultaneous mix of dehydration, depolymerization, re-polymerization, fragmentation, and
rearrangement. These reactions result in a bio-oil liquid that contains over 300 individual compounds
including a large variety of oxygenates that cause many of the negative properties of bio-oil, such as low
higher heating value (HHV), high corrosiveness, high viscosity, and instability [5]. These properties
greatly limit the application of bio-oil, particularly as transportation liquid fuels. Therefore, crude
bio-oil has to be upgraded before it can be used as liquid biofuel for fueling engines.

The purpose of bio-oil upgrading is to refine crude bio-oil into hydrocarbons or other
intermediates that can be directly dropped into an existing petroleum refinery for production
of “green” gasoline, diesel, or other industrial chemicals. This upgrading process is to remove
oxygenated compounds from bio-oil via H2O, CO, and CO2 formation while at the same time
reducing molecular weight and altering chemical structures. Generally bio-oil upgrading may
involve a one pot reaction where simultaneous or tandem multiple reactions of catalytic cracking,
hydrodeoxygenation, decarbonylation, decarboxylation, hydrocracking, or hydrogenation occur in one
reactor. Different catalysts must be used to produce different targeted products. Each of the individual
components in bio-oil may play a certain role in bio-oil upgrading one-pot reactions. A series of
consecutive and parallel reactions competing against each other between liquid and gaseous products
may occur in a one-pot bio-oil upgrading process. There are various intermediates and products
generated simultaneously during bio-oil upgrading. Many of them are reactive. The products from
one component may react with products from other components while the mineral compounds like
alkali and alkaline earth metals that come from biomass can also act as catalysts. This changes product
distribution dramatically and can make one-pot reactions more perplexing. Such complex reaction
networks make bio-oil upgrading, product separation or purification very difficult. The competitive
reactions and impurities in bio-oil also deactivate the catalysts used in the one-pot reactions. This leads
to low carbon conversion efficiency and high processing costs. The processing efficiency of bio-oil
upgrading relies heavily upon the activity, selectivity, and energy efficiency of the catalysts used.
Catalyst deactivation is one of biggest challenges to developing active stable catalysts.

Catalytic cracking and hydrodeoxygenation have proven to be the most promising for upgrade
crude bio-oils into liquid hydrocarbon biofuels. These two methods can effectively reduce the contents
of oxygenated compounds while producing high yields of hydrocarbons. Heterogeneous catalysts have
achieved great success for petroleum refining and are promising for bio-oil upgrading. The objective
of this paper is to address recent advances in the use of heterogeneous catalysts for bio-oil upgrading.
Specifically, major issues associated with bio-oil upgrading catalysts such as catalysts deactivation
caused by coking, methods for reducing catalyst deactivation, and catalysts regeneration techniques
will be addressed.

2. Bio-Oil Properties and Compositions

Among the different pyrolysis processes used for biomass conversion, slow pyrolysis is currently
the most mature and commercially used pyrolysis technology [6,7]. During slow pyrolysis, biomass
is heated to around 500 ◦C at a slow heating rate up to 20 ◦C/min and a long vapor residence time
(5–30 min). This results in a lower yield of liquid bio-oil (around 30 wt%), higher yields of charcoal
(around 35 wt%) and gas products (around 35 wt%) [5,8]. Slow pyrolysis has traditionally been
used for the production of charcoal rather than bio-oil or gas [9,10]. Fast pyrolysis of biomass is a
promising technology for converting biomass to liquid fuels [11]. Fast pyrolysis produces a high
yield of liquid bio-oil (50–75 wt%) at moderate temperatures (400–650 ◦C), atmospheric pressure, high
heating rates (>103 ◦C/s) and short vapor residence time (<2 s) [12,13]. Biomass fast pyrolysis is
generally done in fluidized bed, rotating cones, vacuum or ablative pyrolysis reactors [14]. However,
the biomass-derived bio-oil is not suitable for direct application as transportation fuels due to the lower
heating value (17.4–32.46 MJ/kg) in comparison with heavy fuel oil (44.17 MJ/kg). The comparison
of bio-oil and heavy fuel oil properties are listed in Table 1. The low heating value of bio-oil results
from its high water content (12–30 wt%) and oxygen content (19.40–50.30 wt%). Also bio-oil has high
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viscosity and acidity. Bio-oil is also unstable, and reactions of oxygen-derived compounds during
storage, results in reduced bio-oil quality [15].

Table 1. Typical properties of bio-oil and heavy fuel oil.

Physicochemical Properties Bio-Oil Heavy Fuel Oil

Water content (wt%) 12–30 0.10
Carbon (wt%) 41.70–69.50 85.60–86.68

Hydrogen (wt%) 5.70–9.40 10.30–12.04
Oxygen (wt%) 19.40–50.30 0.60–0.65

Nitrogen (wt%) 0–9.80 0.60
Sulfur (wt%) 0–0.77 2.50
Ash (wt%) <0.25 0.04

pH 2.26–4.30 -
Viscosity (Pa·s) 11.10–62.20@25 ◦C 0.23@30 ◦C
Density (g/mL) 0.98–1.19 0.94

Higher heating value (HHV, MJ/kg) 17.40–32.46 44.17
Reference [12,16–24] [12,16–24]

Pyrolysis bio-oils are complex mixtures containing more than 300 components derived from
the depolymerization and fragmentation reactions of cellulose, hemicellulose, and lignin present
in biomass [5]. Depending on production conditions, and biomass feedstock type and quality, fast
pyrolysis bio-oil composition can vary drastically [25]. The chemical compositions of bio-oils produced
from several biomass feedstocks are listed in Table 2. There are many categories of oxygenated
compounds present in bio-oil, which include phenols, ketones, aldehydes, acids, esters, furans, ethers,
and alcohols. These oxygenated compounds lead to the detrimental properties of bio-oil including high
viscosity, corrosiveness, instability, and low heating values [14]. Acids contribute to the corrosiveness
of bio-oil, and the presence of aldehydes and phenols results in storage instability [26]. Raw bio-oil
requires considerable upgrading to be usable. Two widely investigated methods for upgrading bio-oil
into hydrocarbon biofuels are: catalytic cracking and hydrodeoxygenation.

3. Catalytic Cracking

Catalytic cracking is an effective bio-oil upgrading method, and it is generally done in the presence
of heterogeneous catalysts at atmospheric pressure and at temperatures ranging from 350 ◦C to 650 ◦C.
Catalytic cracking removes oxygen in the form of CO, CO2, and/or H2O [27]. The oxygenated
compounds in raw bio-oil can be transformed into light hydrocarbon biofuel containing high contents
of aromatic hydrocarbons by catalytic cracking. Catalytic cracking can be classified into in-situ
and ex-situ processes. In the in-situ process, the biomass and catalysts were mixed together in
a single reactor, and this method reduces the capital and operating costs [28]. In the ex-situ process,
bio-oil catalytic upgrading is completed in a secondary reactor separate from the biomass pyrolysis
reactor. This process enables easier catalyst performance optimization and reduces catalyst to biomass
ratio [29,30]. Catalysts include zeolite and oxides. The most recent catalysts used for catalytic cracking
are listed in Table 3.
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Table 2. Typical chemical compositions of bio-oils produced from different feedstocks.

Feedstock Switchgrass
(% 1)

Rice Husk
(%)

Palm Shells
(%)

Pine Sawdust
(%)

Algae
(%)

Corn Stover
(wt% 2)

Switchgrass
(wt%)

Algae
(wt%)

Pine
(wt%)

Hardwood
(wt%)

Softwood
(wt%)

Temperature (◦C) 510 450 490 500 500 500 500 360 520 460 510
Phenols 18.95 29.20 50.44 16.98 27.93 2.39 0.97 1.70 - 1.40–3.90 1.40–3.90
Ketones 9.86 2.80 - - 3.16 0.20 1.39 1.50 5.36 0.08–0.96 0.02–0.73

Aldehydes 10.26 0.00 3.42 - - 4.00 - - 9.73 1.03–14.36 0.52–0.70
Acids 3.25 5.10 6.87 4.64 10.42 6.26 10.03 0.50 5.60 3.30–21.50 2.20–19.00
Esters 4.23 - 3 - - - - - - - -
Furans 7.81 2.30 - - 6.41 0.71 3.38 - 4.47 0.20–1.93 0.39–1.83
Ethers 9.22 - 4.51 - - - - - - - -

Alcohols 5.66 9.40 1.01 - 0.36 7.12 0.64 - 2.9 6.41–7.82 1.78–3.17
Others 30.76 51.20 33.75 78.38 51.72 79.32 83.59 96.30 71.94 49.53–87.58 70.67–94.21

Reference [19] [31] [16] [18] [21] [32] [33] [34] [15,35] [36] [36]
1 peak area; 2 mass percentage; 3 not available.

Table 3. Recent advances in heterogeneous catalysts for catalytic cracking of bio-oil and model compounds.

Catalysts Feedstocks Temperature
(◦C) Reactor Type Main

Products

Product
Yield
(wt%)

Product
Compositions
(Peak Area %)

Coke
Yield
(wt%)

Findings References

Zeolite catalysts

HZSM-5, ZnO/HZSM-5,
Ga2O3/HZSM-5,
CuO/HZSM-5, Mo/HZSM-5,
Cu/HZSM-5,
Mo–Cu/HZSM-5, β-zeolite,
Co/HZSM-5, Co-Mo/HZSM-5

Rape straw bio-oil,
hydroxypropanone,
cyclopentanone, acetic acid,
phenol, guaiacol, pine sawdust
bio-oil, jatropha bio-oil, prairie
cordgrass bio-oil

400–600 Fixed-bed, quartz
tube Hydrocarbons 4.58–34.06

(OP 1) 25.71–96.9 0.33–25.07
HZSM-5 with Si/Al
ratio of 50 obtained
high oil phase yield.

[27,30,37–39]

Ni/HZSM-5, P/HZSM-5,
Zn/HZSM-5, Ti/ HZSM-5,
Mg/ZSM-5, Ni/ZSM-5,
Cu/ZSM-5, Ga/ZSM-5,
Sn/ZSM-5, Ultrastable-Y,
ZSM-5, Beta-zeolite,
Zn/ZSM-5, Zn/Na-ZSM-5,
ZSM-5 + SiAl, NiMo/SiAl,
Zn/ZSM-5

Prairie cordgrass bio-oil, rape
straw bio-oil, pine wood
bio-oil, fallopia japonica
bio-oil, camelina oil, carinata
oil, jatropha oil, douglas fir
sawdust bio-oil

268.9–600 Fixed-bed Hydrocarbons 15.02–82.88
(W 2) 16–93.69 1.1–2.5

12% Ni/HZSM-5
yielded the highest
amount of gasoline
hydrocarbons. Higher
reaction temperature is
required to maintain
zeolite recycle.

[40–48]
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Table 3. Cont.

Catalysts Feedstocks Temperature
(◦C) Reactor Type Main

Products

Product
Yield
(wt%)

Product
Compositions
(Peak Area %)

Coke
Yield
(wt%)

Findings References

H-Mordenite, H-ZSM-5, H-Y,
H-Beta, H-Ferrierite,
Cu/β-zeolite, Co/ZSM-5,
Fe/ZSM-5, Ni/ZSM-5,
Ce/ZSM-5, Ga/ZSM-5,
Cu/ZSM-5, Na/ZSM-5,
CaO/HZSM-5,

Oak, corn cob, corn stover,
switchgrass bio-oil, Japanese
knotweed bio-oil, aspen wood
bio-oil, cellulose bio-oil, straw
lignin bio-oil, corn stover
bio-oil

400–600
Micro pyrolyzer,
fixed-bed, tubular
quartz

Hydrocarbons 1–93.30 - 3 0.71–31.2

H-ZSM-5 was most
effective for producing
aromatic hydrocarbons.
Cu doping decreased
coke deposit on spent
catalyst.

[49–52]

Ga/Meso-MFI, HZSM-5,
Meso-MFI, HY, waste FCC

Radiata pine sawdust bio-oil,
wild reed bio-oil 500 Fixed-bed, U-tube

quartz

Aromatic
hydrocarbons,
furans,
phenolics

11.7–15.4
(OP) 2–42.7 (wt% 4) 17.3–21.3

Ga/Meso-MFI
increased organic
fraction of bio-oil and
catalyst resistance to
coke deposition.

[53,54]

Oxides catalysts

CaO, MCM-41, MgO, NiO,
Al2O3, FCC, ZSM-5,
ZrO2/TiO2, Silica alumina,
MgO, B2O3, Na2CO3/γ-Al2O3

Corncob bio-oil, beech wood
bio-oil, empty palm oil fruit
bunch bio-oil, oil palm fronds
bio-oil, woody fiber bio-oil

400–1000
Thermogravimetric
analyzer ,
fixed-bed

Aromatic
hydrocarbons,
phenolics,

5.46–37.1
(OP) 0–49.8 -

ZrO2/TiO2 and ZSM-5
effectively reduced
bio-oil oxygen content.
B2O3 promoted
cleavage of C–O bond.

[55–59]

Nano MgO, CaO, TiO2, Fe2O3,
NiO, ZnO, Zn/Al2O3,
Ce/Al2O3, Ni/Al2O3,
Mo2N/γ-Al2O3

Poplar wood bio-oil, sunflower
stalk bio-oil, lignin bio-oil 500–850

Fixed-bed,
pyroprobe
pyrolzer

Hydrocarbons 6.7–17.5 - 5.37–8.59 CaO greatly reduced
acids in bio-oil. [60–62]

ZnO, sepiolite, bentonite,
attapulgite, red mud,
Ce/Al2O3, Ce/ZrO2,
Ni–Ce/Al2O3, Ni–Ce/ZrO2,
Mg–Ce/Al2O3, Mg–Ce/ZrO2

Rice husk bio-oil, ,pine
woodchips bio-oil, algae bio-oil 400–600 Auger, fixed-bed Hydrocarbons,

phenols
16.77–49.91

(W) 6.99–67.98 -
NiCe/Al2O3 produced
highest bio-oil yield
with the lowest oxygen.

[63–65]

Other catalysts

FCC Pine woodchip bio-oil, gas oil 540–560 Fluidized bed Gasoline, light
cycle oil - - -

Similar product yields
were obtained from
FCC feed when 10%
bio-oil was added.

[66]

Fe/AC, K3PO4/Fe3O4
Douglas fir pellet bio-oil,
poplar wood bio-oil 309–591 Microwave,

quartz tube

Furans,
phenols,
guaiacols,
ketones,
ethers

23.30–45.20
(W) 48.6–87 -

Acid-catalyzed ring
opening of furans
forms aldehydes.

[67,68]

1 is oil phase yield; 2 is total bio-oil yield; 3 not available; 4 mass percentage.
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3.1. Catalysts in Catalytic Cracking

3.1.1. Zeolite Catalysts

Zeolite catalysts have been shown to be effective in the deoxygenation of bio-oil, resulting in the
formation of aromatics and effectively increasing the C/O ratio in upgraded bio-oil. Zeolite catalysts
such as HZSM-5, β-zeolite, Y-type zeolite, ferrierite zeolite, mordenite zeolite, MCM-41, and SBA-15
have documented use for bio-oil catalytic cracking [37,38,49,55,69,70]. Among these catalysts, HZSM-5
is most effective due to its high activity, strong acidity, and shape selectivity [49,56,71]. HZSM-5
zeolite bio-oil upgrading has effectively transformed bio-oil to liquid biofuel, abundant in aromatic
hydrocarbons through deoxygenation, dehydration, decarboxylation, decarbonylation, cracking,
oligomerization, alkylation, isomerization, cyclisation and aromatization reactions [72,73]. However,
HZSM-5 is easily deactivated by coking, resulting in low yields and short life cycle times.

3.1.2. Oxides Catalysts

Inexpensive oxide catalysts have been widely used as mild catalysts to reduce the oxygen
content in bio-oil. Alumina, nickel monoxide, zirconia/titania, tetragonal zirconia, titania, and silica
alumina were investigated for use with catalytic pyrolysis of beech wood in a fixed bed reactor at
500 ◦C [56]. The results indicated that alumina showed the highest selectivity towards hydrocarbons
and yielded low organic liquid products. In comparison, zirconia/titania exhibited good selectivity
towards hydrocarbons and yielded higher organic liquid product than alumina. Natural derived
basic magnesium oxide (MgO) catalyst effectively reduced the oxygen content of the produced bio-oil
and exhibited similar or even better catalytic performance in bio-oil upgrading compared to that
of an industrial ZSM-5 catalyst, although the coke yield of MgO catalyst was a bit higher than that
of ZSM-5 [57]. The reduction of acids and deoxygenation of bio-oils via ketonization and aldol
condensation reactions occurred in the basic sites of MgO catalysts, and the preferred pathway for
removing oxygen was mainly via CO2 formation instead of CO and/or water. Zinc oxide (ZnO)
catalyst was used for catalytic pyrolysis of rice husks to produce bio-oil in a fixed-bed reactor. ZnO
catalyst decreased the amount of undesired oxygenated compounds in bio-oils [63]. Boric oxide (B2O3)
selectively eliminated 50%–80% of the hydroxyl and methoxy groups in the bio-oil produced from
empty palm oil fruit bunch and oil palm fronds in a fixed-bed reactor at 400 ◦C [58]. Boric oxide
enhanced the cleavage of C–O bonds in the biomass polymers. This was due to the change of the
boric oxide structure from a planar triangular BO3 to a tetrahedral BO4 using the oxygen generated
from the oxygenated groups in the bio-oil. Nano metal oxides also exhibited good catalytic activity in
bio-oil upgrading. For instance, nano MgO, CaO, TiO2, Fe2O3, NiO, and ZnO were used in catalytic
cracking of poplar wood pyrolysis vapors in a pyrolysis tube [61]. The results indicated that CaO was
the most effective catalyst in increasing the formation of hydrocarbons, reducing the production of
anhydrosugars and phenols, and eliminating acids.

3.2. Catalyst Deactivation in Catalytic Cracking

Coking is the main reason for catalyst deactivation in catalytic cracking. The results are reduced
hydrocarbon yield, catalysts activity, selectivity, and life cycle time by covering active sites on the
catalysts and blocking catalysts pores [60]. Coke is a kind of large molecule aromatic compound.
Coking increases with increased temperature, especially above 400 ◦C [74]. Catalyst coke is formed
from lignin derivatives and the transformation of bio-oil oxygenates by cyclization, aromatization, and
condensation reactions into the olefinic and aromatic heavy components [75]. Lignin derived phenolic,
guaiacol compounds, acetic acid, and acetaldehyde are important precursors of coke formation on
zeolite catalysts. The acidity (acid strength and number of acid sites) of zeolite catalysts is essential for
catalytic deoxygenation, and also plays an important role in catalyst coke formation. Zeolite catalysts
with higher acidity were more effective in promoting bio-oil catalytic cracking reactions, but they also
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resulted in higher tendencies for coke formation. Therefore, the acidity of zeolites catalysts should be
optimized to achieve higher catalyst activity and lower coke formation.

Catalysts coke formation mechanisms have been investigated by many researchers [75–78].
The mechanisms for coke formation during catalytic cracking of methanol and pine sawdust bio-oil
over Ni/HZSM-5 catalysts at 450 ◦C in a fluidized bed reactor was proposed by Valle et al. [76].

Figure 1 is a proposed scheme of chemical reactions for the conversion of a bio-oil/methanol
mixture into hydrocarbons and coke using a Ni/HZSM-5 catalyst. All chemical reaction steps shown
in the figure occur in a fluidized bed reactor at a temperature of 450 ◦C and pressure of 0.1 MPa.
Apart from the main products (hydrocarbons, C2–4 olefins, C5+ aliphatics, C5+ aromatics, thermal coke
and catalytic coke) shown in the figure, some side products including CH4, CO, CO2 and C2–4 paraffins
were also detected.
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Figure 1. The scheme of chemical reactions for the conversion of a bio-oil/methanol mixture into
hydrocarbons and coke using a Ni/HZSM-5 catalyst [76]. Copyright 2012, Elsevier.

The coke deposited on Ni/HZSM-5 catalysts consists of thermal coke (mainly located outside of
the microporous structure of zeolite) and catalytic coke (mostly located inside HZSM-5 zeolite channels)
on Ni/HZSM-5 catalysts. Thermal coke was formed by condensation–degradation and polymerization
reactions of bio-oil oxygenated compounds derived from lignin pyrolysis in step A [76]. The methanol
and bio-oil mixture was transformed into aromatic hydrocarbons present in the hydrocarbon pool via
direct deoxygenation, dehydration, decarboxylation, decarbonylation, and cracking reactions using
a Ni/HZSM-5 catalyst in step B [79]. Some hydrocarbons contained in the hydrocarbon pool were
transformed to C2–4 olefins through oligomerization-cracking reactions in step C [80]. C2–4 olefins
were then transformed to C5+ aliphatics and C5+ aromatics through alkylation, oligomerization and
hydrogen transfer reactions in step D [81]. The C5+ aliphatics and C5+ aromatics then undergo
rearrangement and condensation reactions to form alkylaromatics and polyaromatics that comprise
the catalytic coke in step E [77,79]. Some hydrocarbons present in the hydrocarbon pool were directly
converted to catalytic coke through oligomerization, cyclization, aromatization, and condensation
reactions that were catalyzed by acid sites of Ni/HZSM-5 catalyst in step F [76]. The condensation and
polymerization reactions of the oxygenated compounds in bio-oil also contributed to the formation of
catalytic coke in step G [76].

3.3. Reducing Catalyst Deactivation in Catalytic Cracking

In order to reduce catalyst deactivation over zeolite catalysts, metal incorporation with zeolites
was evaluated during bio-oil catalytic cracking studies. The loading of metal on zeolites improved
catalyst selectivity toward aromatic hydrocarbons and reduced coke formation over catalysts. This was
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due to the bifunctional activity of the metal modified zeolite catalyst including deoxygenation of
zeolite and dehydrogenating of metal species [39,42]. Low concentration Cu-modified β-zeolite
(0.5 wt%) increased selectivity to hydrocarbons during catalytic upgrading of Japanese knotweed
pyrolysis bio-oil at 600 ◦C when compared to β-zeolite alone. It also decreased the coke deposition on
Cu/β-zeolite catalyst [50]. Nickel substituted HZSM-5 catalyst improved hydrocarbon yield (around
16 wt%) and reduced coke yield during catalytic upgrading of aspen wood pyrolysis bio-oil vapor at
600 ◦C when compared to HZSM-5 alone [51]. The incorporation of gallium with mesoporous MFI
zeolite increased both the organic fraction of the bio-oil and catalyst resistance to coke deposition
during catalytic upgrading of pyrolytic bio-oil vapors derived from pine sawdust at 500 ◦C [53].
The loading of Co and/or Mo with HZSM-5 was found to reduce coke formation and improve
hydrocarbon formation when converting prairie cordgrass to hydrocarbon biofuel in a two-stage
reactor system [39]. The anti-coking and aromatization performance of zinc and titanium modified
HZSM-5 were improved in catalytic transformation of rape straw pyrolysis bio-oil vapor to refined
bio-oil [42]. The coke formation over Zn/HZSM-5 during pine sawdust bio-oil upgrading was reduced
when compared to pure HZSM-5. This was due to the inhibited coke formation caused by the reduction
of the strong acidic sites due to zinc incorporation [48]. In addition, Mg, Ni, Cu, Ga, and Sn-loaded
(1 wt%) ZSM-5 zeolites were evaluated during catalytic upgrading of the organic phase of biomass
pyrolysis bio-oil at 450 ◦C [43]. Due to the higher hydrocarbon yield and lower coke yield compared
to parent HZSM-5, Ni/ZSM-5 and Sn/ZSM-5 are potential candidates in the catalytic upgrading of
pyrolysis bio-oil.

The co-feeding of hydrogen-rich feedstocks is another effective method for reducing coke
formation over zeolite catalysts. Co-cracking reactants with high H/C ratios including alcohols,
FCC gas oil, low-density polyethylene (LDPE) plastic, H2, and stream are effective at suppressing
coke formation during bio-oil catalytic cracking [27,82]. The co-cracking of bio-oil with methanol
significantly reduced coke deposition on Ni/HZSM-5 catalyst during pine sawdust bio-oil
upgrading [76]. This was due to the increased H/C ratio in the feed in the catalytic cracking.
Co-processing of bio-oils with vacuum gasoil lowered coke formation over HZSM-5 catalyst during
the Fluid Catalytic Cracking (FCC) process [83]. This was due to the restricted access of the oxygenated
molecules into the zeolite pores, and coke formation on the outside surface led to pore blocking.
Catalytic fast pyrolysis of pine wood and LDPE using ZSM-5 catalyst was investigated at 550 ◦C [84].
Significant petrochemical production enhancement and coke reduction was observed using a ZSM-5
catalyst. The decreased coke formation was mainly due to hydrogen-transfer reactions between
LDPE-derived hydrocarbons and pine wood-derived oxygenates. Co-feeding H2 into the reactor
showed great potential to minimize HZSM-5 catalytic coking [85]. The possible reason was that H2

played a role in keeping the catalyst surface cleaner and had a moderate effect in hydrogen transfer
reactions. This led to the better catalyst stability. Co-processing steam with the bio-oil also reduced the
rate of HZSM-5 catalyst deactivation and decreased the total yield of coke and char in bio-oil catalytic
upgrading at 340–370 ◦C [86].

The integration of multiple step bio-oil upgrading processes is beneficial in decreasing the coke
formation and improves yields of aromatic hydrocarbons. A two-step catalytic conversion of wood
pyrolysis bio-oil to hydrocarbon fuels over HZSM-5 in a dual reactor (low temperature (340–400 ◦C) and
high temperature (350–450 ◦C)) system was reported by Sharma et al. [87]. The results indicated that the
yields of aromatic hydrocarbons produced in the dual reactor system were nearly two-fold compared
to those from a single reactor system, and the coke and char yields were much lower (10 wt%) than
from those from the single reactor system (29 wt%) at 340 ◦C. Gayubo et al. also reported a two-step
(thermal and catalytic) in-line process for the upgrading of crude bio-oil over HZSM-5 catalyst [88].
The first thermal step separated pyrolytic lignin presented in bio-oil at 400 ◦C. This produced treated
bio-oil that resulted in lower coke deposition over HZSM-5 in catalytic cracking in the second fluidized
catalytic reactor. This two-step bio-oil upgrading process reduced catalyst deactivation and avoided
blockage of the catalytic bed. A two-stage continuous hydrogenation-cracking reaction process using
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Pd/nano-SiO2 and HZSM-5 catalysts was used to convert model bio-oil compound mixture and ethanol
into aromatic hydrocarbons [71]. The results showed that the application of mild hydrogenation before
bio-oil cracking significantly reduced the unstable components in bio-oil and thus suppressed coke
deposition on HZSM-5.

3.4. Catalyst Regeneration and Recycling in Catalytic Cracking

In order to improve catalyst lifetime and reduce operation cost of bio-oil catalytic cracking,
repeated catalyst regeneration or recycling becomes an economic necessity. Oxidation regeneration by
burning coke at high temperature in air was attempted to recover zeolite catalyst activity [60,73,89].
In order to avoid the irreversible loss of acidity, the catalysts’ regeneration temperature should not
exceed the catalyst calcination temperature. Repeated fixed bed reactor upgrading–regenerating
of HZSM-5 zeolite during upgrading of wood derived pyrolysis oil to aromatic hydrocarbons was
reported [73]. The removal of the coke deposited over HZSM-5 was accomplished by burning coke in
air at 500 ◦C for 12 h. However, the recovered HZSM-5 catalyst performance was reduced during five
upgrading–regenerating cycles. The loss of catalyst activity was mainly due to the reduced number
of Brønsted acid sites responsible for bio-oil upgrading. The loss of acid sites was due to localized
temperatures higher than 500 ◦C. Therefore, in order to avoid hot spots or high temperatures during
hot catalyst air regeneration, the coke combustion process might be controlled by initially feeding low
concentrations of air using diluents such as nitrogen and steam and then gradually increasing oxygen
concentration to complete the coke conversion [90].

In order to improve hydrothermal stability of the HZSM-5 catalyst, a high SiO2/Al2O3 ratio (80)
and nickel incorporation (1 wt%) were used to modify HZSM-5 zeolite (SiO2/Al2O3 ratio of 30) during
bio-oil catalytic cracking at 500 ◦C in a fluidized bed reactor [89]. The modified HZSM-5 catalysts
regeneration were conducted by combusting coke with air at 550 ◦C for 2 h, the regenerated catalysts
maintained similar activities for ten reaction–regeneration cycles. The main reason for the stability of
these modified catalysts was due to the homogeneity, moderate acid strength, and low density of acid
sites in the catalysts.

Recycle of used catalyst is beneficial to prolong the catalyst life. Reusability of Zn, Ce, and Ni
metal doped Al2O3 catalysts was tested for in-situ catalytic upgrading of sunflower stalk derived
bio-oil [60]. A five-cycle reusability test of these catalysts showed long-term stability in their
performance. Regeneration of spent catalysts was conducted through calcining at 650 ◦C in air for 0.5 h
during the fifth cycle. The possible reason for the catalyst stability was that metal species promoted
hydrogen atom migration through C–H activation, catalyzing the oligomerization of intermediates.
These intermediates prevented coke formation on the surface of the catalyst.

4. Hydrodeoxygenation

Hydrodeoxygenation (HDO) is an effective bio-oil upgrading technique using a variety of
heterogeneous catalysts at high hydrogen pressure (7.5–30 MPa) and temperatures (250–450 ◦C) [91,92].
HDO removes oxygen in bio-oil as H2O, CO, and/or CO2 [93,94]. This results in the production
of stable hydrocarbon biofuel with higher energy content. During the bio-oil HDO process,
multiple reactions including hydrogenation, hydrogenolysis, hydrodeoxygenation, decarboxylation,
decarbonylation, cracking/hydrocracking, and polymerization reactions occurred. An efficient HDO
catalyst should effectively remove oxygen with low hydrogen consumption and suppress the coke
formation that leads to catalyst deactivation. Various noble and transitional metal catalysts supported
on carriers of alumina, silica, titania, zirconia, magnesium oxide, active carbon, and HZSM-5 have
been tested on bio-oil and model HDO compounds. The most recent catalysts used for HDO are listed
in Table 4.
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Table 4. Recent advances in heterogeneous catalysts for HDO (hydrodeoxygenation) of bio-oil and model compounds.

Catalysts Feed Stocks Temperature
(◦C)

Pressure
(MPa)

Reactor
Type

Main
Products

Product
Yield
(wt%)

Product
Compositions
(Peak Area %)

Coke
Yield
(wt%)

Findings References

Sulfided catalysts

Ni-MoS2/ZrO2, Sulfided NiMo
and CoMo catalysts,
Ni/W/TiO2

Phenol, 1-octanol,
mallee wood bio-oil,
guaiacol

150–300 5–10 Packed bed,
autoclave

Cyclohexane,
cyclohexene,
octane,
octane, alkyl
phenols

16–46 - 3 5.7–28.1 Cl, S and K in bio-oil
deactivated catalyst. [95–97]

Noble metal catalysts

Pt/C Miscanthus bio-oil 250–350 3 Autoclave Heavy oil,
light oil

48.3–83.3
(W 1) - 3.8–16.1 Ethanol improved bio-oil

quality as a co-reactant. [98]

Zn2+-Pd/C Pine sawdust bio-oil 150–350 1.38–4.14 Autoclave Hydrocarbons 40.28–46.72
(OP 2) 0.54–6.06 0.22–0.41

Zn2+ and Pd had the
synergistic effect for HDO
bio-oil upgrading.

[99]

Ru/MWCNT, Ru/CARF,
Ru/Vulcan carbon, Ru/AC,
Ru/Graphite, Pt/carbon,
Pd/carbon, Pt/HZSM-5,
Pt/Mesoporous Beta,
Pt/HBeta, Pt/MMZBeta,
Pt/Al-MCM-48,Pt/Si-MCM-48,
Pt/ZSM-5, Pt/Al2O3, Pt/SiO2,
Pt/H-MFI-90

Oak chips bio-oil, grass
bio-oil, eucalyptus
bio-oil, benthamii,
bio-oil, equine manure
bio-oil, guaiacol, cresol,
dibenzofuran, 1-octanol

50–320 4–14.5 Autoclave or
fixed-bed Hydrocarbons 0.08–91 - -

Ru/MWCNT was highly
active for producing
alkanes and cycloalkanes.
Pt/Mesoporous Beta and
Pt/HBeta showed higher
guaiacol conversions.

[100–103]

Ru/C Pine sawdust bio-oil 250–300 2 Autoclave Esters,
ethers

42.3–84.6
(W) 40.5 0.2–9.9

Acids, aldehydes, ketones,
phenols and furans
contents of upgraded
bio-oil decreased
significantly.

[104]

Transition metal catalysts

Ni/AC, Ni-Fe/AC, Ni-Mo/AC,
Ni-Cu/AC, Ni–Co/HZSM-5,
Ni–Co/HBeta, Ni–Co/HY,
Ni–Co/ZrO2

Prairie cordgrass
bio-oil, wood bio-oil 250–350 3.4–5 Autoclave Hydrocarbons 17.35–37.0

(OP) 16.37–39.42 3.09–8.86

Ni/AC produced the
highest content of gasoline
range hydrocarbons.
10Ni10Co/HZSM-5 shows
the best performance in
bio-oil HDO.

[92,105]

CoMo/AC, CoMo/γ-Al2O3,
CoMo/HZSM-5,CoMo/MCM-41,
CoMo/SBA-15, Ru/C

Sawdust bio-oil 300–350 20.7–22.5 Autoclave Heavy oil,
light oil

55.0–66.6
(W) - <1–10

CoMo/MCM-41 had better
resistance to coke
deposition than other
CoMo catalysts.

[106]
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Table 4. Cont.

Catalysts Feed Stocks Temperature
(◦C)

Pressure
(MPa)

Reactor
Type

Main
Products

Product
Yield
(wt%)

Product
Compositions
(Peak Area %)

Coke
Yield
(wt%)

Findings References

Raney Ni, nafion/SiO2, nano
Ni/SiO, Ni/HBeta, Fe/HBeta,
NiFe/HBeta, Ni/HZSM-5,
Ni/ZSM-5, Co/ZSM-5,
Ni/SBA-15, Co/SBA-15,
Ni/Al-SBA-15, Co/Al-SBA-15,
Ni/Ce-SBA-15, Cu–Ni/TiO2,
Cu–Ni/ZrO2, Cu–Ni/CeO2

Phenol, o-cresol,
anisole, dibenzo furan 160–340 0.7–10 Autoclave,

Fixed-bed Hydrocarbons 3.1–92.4 - -

Raney Ni was effective for
hydrogenation and
Nafion/SiO2 was effective
for dehydration. Small
nickel particles favored
deoxygenation and large
particles favored
hydrogenation.

[107–113]

Ni/CMK-3, MoNi/γ-Al2O3 Pine sawdust bio-oil 100–230 0.1–3 Autoclave Alcohols,
esters - 48.21–51.14 -

Hydrogen donors provided
hydrogen for in-situ
hydrogenation. Mo
addition inhibited the
formation of NiAl2O4.

[114,115]

Co/Al-MCM-41,
Ni/Al-MCM-41,
NiCo/Al-MCM-41, Cu/C,
Fe/C, Pd/C, Pt/C, PdFe/C,
Ru/C, Ni@Pd/silica alumina,
Ni@Pt/silica alumina,
CuRe/SiO2, Ni/MCM-41,
HZSM-5, Ni/ZrO2–SiO2,
NiCu/ZrO2–SiO2

Guaiacol 120–450 0.1–5 Fixed-bed,
autoclave Hydrocarbons 0.1–95.4 - -

Co was active in HDO via
C–O hydrogenolysis and
Ni favored C–C
hydrogenolysis. Pd-Fe
catalyst was active and
selective for HDO.
Overlayer catalysts
enhanced deoxygenation
activity.

[116–121]

Other catalysts

Ni-NS, Ru-NS, Ni–Al2O3,
Ni/SiO2–Al2O3, Pine wood
AC, coconut shell AC, bamboo
stem AC, apricot pit AC, peach
pit AC, coal AC,

Pine bio-oil, duckweed
bio-oil 300–400 4.1–6 Autoclave Hydrocarbons 51.6–98.8

(W) 46.37–89.37 5.3–10.1

NS catalysts showed
promising effect for
upgrading bio-oils to
biofuels.

[122,123]

CoP/Al2O3, CoMoP/γ-Al2O3,
MoP/γ-Al2O3, Ni2P/γ-Al2O3,
Ni/γ-Al2O3, Co/γ-Al2O3,
Ni2P/γ-Al2O3, CoP/γ-Al2O3,
CeZrOx

2-furyl methyl ketone,
acetic acid, acetol,
furfural

250–400 0.1 Fixed-bed

Methyl
cyclopentane,
cyclohexane,
pyruvaldehyde,
1,2-propylene
glycol

11–100 - -
CoP/Al2O3 had higher
selectivity to methyl
cyclopentane.

[124–126]

CoMo/MgO, CoMoP/MgO,
Ni–W–P–B, Ni2P/γ-Al2O3,
MoP/γ-Al2O3, Mo2C/TiO2,
MoP/TiO2, Mo2N/TiO2,
MoO3/TiO2

Phenol, p-cresol,
palmitic acid 180–450 2.5–5

Micro-reactor,
autoclave,
fixed-bed

Benzene,
toluene,
pentadecane,
cyclohexyl-aromatics

- 13.23–64.23 -
CoMoP/MgO showed
superior activity in phenol
HDO.

[127–130]

1 is total bio-oil yield; 2 is oil phase yield; 3 not available.
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4.1. Catalysts Used in Bio-Oil HDO

4.1.1. Sulfided Catalysts

Sulfided catalysts including mixed sulfides of (Co, Ni) and (Mo, W) dispersed on γ-Al2O3

or MgO have been used for bio-oil HDO due to the good catalytic performance [131,132].
Sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts were used for wood-derived bio-oil HDO
upgrading [133]. The results indicated that CoMo/γ-Al2O3 showed higher selectivity to diesel-like
products and higher activity for removal of gaseous intermediates (COx) by hydrogenation than
NiMo/γ-Al2O3. The active sites that exhibited Lewis acid character on sulfided catalysts were sulphur
anion vacancies (coordinately unsaturated sites), and located at the edges of MoS2 nanoclusters [134].
Compared with NiMo/γ-Al2O3 catalyst, NiW/γ-Al2O3 catalyst presented a higher isomerization
activity leading to higher phenol conversion in phenol HDO [134]. In sulfided NiW catalysts, WS2

was the HDO active phase while Ni was used as the promoter. Phosphorus (P) doping has been used
to improve the activity of sulfide catalysts, and CoMoP/MgO catalyst showed higher activity for
phenol HDO than CoMo/MgO [130]. The activity-promoting effects of P was due to the increase in
Mo dispersion, stacking of MoS2 crystallites and formation of new Lewis and Brönsted acid sites on
the catalyst surface.

Sulfided catalysts are not very desirable for bio-oil HDO due to the addition of sulfur-containing
compounds. They can result in the contamination of biofuel products and increase upgrading cost.
Besides, alumina is unstable under hydrothermal conditions, and it can partially transform into
boehmite in the presence of water vapor at reaction temperature (140–380 ◦C) [107]. Finally, Al2O3

support shows a high tendency for polymerization reactions due to the high acidity resulting in coke
deposition [93].

4.1.2. Noble Metal Catalysts

Noble metal (Rh, Pt, Pd, and Ru) catalysts showed excellent bio-oil HDO catalytic performance.
These catalysts do not require the consumption of environmentally unfriendly sulfur compounds.
These metal catalysts are active at low temperatures, and this could possibly prevent thermal reactions
leading to coke formation and deactivation. The effectiveness of noble metal catalysts was affected
by the types of biomass and noble metals. During HDO of fast-pyrolysis bio-oils from several
feedstocks (switchgrass, eucalyptus benthamii, and equine manure) using Pt/C, Ru/C, and Pd/C
catalysts, switchgrass bio-oil over Pt/C showed the best hydrogen consumption and deoxygenation
efficiency [25]. A variety of heterogeneous noble-metal catalysts (Ru/C, Ru/TiO2, Ru/Al2O3, Pt/C,
and Pd/C) were screened for the upgrading of beech wood fast pyrolysis oil [135]. Among the
tested catalysts, Ru/C catalyst was found to be the most effective catalyst with respect to oil yield
(up to 60 wt%) and deoxygenation level (up to 90 wt%). HDO of pinewood derived bio-oil using
monometallic and bimetallic noble metal (Rh, Pd, Pt) catalysts supported on ZrO2 showed Pd/ZrO2

produced the highest activity followed by Rh/ZrO2 [136]. This was due to the higher sulfur (present
in bio-oil) tolerance of Pd/ZrO2 than other metal catalysts.

The support properties including pore sizes, acidity, and surface areas have a significant influence
on noble metal catalyst activity. Pt/ZSM-5 showed much higher deoxygenation ability than Pt/Al2O3

during HDO of pyrolysis bio-oil [101]. This was attributed to the mesoporous structure and high
acidity of Pt/ZSM-5. Pt catalysts supported over carriers such as HZSM-5, Mesoporous Beta, HBeta,
MMZBeta, Al-MCM-48, and Si-MCM-48 were tested for HDO of guaiacol in a batch-type reactor at
4 MPa and 250 ◦C [102]. This study indicated that Pt/Mesoporous Beta and Pt/HBeta catalysts showed
higher guaiacol conversions due to the large pores and strong acid sites of the catalysts. Five carbon
materials including multi-walled carbon nanotubes (MWCNT), carbon aerogel (CARF), carbonblack
(Vulcan carbon), activated carbon (AC), and graphite were used as supports for Ru catalysts for
HDO of oak chips pyrolysis oil [100]. The results showed that Ru/MWCNT exhibited the highest
deoxygenation activity as a result of the high Ru surface area and external surface area of the MWCNTs.
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The availability and high cost of noble metals are the main challenges for the application of noble
metal catalysts. Besides, noble metal catalysts show a rather low resistance towards poisoning by low
levels of elements such as iron or sulfur in bio-oil when compared to sulfided catalysts [129].

4.1.3. Transition Metal Catalysts

Transition metal catalysts showed good catalytic performance for bio-oil upgrading. They can be
used as a potential alternative for precious metal and sulfided catalysts due to the high activity and low
cost. For instance, non-sulfided catalysts including MoNi/γ-Al2O3, NiCu/δ-Al2O3, and NiFe/γ-Al2O3

have attracted much attention because of their good catalytic activity for HDO of pyrolysis oil [115–138].
MoNi/γ-Al2O3 considerably improved properties of pine sawdust bio-oil including hydrogen content
and the acidity [115]. The addition of Mo as a promoter benefited nickel species uniformity and
inhibited NiAl2O4 spinel formation in MoNi/γ-Al2O3 catalyst. Bimetallic Ni-Cu/δ-Al2O3 catalysts
were more active and outperformed monometallic Ni/δ-Al2O3 or Cu/δ-Al2O3 for the HDO of fast
pyrolysis oil [137]. This was due to the smaller size and increased number of active NixCu1−x clusters in
the catalyst. NiFe/γ-Al2O3 improved the heating value of straw bio-oil from 37.8 MJ/kg to 43.9 MJ/kg
after bio-oil HDO. This was due to the formation of NiFe alloy in the NiFe/γ-Al2O3 catalysts [138].
The major reaction pathway was the cleavage of C–O rather than C–C during the bio-oil HDO process.
Fe/SiO2 was an active and selective catalyst for HDO upgrading of guaiacol to produce aromatic
hydrocarbons, and it exhibited a good selectivity for BT (benzene, toluene) production [139].

Four inexpensive transitional metal catalysts including Ni/AC, Ni–Fe/AC, Ni–Mo/AC, and
Ni–Cu/AC were investigated for HDO of prairie cordgrass bio-oil [92]. The results indicated that
Ni/AC catalysts produced upgraded bio-oil with the highest content of gasoline range hydrocarbons
(32.63%). This was due to hydrogenation reactions promoted by Ni. Ni–Mo/AC generated the
upgraded bio-oil with the highest content of gasoline blending alkyl-phenols at 38.41%. Ni–Mo/AC
catalysts inhibited the C–C breaking and promoted C–O activation, which led to a higher degree of
deoxygenation (66.02%) than Ni/AC (63.60%). Bifunctional metal/acid catalysts including Ni/HBeta,
Fe/HBeta, and NiFe/HBeta were used for HDO of a simulated phenolic bio-oil consisting of phenol,
o-cresol, and guaiacol [108]. The results indicated that bimetallic NiFe/HBeta catalyst showed higher
HDO activity when compared to monometallic Ni/HBeta and Fe/HBeta. This is due to the synergistic
effect between the two metals. NiFe/HBeta catalysts converted phenolic compounds to oxygen-free
products via hydrogenation and hydrogenolysis reactions.

4.1.4. Other Catalysts

Amorphous catalysts exhibited excellent activity and good selectivity during bio-oil HDO
reactions because of their unique isotropic and high concentration of coordinative unsaturated
sites. Boron (B) amorphous catalysts such as Co–Mo–B and Co–Ni–Mo–B catalysts exhibited
high catalytic activity in HDO of bio-oil model compounds including phenol, benzaldehyde, and
acetophenone [140,141]. It was attributed to sufficient supply of free hydrogen, decreased catalyst
particle size and high content of Mo4+ Brønsted acid sites on the catalyst surface. Ni–W–P–B amorphous
catalyst also exhibited high HDO and dehydrogenation activities during the HDO of p-cresol due to
the high Ni0, P0, and Pn+ contents on the catalyst surface [127]. The deoxygenation degree was 100%
with a toluene selectivity of 5.1% at 225 ◦C.

Carbides, nitrides, and phosphides catalysts have drawn considerable interest due to their
potential use for bio-oil HDO processes. Carbide (C) catalysts including NiMoC/SiO2 were highly
active and stable catalysts for HDO of model bio-oil compounds including ethyl benzoate, acetone, and
acetaldehyde. This was attributed to the acid sites on the surface of the NiMo carbide catalysts [142].
Nitride (N) catalysts of Mo2N were evaluated for HDO of guaiacol in a batch autoclave at 300 ◦C and
5 MPa [143]. Mo2N catalyst prepared with flowing ammonia showed the highest activity for guaiacol
conversion due to γ-Mo2N phase and high N/Mo atomic ratio present in the catalyst. Phosphides
(P) catalysts such as CoP/γ-Al2O3 showed higher activity during HDO of 2-furyl methyl ketone
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(FMK) [124]. The complete conversion of FMK into methyl cyclopentane at 400 ◦C was achieved
over 10 wt% CoP/Al2O3 catalyst due to its high acidity value, adequate surface area, and pore size.
Nickel phosphide catalystNi2P/SiO2 was compared with traditional catalysts (Ni/SiO2, Pd/C, ZSM-5,
SiO2–Al2O3,and FCC) for direct catalytic upgrading of cedar chips pyrolysis bio-oil [144]. The results
indicated that the deoxygenation activity of Ni2P/SiO2 was higher than that of conventional catalysts
including Ni/SiO2, Pd/C, ZSM-5, SiO2–Al2O3, and FCC.

Silica nanosprings (NS) with large surface-to-volume ratios are promising silica supports.
NS supported nickel and ruthenium catalysts (Ni/NS and Ru/NS) resulted in higher activity during
HDO of phenol and bio-oil compared to conventional Ni/Al2O3 and Ni/gel silica catalysts. This results
from lower volume mesoporous pores and better metal dispersion in NS supported catalysts [122].

Activated carbon alone can be used as an effective catalyst for deoxygenation and denitrogenation
of bio-oil. This is attributed to AC mesopore properties including an affinity for heavy hydrocarbon
compounds and an excellent ability to restrict coke formation. Five commercial ACs (pine wood
AC, coconut shell AC, bamboo stem AC, apricot pit AC, peach pit AC, and coal AC) were tested for
catalytic upgrading of crude bio-oil produced from the hydrothermal liquefaction of duckweed [123].
The results indicated that ACs exhibited similar deoxygenation and denitrogenation activity compared
to Ru/C. Bamboo stem AC produced upgraded bio-oil with the highest yield (76.3 wt%) and energy
density (44.1 MJ/kg).

4.2. Catalyst Deactivation in Bio-Oil HDO

The main problem for the bio-oil HDO process is formation of coke resulting from the thermal
instability of bio-oil. This leads to catalyst deactivation and decreased catalyst lifetime. The deactivation
behavior of the catalyst in bio-oil HDO is discussed in the study of Lee et al. [145]. Coking is principally
due to the deposition of polyaromatic species through polymerization and polycondensation reactions
on the catalyst’s surface [146]. The coke blocks the catalyst pores and masks the active sites on
the surface. The coke formation during HDO of mallee wood bio-oil over sulfided NiMo and
CoMo catalysts indicated severe coke formation on catalysts due to polymerization of the heavy
fraction in the upgraded bio-oil. This was accompanied by the formation of large aromatic ring
structures [96]. Deactivation mechanisms of Ru/C and Pt/C catalysts during the HDO conversion of
guaiacol confirmed that coking due to the polyaromatic deposits, particularly condensed ring series
compounds, were the main cause of catalyst deactivation [147].

Coking formation is related to the acidity of the catalysts, and coking increases with increased
catalyst acidity. Alumina acidic support was deactivated faster than inert supports such as SiO2 due to
its relatively high acidity and strong interaction with the coke precursors [117,148]. A high density
of Brønsted acid sites resulted in condensation of precursors adsorbed on adjacent sites and faster
coke formation [149]. Acidity of the catalyst is also necessary for catalyst activity. Therefore, similar to
catalytic cracking catalysts, a balance between catalyst activity and deactivation should be optimized
to design the optimal strength of catalyst acidity for bio-oil HDO.

Coking deposition also strongly depends on the types of feedstock. Unsaturated hydrocarbons
such as alkenes and aromatics have a higher tendency for coking due to the increased interactions
between the C=C bond and aromatic rings with the active catalysts sites [146]. Oxygenated compounds
with two or more oxygen atoms showed a stronger potential for carbon formation by polymerization
reactions [150].

4.3. Reducing Catalyst Deactivation in Bio-Oil HDO

A big challenge is catalyst deactivation caused by catalyst acidity and support instability induced
by water at high temperature. Using catalyst supports containing lower acidity and higher stability is
an effective method to retard coke formation. Compared to acidic supports (Al2O3), neutral activated
carbon (AC) or silica (SiO2) can be utilized as alternative catalyst supports [151]. The Lewis acidic sites



Catalysts 2016, 6, 195 15 of 24

on alumina-supported CoMo catalysts resulted in large coke formation during HDO reaction, while
the HDO reaction over AC supported CoMo catalysts showed almost no coking reactions [152].

Optimizing bio-oil HDO operation conditions reduces coke formation. Increasing hydrogen
pressure saturates the carbon precursors, and was beneficial for decreasing the coke formation in
reference [153]. Hydrogen can react with and stabilize the reactive fragments before they undergo
polymerization and condensation reactions that result in coke formation. Bio-oil HDO reaction
temperature has a significant influence on coke formation. Increased reaction temperature will
generally result in increased carbon formation on catalysts. This is attributed to the promotion of
polymerization and polycondensation reactions [99]. Therefore, moderate temperature should be used
to reduce coke formation.

Integrated bio-oil upgrading processes can reduce coking formation and inhibit bio-oil
repolymerization. A two-stage bio-oil HDO process (low-temperature (170 ◦C) and high-temperature
(400 ◦C)) using Ru/C and sulfided CoMo/Al2O3 catalyst in a continuous process was proposed by
Elliott et al. [154]. It was effective in avoiding excessive coking due to the depressed polymerization
and stabilization of pretreated bio-oil during the low-temperature HDO step. The two-step bio-oil
upgrading (including esterification and HDO) produced more stable bio-oil with lower coking tendency
and less large aromatic ring systems than the one step HDO bio-oil [155]. The low coke yield was due
to the reactive oxygen-containing functional groups in the raw bio-oil which were effectively stabilized
through esterification.

Co-processing bio-oil with hydrogen donor solvents, waste lubricating oil, and sugars can
decrease the undesirable carbon deposition on catalysts. The effects of hydrogen donor solvents
used during bio-oil HDO and their roles in decreasing catalysts deactivation are discussed by
Lee et al. [145]. The roles of hydrogen donor solvents include reducing mass-transfer limitations,
promoting cracking and hydrogenation reactions, diluting lignin, and decreasing polymerization at high
reaction temperatures [156]. Studies have been conducted for upgrading bio-oils using hydrogen donor
solvents to reduce coke formation by enhancing the stability of the bio-oil to temperature effects. Ethanol,
acetone, ether, 1-butanol, and tetralin were effective in retarding formation of coke precursors and also
extracting the coke precursors from the catalyst pores. Coke formation was reduced over Ru/C, Pt/C,
Rh/C, and sulfided Co–Mo–P catalysts during bio-oil HDO processes [104,156,157]. HDO upgrading
of bio-oil using supercritical 1-butanol over Ru/C catalyst [125] limited carbon deposition to only
0.2 wt% compared to 9.9 wt% without a solvent. The 1-butanol serves as the reaction medium and
reactant, facilitating hydrogen dissolution, protecting the catalyst, and improving the upgraded bio-oil
product properties (oxygen content and HHV) during the bio-oil HDO process. Reaction pathways
including esterification, etherification, acetalization, hydrogenation, and hydrodeoxygenation have
been proposed. Co-HDO bio-oil and used engine oil (UEO) over Pt/C and Rh/C catalysts were
investigated by Wang Feng and his colleagues [153,158]. UEO suppressed coke formation was
confirmed in the bio-oil co-HDO process. This can be attributed to dispersing and clearing agents
in the UEO which played an important role in the control of coke formation. Sugars have the tendency
to reduce coke formation. The role of sugars on coke formation was investigated by adding levoglucosan
into the bio-oil HDO process over sulfided NiMo catalyst [96]. The results indicated that adding
levoglucosan to bio-oil over NiMo catalyst slightly decreased the coke yield at 300 ◦C. The NiMo catalyst
prevented the formation of additional large aromatic ring systems when the levoglucosan was added.

4.4. Catalyst Regeneration and Recycle in Bio-Oil HDO

In order to reduce operation cost, deactivated HDO catalysts need to be regenerated or recycled.
The catalyst regeneration is generally done by coke oxidation in an air stream at mild temperatures
(350–600 ◦C). Catalyst regeneration generally consists of three main steps: (1) spent catalysts with
adsorbed organic species are washed by solvents and dried; (2) dried catalysts are calcined in
an oxygen-containing gas, such as air, to remove coke; and (3) the calcined catalysts are reduced
in a hydrogen-containing gas.
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Used Pt/H-MFI-90 catalysts with coke deposition were washed with ethanol and methanol,
calcined in air at 400 ◦C for 10 h and reduced in a continuous hydrogen flow [103]. The regeneration
experiments for HDO of guaiacol and 1-octanol showed that the catalytic conversion of guaiacol
and 1-octanol over recovered Pt/H-MFI-90 catalysts was partly restored, and the recovered catalyst
deactivated faster than the fresh catalyst. Spent CoMo/MCM-41 catalyst for HDO of fast pyrolysis
oil was regenerated in air at 600 ◦C for 2 h [106]. Although the regenerated catalyst produced similar
bio-oil yields to the fresh catalyst, the hydrogenation activity of the regenerated catalyst decreased
in comparison with fresh catalyst. Spent NiFe/HBeta catalyst used for HDO of simulated phenolic
bio-oil was regenerated by washing with acetone and water, drying in ambient air at 110 ◦C for 8 h
and calcining in air at 550 ◦C [108]. Considerable decrease in conversion of phenolic compounds and
selectivity of oxygen-free products over regenerated NiFe/HBeta catalyst was observed by the fourth
recycle run. This was caused by increased loss of metal active sites and the reduction of catalyst surface
area and pore volume. Regeneration of Pt/γ-Al2O3, Pt/SiO2, and Pt/Na-B catalysts was conducted
in air at 350 ◦C for m-cresol HDO. The recovered catalysts obtained the same activity and selectivity
toward toluene in the second cycle compared to the first cycle [149]. This was due to the recovered
metallic sites and a high fraction of acid sites in the regenerated catalysts.

The used HDO catalysts containing coke can also be recycled to extend catalyst lifetime. For AC
supported catalyst, it is difficult to remove catalyst coke by a simple air combustion method because
the support is easily burned. Recycling of the used AC supported catalyst is more feasible to improve
catalyst life. The reused Ru/C catalyst was washed with ethanol. The recycled Ru/C showed that the
catalyst selectivity toward desired products (alcohols/ethers) decreased gradually with the number of
catalyst recycle times due to coke deposition [159]. The recyclability of used Ni–Cu/ZrO2–SiO2 using
ethanol washing was evaluated for guaiacol HDO at 300 ◦C and 5.0 MPa [121]. The results indicated
that guaiacol conversion and benzene selectivity decreased significantly by the fourth recycle due to
the formation of coke and residual polymers deposited on the catalyst surface.

5. Summary and Outlook

Biomass has great potential for conversion to transportation fuels through fast pyrolysis and
subsequent upgrading processes. Catalytic cracking and HDO are two of the most promising
chemical methods to upgrade bio-oils into liquid biofuels. Progress has been made in applications
of heterogeneous catalysts during catalytic cracking and HDO. However, catalyst deactivation due
to coking created from polymerization and polycondensation reactions still remains a challenge for
bio-oil catalytic cracking and HDO processes. Different techniques including metal incorporation,
co-processing high C/H ratio feedstocks, using different catalyst supports, as well as modifying
operation parameters and process integrations were used to retard coking of catalysts during bio-oil
upgrading processes. Air combustion is commonly used to remove coke deposited on catalysts, but this
catalyst regeneration method cannot recover the catalyst activity completely. New catalyst regeneration
techniques including using diluents like nitrogen and steam need to be developed. Available catalysts
need further development to have higher selective activity, long-term stability, and easier regeneration
properties without significant loss of activity before testing can be completed in an industrial scale
biofuel production plant. In order to exploit appropriate heterogeneous catalysts to produce gasoline
or diesel grade biofuel at a commercial scale, some suggestions for future research include:

1. Improve understanding of catalyst deactivation and regeneration mechanisms during bio-oil
upgrading processes.

2. Develop effective catalysts with higher stability and better regeneration properties.
3. Integrate upgrading approaches of bio-oil catalytic cracking and/or hydrodeoxygenation with

petroleum refining technologies to improve bio-oil upgrading efficiency.
4. Explore new biomass resources or genetically engineered biomass to improve the yield and

quality of bio-oils produced.
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