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Abstract: The thermochemical processing of biomass is an alternative route for the 

manufacture of fuel-grade ethanol, in which the catalytic conversion of syngas to ethanol is 

a key step. The search for novel catalyst formulations, active sites and types of support is  

of current interest. In this work, the catalytic performance of an Rh/MCM-41 catalyst has  

been evaluated and compared with a typical Rh/SiO2 catalyst. They have been compared at 

identical reaction conditions (280 °C and 20 bar), at low syngas conversion (2.8%) and at 

same metal dispersion (H/Rh = 22%). Under these conditions, the catalysts showed 

different product selectivities. The differences have been attributed to the concentration of 

water vapor in the pores of Rh/MCM-41. The concentration of water vapor could promote 

the water-gas-shift-reaction generating some extra carbon dioxide and hydrogen, which in 

turn can induce side reactions and change the product selectivity. The extra hydrogen 

generated could facilitate the hydrogenation of a C2-oxygenated intermediate to ethanol, 

thus resulting in a higher ethanol selectivity over the Rh/MCM-41 catalyst as compared to 

the typical Rh/SiO2 catalyst; 24% and 8%, respectively. The catalysts have been 

characterized, before and after reaction, by N2-physisorption, X-ray photoelectron 
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spectroscopy, X-ray diffraction, H2-chemisorption, transmission electron microscopy and 

temperature programmed reduction. 
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1. Introduction 

At present, fuel-grade ethanol is utilized as a renewable component in gasoline or as a pure fuel in flex-

fuel vehicles [1,2]. In 2013, about 70 million tons of fuel-grade ethanol were produced worldwide [3]. 

Most of the production technologies use food-related raw materials, such as corn in the USA or sugar 

cane in Brazil. Non-food related resources such as forest and agricultural biomass (known as cellulosic 

biomass) are being considered as alternative raw materials. Indeed, several public and private 

institutions have started R&D programs in order to produce fuel-grade ethanol from cellulosic biomass, at 

competitive cost [4]. 

In principle, any kind of biomass can be converted into fuels and chemicals thermochemically [5,6]. 

The thermochemical process is divided in two stages; in the first, biomass is converted to an 

intermediate mixture of gases known as “synthesis gas” or “syngas” typically via gasification, in the 

second, syngas is catalytically converted to the final product. In the latter stage, the performance of the 

selected catalyst is of key importance for the overall process. Much effort has been put into designing a 

selective catalyst for the synthesis of ethanol from syngas. The rhodium-based catalysts are among the 

most selective catalysts reported in the literature [7,8]. However, few reports are found using 

mesoporous silica as catalyst support [9–11], although various mesoporous materials have been applied 

in other catalytic reactions showing interesting results [12,13]. MCM-41 is a mesoporous silica that 

has 1D-hexagonal porous arrangement with a pore diameter between 1.6–10 nm and a wall thickness 

of around 0.8 nm [14,15]. The large surface area of MCM-41, usually 1000 m2/g or more, can be of 

great utility for dispersing the active sites and hence boost the catalyst activity per unit of mass. To the 

best of our knowledge, there is no comparison between a mesoporous Rh/MCM-41 catalyst and a 

typical Rh/SiO2 catalyst. Ma et al. [9] have compared Rh-Mn/MCM-41 with Rh-Mn/SiO2, however, the 

presence of manganese may considerably affect the reactivity of the catalysts and no direct information 

about the effect of MCM-41 could be inferred. Chen et al. [10,11] have studied the effect of metal 

promoters (Mn and Fe) using another type of mesoporous silica (SBA-15). 

In order to evaluate the catalytic performance of Rh/MCM-41 and Rh/SiO2, some considerations 

regarding the metal loading, degree of metal dispersion (H/Rh) and syngas conversion level must be 

taken. Arakawa et al. [16] and Underwood and Bell [17] have studied the effect of metal dispersion, 

from 10% to 82%, which was obtained by increasing the metal loading from 0.1% to 30% Rh. Both 

studies showed a large effect of the metal dispersion on the product selectivity. However, the 

experiments carried out by Arakawa et al. [16] might have been affected by secondary reactions since 

the syngas conversion level was not the same in all the experiments (it varied from 0.4% to 27.9% 

depending on the metal loading). Underwood and Bell [17] kept the syngas conversion level below 

0.1%, thus reducing the risk of secondary reactions, however, the various extents of metal loading 

could have affected their results. Tago et al. [18] showed that the extent of metal loading affects the 
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product selectivity, according to their experiments carried out at constant H/Rh = 25% with the metal 

loading varied from 0.6% to 3.5% Rh. In a more recent work, Zhou et al. [19] used Rh/SiO2 catalysts 

with different metal dispersions while keeping the same metal loading (3% Rh) testing them at low 

syngas conversion level (0.7%–1.5%). They observed that the degree of metal dispersion directly 

affects the product selectivity. Therefore, in order to avoid the effects of (i) secondary reactions; (ii) 

degree of metal dispersion and (iii) extent of metal loading over the product selectivity, the catalytic 

testing of Rh/MCM-41 and Rh/SiO2 should be carried out at (1) low syngas conversion level; (2) equal 

degree of metal dispersion and (3) equal metal loading. 

In the present work, we have evaluated the catalytic performance of a mesoporous Rh/MCM-41 

catalyst and compared it with a typical Rh/SiO2 catalyst. Both catalysts were tested for the synthesis of 

ethanol from syngas at low syngas conversion level (2.8%), same metal dispersion (H/Rh = 22%) and 

equal Rh loading (3 wt. %). Different product selectivities were found over Rh/MCM-41 and Rh/SiO2. 

Additional experiments have been made in order to clarify the obtained results: (a) addition of water to 

the syngas feed-stream and (b) lowering of the syngas ratio (H2/CO). The results from these 

experiments together with the catalyst characterization (BET, XPS, XRD, TEM, TPR), before and 

after reaction, indicate that the differences in the product selectivities can be attributed to the 

concentration of water vapor in the pores of Rh/MCM-41, which promote the water-gas-shift-reaction 

(WGSR) and produce extra CO2 and H2. These results confirm a previous study where high selectivity 

to CO2 was observed over Rh/MCM-41 at various levels of syngas conversion as well as at different 

catalyst reduction temperatures [20]. 

2. Results and Discussion 

The results obtained in the present study are divided into two sections. The first,  

Section 2.1., describes the catalytic performances of Rh/SiO2 and Rh/MCM-41, which includes the 

effect of water addition and different syngas ratios (H2/CO) (Section 2.1.1.). The second, Section 2.2., 

describes the catalysts characterization, before and after reaction, through the following techniques: 

N2-physisorption (Section 2.2.1.), X-ray photoelectron spectroscopy (Section 2.2.2.), powder X-ray 

diffraction (Section 2.2.3.), transmission electron microscopy (Section 2.2.4.) and temperature 

programmed reduction (Section 2.2.5.). Finally, an interpretation of the obtained results and a 

discussion are then presented (Section 2.3.). 

2.1. Catalytic Performances of Rh/SiO2 and Rh/MCM-41 

In order to examine the activity of the Rh/SiO2 and Rh/MCM-41 catalysts, similar reaction 

conditions were used, that is reaction temperature and pressure of 280 °C and 20 bar, respectively. The 

gas hourly space velocity (GHSV) was varied in order to obtain a syngas conversion equal to 2.8% and 

the syngas ratio was equal to H2/CO = 2/1. Similar conversion levels were applied for studies 

regarding the metal dispersion on rhodium-based catalysts [17–19]. At low syngas conversion, the 

occurrence of secondary reactions can be diminished and, at the same time, a uniform catalyst bed 

temperature can be reached. In all the experiments, the axial temperature gradient through the catalyst 

bed (measured by a mobile thermocouple introduced in a thermowell inside the catalyst bed) was 

always less than 1 °C. 
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Different product selectivities are obtained over Rh/SiO2 and Rh/MCM-41 catalysts, as shown  

in Figure 1. If the selectivity toward all hydrocarbon compounds (methane and higher hydrocarbons) 

and the selectivity toward all oxygenated compounds (methanol, carbon dioxide, ethanol, 

acetaldehyde, acetic acid, methyl acetate and ethyl acetate) are considered in Figure 1, the following 

results are obtained: 58.2% hydrocarbon compounds and 41.8% oxygenated compounds for Rh/SiO2, 

while for Rh/MCM-41 results 43.4% hydrocarbon compounds and 56.6% oxygenated compounds. 

This indicates that more hydrocarbon compounds are formed in Rh/SiO2 than in Rh/MCM-41. 

Underwood and Bell have used a Rh/SiO2 catalyst with a similar metal dispersion to the one used in 

our study (H/Rh = 10%) and also found a higher selectivity to hydrocarbons than to oxygenates [17]. 

 

Figure 1. Product selectivities obtained from the conversion of syngas over Rh/SiO2 and 

Rh/MCM-41. Higher hydrocarbons: ethane, propane and butane. Acetate compounds: 

methyl acetate and ethyl acetate. Reaction conditions: 280 °C, 20 bar, GHSV = 12,000 

mLsyngas/gcat·h for Rh/SiO2 and GHSV = 3000 mLsyngas/gcat·h for Rh/MCM-41. 

Table 1. Selectivity to C2-oxygenated compounds (ethanol, acetaldehyde and acetic acid)  

at different syngas ratios (H2/CO) and with/without addition of water. Temperature of  

280 °C and pressure of 20 bar. 

Catalyst 

Syngas 

Ratio 

H2/CO 

GHSV 

(mL/g·h) 

Conversion 

(%) 

TOF 

(s−1)

Total Selectivity to 

C2-oxygenated (%)

Selectivity between C2-oxygenated. 

(%) 

Ethanol 

(%) 

Acetaldeh

yde (%) 

Acetic Acid 

(%) 

Rh/SiO2 

2/1 12000 2.8 0.039 34 21 54 24 

2/1 * 6000 1.6 0.011 18 8 83 9 

1/1 6000 2.1 0.022 32 16 51 34 

Rh/MCM-41 

2/1 3000 2.8 0.010 32 77 15 8 

2/1 * 3000 1.0 0.005 1 65 35 0 

1/1 3000 0.4 0.002 35 69 10 21 

* Water added. 
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Regarding the formation of the C2-oxygenated compounds (ethanol, acetaldehyde and acetic acid),  

it can be seen from Table 1 (syngas ratio H2/CO = 2/1) that the selectivity trend for Rh/SiO2 decreases 

in the following order: acetaldehyde > acetic acid > ethanol. While for Rh/MCM-41 it decreases as: 

ethanol > acetaldehyde > acetic acid. Interestingly, the total selectivity to C2-oxygenated compounds is 

similar in both catalysts; 34% for Rh/SiO2 and 32% for Rh/MCM-41. 

2.1.1. Addition of Water Vapor and Lower Syngas Ratio (H2/CO = 1/1) 

Figure 2 shows the effect of the addition of water to the syngas feed-stream for Rh/SiO2 and 

Rh/MCM-41 catalysts. The addition of water vapor decreases the syngas conversion from 2.8% to 

1.0% for Rh/MCM-41 at GHSV = 3000 mLsyngas/gcat·h. For Rh/SiO2, since a very low syngas 

conversion was found at GHSV = 12,000 mLSyngas/gcat·h, it was necessary to decrease the space 

velocity to GHSV = 3000 mLsyngas/gcat·h to achieve a syngas conversion of 1.6%, which indicates a 

considerable decrease of the activity for Rh/SiO2 in the presence of water vapor. It can also be 

observed that the addition of water notably increases the selectivity to CO2 in both catalysts; from 

0.3% to 18.5% for Rh/SiO2 and from 4.1% to 90.4% for Rh/MCM-41. Likewise, while the selectivity 

to the rest of the products is reduced in both catalysts, the selectivity to methanol is considerably 

increased over Rh/SiO2, but it is somewhat reduced over Rh/MCM-41. Finally, the total selectivity to 

C2-oxygenated compounds is notably reduced in both catalysts, as can be seen in Table 1 (syngas ratio 

H2/CO = 2/1 *), being more marked in Rh/MCM-41. Moreover, the selectivity trends are kept in the 

same order for Rh/SiO2 (acetaldehyde > acetic acid > ethanol) and for Rh/MCM-41 (ethanol > 

acetaldehyde > acetic acid) as in the experiments without water addition (Table 1). 

 

Figure 2. Comparison of the product selectivities obtained from the conversion of syngas 

with and without addition of water over Rh/SiO2 and Rh/MCM-41. Reaction conditions 

(with addition of water): 280 °C, 20 bar, GHSV = 6000 mLsyngas/gcat·h (H2:CO:H2O = 

2:1:2.7) for Rh/SiO2 and GHSV = 3000 mLsyngas/gcat·h (H2:CO:H2O = 2:1:1.5) for 

Rh/MCM-41. Reaction conditions for the experiments without addition of water as 

indicated in Figure 1. 
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Figure 3 shows the effect of changing the syngas ratio from H2/CO = 2/1 to H2/CO = 1/1 for 

Rh/SiO2 and Rh/MCM-41 catalysts. The lowering of syngas ratio from H2/CO = 2 to H2/CO = 1 

decreases the syngas conversion in both catalysts; from 2.8% to 0.4% for Rh/MCM-41 at GHSV = 

3000 mLsyngas/gcat·h and from 2.8% (GHSV = 12,000 mLsyngas/gcat·h) to 2.1% (GHSV = 6000 

mLsyngas/gcat·h) for Rh/SiO2. The reduction of the syngas conversion by the lowering the syngas ratio 

has also reported in the literature, which is attributable to a lesser extent of the hydrogenation reactions 

(hydrocarbon formation) [7,8]. 

In both catalysts, the lowering of the syngas ratio results in less production of methane and 

methanol while, in contrast, more higher hydrocarbons, carbon dioxide, and acetate compounds are 

obtained (Figure 3). When the syngas H2/CO ratio is lowered, the partial pressure of hydrogen is 

expected to be decreased. This suggests that the products with high H/C ratios, such as CH4 and 

CH3OH, could be favored at high partial pressure of hydrogen (high syngas H2/CO ratio). Likewise, 

the products with lower H/C ratios, such as the higher hydrocarbons and oxygenated compounds could 

be favored at low partial pressure of hydrogen (low syngas H2/CO ratio). These results are in 

agreement with the literature regarding the effect of the syngas ratio for rhodium-based catalysts [7,8]. 

In addition, among the C2-oxygenated compounds it can be observed that the selectivity to acetic acid 

is favored at low syngas H2/CO ratio, while the selectivities to the more hydrogenated compounds 

(ethanol and acetaldehyde) are favored at higher syngas H2/CO ratio, as is observed in Table 1 (see 

syngas ratio H2/CO = 2/1 and H2/CO = 1/1). 

 

Figure 3. Comparison of the product selectivities obtained from the conversion of syngas 

with H2/CO = 2 and H2/CO = 1 over Rh/SiO2 and Rh/MCM-41. Reaction conditions  

(syngas H2/CO = 1): 280 °C, 20 bar, GHSV = 6000 mLsyngas/gcat·h for Rh/SiO2 and  

GHSV = 3000 mLsyngas/gcat·h for Rh/MCM-41. Reaction conditions for the experiments 

with syngas H2/CO = 2 as indicated in Figure 1. 

In a previous study a high selectivity to CO2 in the Rh/MCM-41 catalyst was also observed, it was 

found to be independent of the catalyst reduction temperature and the syngas conversion level [20]. 
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Figures 4 and 5 show the product selectivities and the syngas conversion with time on stream at 

different reaction conditions for the Rh/SiO2 and MCM-41 catalysts, respectively. It can be noted that 

almost no CO2 is formed over the Rh/SiO2 catalyst (Figure 4, Period A–F) whatever the reaction 

condition (T, P, GHSV) or catalyst reduction temperature (200, 370, 500 °C and non-reduced) applied. 

On the other hand, a high selectivity to CO2 is observed over the MCM-41 catalyst at all reaction 

conditions studied and at different catalyst reduction temperatures (Figure 5, Period A’−G’). Thus, the 

product selectivity is notably affected by the MCM-41 support in a large range of reaction conditions 

and at different catalyst reduction temperatures. These results together with the catalysts characterization 

(Section 2.2) are discussed later on in Section 2.3. 

 

Figure 4. Selectivities and conversion with time on stream for the Rh/SiO2 catalyst.  

Oxyg.: alcohols, acetaldehyde, acetic acid and esters. HC: methane and higher 

hydrocarbons. See Table S1 in supporting information for details about the reaction 

conditions in periods A–G. 

 

Figure 5. Selectivities and conversion with time on stream for the Rh/MCM-41 catalyst. 

Oxyg.: alcohols, acetaldehyde, acetic acid and esters. HC: methane and higher 

hydrocarbons. See Table S1 in supporting information for details about the reaction 

conditions in periods A’–H’. 
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2.2. Catalyst Characterization 

2.2.1. N2-Physisorption 

In Table 2 the results obtained from N2-physisorption are reported. When comparing the pure 

supports, the surface area of MCM-41 is about four times larger than the surface area of SiO2. A 

similar relation is observed when 3 wt. % Rh is impregnated in both supports. This indicates that the 

process of rhodium incorporation (aqueous impregnation, drying and calcination) affects to a similar 

extent the surface area of MCM-41 and the surface area of SiO2. In some reported studies, the surface 

area of MCM-41 is drastically affected by metal incorporation: for example, the impregnation with 

5wt. % Co reduced the original MCM-41 surface area by nearly 50% [21]. However, the incorporation 

of Rh into MCM-41 only reduces the original MCM-41 surface area by 0.9%, as shown in Table 2. 

After catalytic testing, the surface area was reduced by 3.7% for Rh/SiO2 and 9.0% for Rh/MCM-41. 

More notable changes are observed when water is added to the syngas feed-stream, then the surface 

areas of Rh/SiO2 and Rh/MCM-41 are reduced by 10.3% and 19.3%, respectively (Table 2). The more 

significant effect of water on the surface area of Rh/MCM-41 is consistent with the structure degradation of 

mesoporous materials proposed by Landau et al. [22]. Therefore, the hydration of the siloxane structure is 

followed by siloxane hydrolysis-hydroxylation and their rearrangement-redehydroxylation during 

calcination. This results in a few 1D-channels collapsing into a single one [22]. As a consequence, there is 

a loss of Bragg intensity (as will be evidenced by XRD analysis, Figure 6), decreasing the pore volume 

(as observed in Table 2), while retaining uniform pore size (as described below and further shown by 

TEM analysis, Figure 7).  

Regarding the pore size distribution of Rh/SiO2 and Rh/MCM-41 (see Figure S1 in supporting 

information) confirmed, a wide pore size distribution is observed in the pure SiO2, which is narrowed 

after Rh impregnation. Pure MCM-41 presents a narrow pore size distribution and smaller pore sizes 

as compared to SiO2; after Rh impregnation no significant changes are observed. From the adsorption 

isotherms, the average pore size of Rh/SiO2 is much larger than in the case of Rh/MCM-41; 19 nm and 

2.5 nm, respectively. Finally, after catalytic testing (with and without water) there is no significant 

change in the pore size distribution for any of the catalysts. 

2.2.2. X-ray Photoelectron Spectroscopy (XPS) 

In Table 2, the results from XPS analysis are summarized. Before the catalytic testing, we can 

observe that the oxidation state of Rh is similar in both Rh/SiO2 and Rh/MCM-41 catalysts. After the 

catalytic testing (without addition of water), the fraction of Rh3+ is increased in Rh/SiO2 while it is 

decreased in Rh/MCM-41. After the catalytic testing with addition of water, all Rh species are in the 

form of Rh0 in both catalysts. Finally, the Rh/Si ratio indicates that Rh species migrate to the surface of 

the catalysts as a consequence of the catalytic testing. The latter phenomenon is more pronounced 

when water is added to the catalytic system. 
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Table 2. N2-physisorption and XPS analyses of the Rh/SiO2 and Rh/MCM-41 catalysts, 

before and after the catalytic testing. 

Catalyst Condition 

Surface 

Area 

(m2/g)

Change 

in 

Surface 

Area 

Pore 

Volume 

(cm3/g)

Rh0 Rh3+ 

Rh/Si
% 

Binding 

energy 

(eV) 

% 

Binding 

energy 

(eV) 

Rh/SiO2 

Pure support 238 - 0.87 - - - - - 

Before catalytic 

testing 
236 0.5% * 0.90 86.5 307.3 13.4 309.7 0.0057

After catalytic testing 

(280 °C, 20 bar,  

12,000 mL/g·h):  

only syngas 

228 3.7% ** 0.90 82.4 307.3 17.6 309.7 0.0064

After catalytic testing 

(280 °C, 20 bar,  

6000 mL/g h): syngas  

and water 

212 10.3% ** 0.88 100 307.2 - - 0.0079

Rh/  

MCM-41 

Pure support 970 - 1.08 - - - - - 

Before catalytic 

testing 
961 0.9% * 1.15 80.6 307.1 19.4 308.6 0.0079

After catalytic  

testing (280 °C, 20 

bar, 3000 mL/g·h):  

only syngas 

875 9.0% ** 1.04 90.8 307.4 9.2 309.3 0.0087

After catalytic testing 

(280 °C, 20 bar,  

3000 mL/g·h): syngas 

and water 

776 19.3% ** 0.94 100 307.1 - - 0.0100

* Compared to the pure support. ** Compared to the catalyst before catalytic testing. 

2.2.3. Powder X-ray Diffraction (XRD) 

Mesoporous MCM-41 has characteristic signals at small-angle XRD, which are indicated in Figure 

6 as (100), (110), and (200) reflections. These signals correspond to a hexagonal structure with unit 

cell parameter ܽ ൌ 2݀ଵ଴଴ √3⁄  [14]. An additional (210) reflection is reported in the literature, which 

gives a low intensity signal at around 2θ = 5.9 [14]. In qualitative terms, the intensity of the XRD 

signals can be attributed to the long-range periodic structure of MCM-41 [21]. Although the long-

range ordering in Rh/MCM-41 decreases after impregnation with Rh (Figure 6A) and after catalytic 

testing (Figure 6B,C), it does not completely disappear. In addition, it can be observed that all signals 

appear at the same 2θ, i.e., same d-spacing, which suggests that there is no significant lattice 

contraction either after Rh impregnation or after catalytic testing. Typical SiO2 support does not 

present a pore ordering as mesoporous MCM-41, thus no signals are found at small-angle XRD 

(Figure 6). The wide-angle XRD patterns in Figure 6 indicate that both catalysts Rh/SiO2 and 

Rh/MCM-41 are amorphous materials. It also indicates that there is no segregation of rhodium oxides 

(or at least they are not large enough to be detected by the XRD technique) after impregnation with Rh 
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(Figure 6A) and after catalytic testing without addition of water (Figure 6B). After catalytic testing with 

addition of water (Figure 6C) a low-intensity and broad signal appears at around 2θ = 35–40. This range 

of 2θ corresponds to the characteristic signals of Rh2O3 and Rh0. According to the XPS analysis, all Rh 

species are converted to Rh0 when water is added to the catalytic system. Therefore, we can conclude 

that the presence of water in the syngas feed-stream slightly favors the growth of Rh0 clusters. 

 

Figure 6. Small and wide angle XRD patterns of pure supports SiO2 and MCM-41, 

impregnated with Rh (A); after catalytic testing (B); and after catalytic testing with addition 

of water (C). Catalytic testing at same conditions as indicated in Table 2. 

2.2.4. Transmission Electron Microscopy (TEM) 

In Figure 7, TEM images for Rh/SiO2 and Rh/MCM-41 catalysts are shown. Before reaction, the 

average Rh particle size is similar in both catalysts; 4 nm for Rh/SiO2 and 3 nm for Rh/MCM-41. 

Which agrees with the average metal particle size equal to 4 nm derived from the metal dispersion (H/Rh = 

22%), assuming an icosahedral particle shape [23]. For the Rh/SiO2 catalyst, the average Rh particle 

size has grown after the catalytic testing (with and without water). Less effect is observed for the 

Rh/MCM-41 catalyst, where the average particle size is kept to 3 nm after the catalytic testing, even 

with addition of water. It can be noted that the pore diameter of MCM-41 is in the same range as the 

Rh particle size in the Rh/MCM-41 catalyst (Figure 7A-Rh/MCM-41), it may suggest that the pore 

diameter of MCM-41 limits the growth of Rh particles. This is supported by Zhou et al. [19] who 

observed a relation between the Rh particle size and the pore diameter in various silica supports. If it is 

so, it could explain the narrow Rh particle size distribution in the mesoporous Rh/MCM-41 catalyst, 

even after the catalytic testing (Figure 7B,C-Rh/MCM-41), as compared to the particle size distribution 

in the Rh/SiO2 catalyst (Figure 7A–C-Rh/SiO2). 

From XRD analysis (Figure 6), after the catalytic testing (with addition of water) a new and broad 

signal is observed in both catalysts. This signal corresponds to Rh0 according to XPS (Table 2). For the 

Rh/SiO2 catalyst, these results agree with the growth of the particle size observed in TEM images (Figure 

7). For the Rh/MCM-41 catalyst, it seems that the pores of MCM-41 support limit the growth of Rh 
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and thus the particle size distribution is little affected. Possibly, the signal detected in XRD for 

Rh/MCM-41 may be due mostly to an increased number of Rh0 dispersed along the pores. 

 

Figure 7. TEM images of Rh/SiO2 and Rh/MCM-41 catalysts; reduced (A); after catalytic 

testing (B); and after catalytic testing with addition of water (C). Catalytic testing at same 

conditions as indicated in Table 2. 

2.2.5. Temperature Programmed Reduction (TPR) 

Figure 8 shows the TPR profiles for the Rh/SiO2 and Rh/MCM-41 catalysts. It can be seen that the 

reduction of rhodium oxide species begins at low temperatures, in agreement with the literature 

[24,25]. All Rh species seem to be reduced at temperatures below 200 °C. The TPR profile of the 

Rh/MCM-41 catalyst suggests some metal-support interactions, which widen the reduction peak at higher 

temperatures. Metal-support interactions are observed in other mesoporous catalysts as well as in 

traditional catalysts [13,26]. Moreover, after the reduction treatment at 370 °C the surface of the 
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Rh/SiO2 and Rh/MCM-41 catalysts are composed of a similar proportion of Rh0 and Rh3+, as is 

indicated by XPS analysis (Section 2.2.2.). 

 

Figure 8. Temperature programmed reduction profiles of the Rh/SiO2 and  

Rh/MCM-41 catalysts. 

2.3. Interpretation of the Catalytic Performance of Rh/MCM-41 Compared to Rh/SiO2 

As observed in Figure 1, the product selectivity obtained for the conversion of syngas over Rh/MCM-41 

is notably different compared to the product selectivity found over Rh/SiO2. These differences can be 

due to the different characteristics of the supports: MCM-41 and SiO2. It may be that the 1D-channels 

with small pore diameter of MCM-41, which seem to be retained in Rh/MCM-41 (as suggested from 

N2-physisorption, XRD and TEM analyses), could affect the catalytic performance when comparing 

with a typical SiO2 support which has large and non-ordered pore diameters. Another characteristic is 

the metal-support interactions in Rh/MCM-41, which seems to be absent in Rh/SiO2 (as suggested 

from TPR analysis). However, the later characteristic may not be important during the catalytic testing 

since the final surface composition is similar in both catalysts (as indicated from XPS analysis). The 

product selectivity could neither have been affected by the Rh particle size because, on the one hand, 

both catalysts have been pre-reduced at conditions to obtain similar metal dispersion (i.e., similar metal 

particle size, which is confirmed by TEM images). On the other hand, we cannot relate the slight 

growth of the Rh particle size in the Rh/SiO2 catalyst with the increased selectivity to CO2 (approx. 

20%), because, if this would be the case, the selectivity to CO2 in the Rh/MCM-41 catalyst should be 

less than 20% since the growth of the Rh particle size is even lower for this catalyst (as shown the 

TEM images), but its selectivity to CO2 is above 90%. 

It has been suggested that a high concentration of water vapor can be formed in the pores of MCM-41 

during catalyst reduction, which could promote metal-support interactions [13,27]. If so, water vapor 

can also be concentrated in the catalyst pores during catalytic testing, since most of the syngas 

reactions produce water as a main by-product (reactions 1–4) [7,8]. As a consequence, an environment 

rich in water vapor can be formed which may induce some reactions, such as the water-gas-shift-reaction 

(WGSR). WGSR generates extra carbon dioxide and hydrogen (reaction 5). In concordance, more 

30 60 90 120 150 180 210 240

H
2
‐
C
o
n
su
m
p
ti
o
n

Temperature (°C)

G

C

Rh/SiO2

Rh/MCM‐41



Catalysts 2015, 5 1749 

 

 

carbon dioxide is produced by Rh/MCM-41 than by Rh/SiO2 (see Figure 1). Hydrogen was 

unfortunately not measured due to analytical limitations since hydrogen has similar thermal 

conductivity to the carrier helium in the GC analysis. However, if we consider the selectivity towards 

the C2-oxygenated compounds (Table 1), the selectivity to the more hydrogenated compounds, i.e., 

ethanol and acetaldehyde, accounts for 92% over Rh/MCM-41, while it is only 75% over Rh/SiO2. 

This may suggest that the extra hydrogen generated from the WGSR over Rh/MCM-41 would 

facilitate the hydrogenation of acetic acid (or a C2-oxygenated intermediary, perhaps an acetyl 

intermediate [28]) to acetaldehyde and ethanol. 

Ethanol generation 2CO ൅ 4Hଶ → CଶHହOH ൅ HଶO ∶ ∆Hଶଽ଼
° ൌ െ253.6	kJ/mol (1)

Methanation CO ൅ 3Hଶ → CHସ ൅ HଶO ∶ ∆Hଶଽ଼
° ൌ െ205.9	kJ/mol  (2)

Hydrocarbons formation CO ൅ 2Hଶ → െCHଶ െ ൅ HଶO ∶ ∆Hଶଽ଼
° ൌ െ165	kJ/mol (3)

Methanol synthesis COଶ ൅ 3Hଶ → CHଷOH ൅ HଶO ∶ ∆Hଶଽ଼
° ൌ െ49.7	kJ/mol	CO ൅

2Hଶ → CHଷOH ∶ ∆Hଶଽ଼
° ൌ െ90.5 kJ/mol 

(4)

Water gas shift reaction CO ൅ HଶO → COଶ ൅ Hଶ ∶ ∆Hଶଽ଼
° ൌ െ41.1	kJ/mol (5)

In accordance with this view, the WGSR should also be promoted over the Rh/SiO2 catalyst if water 

were to be concentrated in the catalyst particle. In effect, when water is added to the syngas feed-

stream (Figures 2 and 4) the selectivity to CO2 is enhanced from almost zero to approximately 20%. In 

the case of the Rh/MCM-41 catalyst, an even higher concentration of water is obtained in the 1-D 

channel pores, boosting the selectivity to CO2 (>90%). This means that the WGSR is highly favored in 

the presence of water, whatever kind of silica support is used, SiO2 or MCM-41. In the presence of 

water vapor, all Rh species are in the form of Rh0 (as suggested by XPS analysis). Still there is no 

agreement in the literature on which Rh species (Rh0, Rhn+) is more active for the oxygenate formation. 

Chuang et al. [29] suggest that Rh0 is less active than the oxidized form. Our results might support this 

idea since the lowest activities found in both catalysts occurred when both catalysts had 100% Rh0. At 

the same time, as CO2 is produced by the addition of water in both catalysts, the selectivity to 

methanol is increased in Rh/SiO2 (Figure 2). For Rh/MCM-41, although the selectivity to methanol is 

somewhat reduced by the addition of water, it is not as drastically reduced as the selectivity to the rest 

of products (Figure 2). Therefore, it seems that the formation of CO2 and methanol is favored in the 

presence of water, where the WGSR would play an important role. Indeed, it is generally accepted that 

the synthesis of methanol from syngas occurs primary via the hydrogenation of CO2 [30]. This means 

that the occurrence of the WGSR, as a consequence of the concentration of water vapor in Rh/MCM-41, 

may contribute to the generation of methanol from CO2, which may explain the higher selectivity to 

methanol observed in Rh/MCM-41 compared to Rh/SiO2 (Figure 1). 

Regarding the effect of the hydrogen partial pressure on the selectivity to the C2-oxygenated 

compounds, when it decreases, the selectivity towards acetic acid should increase in both catalysts.  

It can be observed that when changing the syngas ratio from H2/CO = 2/1 to H2/CO = 1/1 (Table 1), 

more acetic acid is evidently formed in both catalysts. This may also support the idea that WGSR 

occurs in Rh/MCM-41 producing extra H2, which may facilitate the hydrogenation of acetic acid (or a  

C2-oxygenated intermediary) yielding more acetaldehyde and ethanol than in the typical Rh/SiO2 
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catalyst (Table 1). Furthermore, the product distribution between the C2-oxygenates in  

Rh/MCM-41 always keeps the relation according to the extent of oxidation of each compound:  

ethanol > acetaldehyde > acetic acid (Figures 1–3). 

The reaction mechanism for the conversion of syngas to oxygenated compounds over rhodium-

based catalyst, is not fully understood [7,8,28]. For example, it is suggested that acetate compounds 

can be formed by the reaction of CO2 with surface intermediates such as CHx* species [31]. If this 

reaction occurs over Rh/SiO2 and Rh/MCM-41, the additional formation of CO2 via WGSR in 

Rh/MCM-41 would consume much more CHx* species than in Rh/SiO2. This means that a lesser 

number of CHx* species would be available for conversion into hydrocarbon compounds and more 

acetate compounds should be expected in the Rh/MCM-41 catalyst. This is in accordance with our 

results, since lower selectivity to hydrocarbon compounds and higher selectivity to acetate compounds 

are found over Rh/MCM-41 as compared to Rh/SiO2 (Figure 1). However, we must indicate that the 

discussion of the elementary steps or reaction mechanism for ethanol formation is not the objective of 

this work, we rather study the performance of a Rh/MCM-41 catalyst. Studies such as micro-kinetics 

together with theoretical calculations can be helpful for a fundamental understanding of the reaction 

mechanism. Very interesting reports on this topic have been published in recent years [32,33]. The 

inclusion of the WGSR and its effect on the product distribution can be interesting to study and 

compare with the results obtained in the present work. 

From the above discussion, we believe that the differences in activity and selectivity observed for 

Rh/SiO2 and Rh/MCM-41 are highly related to the concentration of water vapor in Rh/MCM-41. This 

is also supported by a previous investigation where high selectivity to CO2 was found over the 

mesoporous Rh/MCM-41 catalyst at various levels of syngas conversion as well as at different catalyst 

reduction temperatures [20] (Figures 4 and 5). The metal-support interactions in Rh/MCM-41 might 

contribute to the observed differences, but probably to a much lower extent than the effect of water 

vapor. In summary, the high concentration of water vapor in the pores of Rh/MCM-41 may promote 

the occurrence of the WGSR, generating extra CO2 and H2, which in turn facilitate side reactions changing 

the product selectivity. Finally, it seems that, as a consequence of the extra hydrogen generated from the 

WGSR in Rh/MCM-41, more acetaldehyde and/or acetic acid (or a C2-oxygenated intermediary) is 

hydrogenated yielding more ethanol than in the typical Rh/SiO2 catalyst.  

3. Experimental Section 

3.1. Catalyst Preparation and Characterization Techniques 

Hexagonal mesoporous silica (MCM-41) is usually obtained by the “atrane route” [34]. In this 

method, cetyltrimethylammonium bromide is used as the structural directing agent, and 

triethanolamine (TEA) is used as a hydrolysis retarding agent. Silatrane complexes are formed 

between tetraethyl orthosilicate and TEA, as metal precursors of Si. Further preparation procedure has 

been described elsewhere [34,35]. A commercial MCM-41 from Sigma Aldrich (Sigma Aldrich, St. 

Louis, MO, USA) was indistinctly used to the MCM-41 obtained from the “atrane route”. Silica (SiO2) 

catalyst support was purchased from Alfa Aesar (Alfa Aesar, Karlsruhe, Germany). The Rh/MCM-41 

and Rh/SiO2 catalysts were prepared by successive incipient wetness impregnation, using an aqueous 
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solution of RhCl3·nH2O. After impregnation, the catalysts were dried and then calcined at 500 °C/5 h. 

The total metal loading was 3 wt. % Rh for both Rh/MCM-41 and Rh/SiO2 catalysts.  

Powder X-ray diffraction (XRD) was performed using a Siemens D5000 instrument (Siemens, 

Karlsruhe, Germany) with Cu K-α radiation (2θ = 10°–90°, step size = 0.04°) equipped with a Ni filter 

and operated at 40 kV and 30 mA. N2-physisorption was carried out using a Micromeritics ASAP 2000 

instrument (Micromeritics, Norcross, GA, USA). The Brunauer-Emmett-Teller (BET) method was 

used to calculate the surface area and the Barrett-Joyner-Halenda (BJH) method was used to calculate 

the pore size and pore volume from the desorption isotherm. Temperature programmed reduction 

(TPR) was carried out in a Micromeritics Autochem 2910 instrument (Micromeritics, Norcross, GA, 

USA), a reducing gas mixture (5% H2 in Ar) at a flow of 50 mL/min passed through the catalyst 

sample while the temperature was increased by 5 °C/min up to 900 °C. Transmission electron 

microscopy (TEM) images were obtained using a JEOL JEM 1400 microscope (JEOL, Tokio, Japan). 

Samples were mounted on 3 mm holey carbon copper grids. Particle size and distribution were 

estimated after examination of more than 100 metal particles.  

The metal dispersion was measured by H2-chemisorption using a Micromeritics ASAP 2020 instrument 

(Micromeritics, Norcross, GA, USA). Prior to the analysis, the catalyst sample was reduced with hydrogen. 

After vacuum evacuation, a dynamic mode of hydrogen injection was performed at 40 °C [36]. Repeated 

analyses were made in order to discriminate between the amount of hydrogen adsorbed via 

physisorption or chemisorption [37]. The stoichiometry of hydrogen chemisorbed on metallic rhodium 

was considered to be 1:1. Different degrees of metal dispersion were obtained by changing the 

reduction temperature and the reduction time. In order to obtain the same metal dispersion, the 

catalysts were reduced at 370 °C during 1h for Rh/MCM-41 and 6 h for Rh/SiO2, resulting in H/Rh = 

22% in both catalysts.  

X-ray photoelectron spectroscopy (SPECS, Berlin, Germany) data were recorded on 4 mm × 4 mm 

pellets of 0.5 mm thickness that were obtained by gently pressing the powdered materials, following 

outgassing to a pressure below 2 × 10−8 Torr at 150 °C in the instrument pre-chamber to remove 

chemisorbed volatile species. The main chamber of a Leybold-Heraeus LHS10 spectrometer was used, 

capable of operating down of 2 × 10−9 Torr, which was equipped with an EA-200MCD hemispherical 

electron analyzer with a dual X-ray source using AlKα (hv = 1486.6 eV) at 120 W, 30 mA, with C(1s) 

as energy reference (284.6 eV). The catalyst samples were analyzed as; (i) reduced at the same 

conditions as in the catalytic testing; (ii) after catalytic testing and; (iii) after catalytic testing with 

addition of water. The reaction conditions are indicated in Table 2. 

3.2. Catalytic Testing 

The experiments were carried out in a stainless-steel, down-flow fixed bed reactor. The system 

components and the on-line gas chromatograph (GC) analysis are similar to those described by 

Andersson et al. [38]. The internal diameter of the reactor was 8.3 mm, in which about 300 mg of 

catalyst was charged with a particle size between 160 and 250 μm. Before reaction, the catalysts were 

reduced following the same procedure as the H2-chemisorption described above, in order to obtain a metal 

dispersion of H/Rh = 22%. After reduction, the reactor was cooled to 280 °C and pressurized with 

syngas up to 20 bar. The gas hourly space velocity (GHSV) was varied between 3000–19,000 
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mLsyngas/gcat. Premixed syngas bottles (AGA Linde) with a H2/CO ratio of 2:1 and 1:1 were used. The 

amount of water added to the system was regulated by means of a Gilson 307 pump, then the dosed 

water was evaporated by an external tape heater at 225 °C and then mixed with the syngas feed-stream. 

An on-line GC Agilent 7890A (Agilent, Santa Clara, CA, USA) was used to quantify the reaction 

products. A detailed description of the GC configuration and the analytical procedure have been 

published previously by Andersson et al. [38]. N2 added to the syngas mixture was used as internal 

standard to quantify CH4, CO and CO2 in a thermal conductivity detector [39]. The internal 

normalization of corrected peak areas was used to quantify the hydrocarbon and oxygenated 

compounds in a flame ionization detector [39]. The expressions used to calculate the syngas 

conversion, carbon mole selectivity and carbon balance are reported in [38]. In all the experiments the 

carbon balance was in the range of 99.1%–100%.  

Preliminary estimations were carried out to ascertain transport effects on the Rh/MCM-41 catalyst. 

At the experimental conditions used in this study, intraparticle diffusion limitation might slightly 

initiate at high syngas conversion (>70% in term of CO conversion), according to Weisz-Prater’s 

criterion [40]. However, a proper estimation of the diffusion limitation would require a careful 

determination of the morphology of the Rh/MCM-41 catalyst, which is outside the scope of the present 

study. The Koros-Nowak criterion indicates that the reaction rate, in the kinetic regime, is directly 

proportional to the concentration of the active material [40]. This means that the turnover frequency 

(TOF, s−1) must be invariant as the concentration of the active material is changed. An experimental 

test was carried out at 230 °C, 20 bar and 40,000 mLsyngas/gcat h (H2/CO = 2/1) using a catalyst sample 

with a fixed number of active sites (3 wt. % Rh and metal dispersion of H/Rh = 22%). A fraction of this 

sample was diluted with pure MCM-41 support at a ratio of 1:3, resulting in a catalyst with nominal 

composition 0.75 wt.% Rh and a metal dispersion of H/Rh = 22%. A minor variation (<10%) was 

observed between the TOFs of the non-diluted catalyst and the diluted catalyst, suggesting that the 

reaction operates in the kinetic regime. 

4. Conclusions 

The catalytic performance of Rh/MCM-41 catalyst has been evaluated for the synthesis of ethanol 

from syngas and compared with a typical Rh/SiO2 catalyst. Equal reaction conditions have been 

applied (280 °C and 20 bar), low syngas conversion (2.8%), the same metal dispersion (H/Rh = 22%) 

and the same Rh loading (3 wt. %). Under these conditions, different product selectivities have been 

obtained for Rh/SiO2 and Rh/MCM-41 catalysts. In order to clarify the obtained results, additional 

experiments were conducted: addition of water to the syngas feed-stream and lowering of the syngas 

ratio (H2/CO). The results from these experiments together with the catalyst characterization, before and 

after reaction, indicate that the differences in the catalytic performances of Rh/SiO2 and Rh/MCM-41 can 

be attributed to a high concentration of water vapor in the pores of Rh/MCM-41, which seem not to 

occur in Rh/SiO2. The concentration of water vapor in Rh/MCM-41 could essentially promote the 

occurrence of the water-gas-shift-reaction (WGSR) which generates some extra carbon dioxide and 

hydrogen. The extra carbon dioxide and hydrogen could induce side reactions and thus change the 

product selectivity, as compared with Rh/SiO2. The extra hydrogen generated from the WGSR in 

Rh/MCM-41 could possibly facilitate the hydrogenation of acetic acid and/or acetaldehyde (or a  
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C2-oxygenated intermediary) to ethanol, which may be related to the higher selectivity to ethanol 

observed in Rh/MCM-41 (24%) compared to Rh/SiO2 (8%). 
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