Catalysts 2013, 3(1), 288-309; doi:10.3390/catal3010288
Article

Electron Transfer at Gold Nanostar Assemblies: A Study of Shape Stability and Surface Density Influence

Chemistry and Biochemistry Department, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre 687, 4169-007, Porto, Portugal
Received: 17 January 2013; in revised form: 25 February 2013 / Accepted: 26 February 2013 / Published: 12 March 2013
(This article belongs to the Special Issue New Trends in Gold Catalysts)
PDF Full-text Download PDF Full-Text [5075 KB, uploaded 12 March 2013 14:56 CET]
Abstract: Gold nanostars of ~70 nm tip to tip distances were synthesized by a seed mediated method and covalently self-assembled on 1,5-pentanedithiol modified electrodes. Electron transfer kinetics at the AuNS/dithiol modified electrodes were studied as a function of AuNS surface density which was varied by increasing their self-assembly time from 8 h, 16 h, 24 h to 32 h. Excellent electrocatalytic properties of AuNSs were observed toward electrochemistry of [Fe(CN)6]4−/3− redox couple. The apparent heterogeneous electron transfer constant, ket, has progressively increased with the surface density of AuNSs bonded to the electrodes from 0.65 × 10−5 cm s−1 (8 h), 1.47 × 10−5 cm s−1 (16 h), 3.95 × 10−5 cm s−1 (24 h) to an excellent 85.0 × 10−5 cm s−1 (32 h). Electrochemical charging of nanostars was confirmed, for the first time, by 79 times increase of double layer capacitance, Cdl, from 0.34 µF (8 h) to 27 µF (32 h). The electrochemical charging of AuNSs had also a strong influence on the electron tunneling process through the 1,5PDT molecules being more efficient at dense layers of AuNSs. The tunneling parameter, β, has decreased from 1.13 Å−1 (16 h) to 0.50 Å−1 (32 h). The AuNSs were chemically stable toward [Fe(CN)6]4−/3− showing no change in shape after electrochemical measurements.
Keywords: molecular electronics; gold nanostars; electron transfer; electrochemical charging

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Chirea, M. Electron Transfer at Gold Nanostar Assemblies: A Study of Shape Stability and Surface Density Influence. Catalysts 2013, 3, 288-309.

AMA Style

Chirea M. Electron Transfer at Gold Nanostar Assemblies: A Study of Shape Stability and Surface Density Influence. Catalysts. 2013; 3(1):288-309.

Chicago/Turabian Style

Chirea, Mariana. 2013. "Electron Transfer at Gold Nanostar Assemblies: A Study of Shape Stability and Surface Density Influence." Catalysts 3, no. 1: 288-309.

Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert