
Citation: Nomura, K.; Wang, X.

Acyclic Diene Metathesis (ADMET)

Polymerization for the Synthesis of

Chemically Recyclable Bio-Based

Aliphatic Polyesters. Catalysts 2024,

14, 97. https://doi.org/10.3390/

catal14020097

Academic Editor: Luca Bernardi

Received: 5 January 2024

Revised: 21 January 2024

Accepted: 22 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Review

Acyclic Diene Metathesis (ADMET) Polymerization for the
Synthesis of Chemically Recyclable Bio-Based Aliphatic Polyesters
Kotohiro Nomura * and Xiuxiu Wang

Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 1920397, Japan
* Correspondence: ktnomura@tmu.ac.jp

Abstract: The recent developments of the synthesis of bio-based long-chain aliphatic polyesters by
the acyclic diene metathesis (ADMET) polymerization of α,ω-dienes, derived from plant oils and
bio-based chemicals, like bis(10-undecenoate) with isosorbide, using ruthenium-carbene catalysts
are reviewed. The development of subsequent (one-pot) tandem hydrogenation produced saturated
polyesters under mild conditions. The polymerizations under bulk (without solvent, 80–90 ◦C)
or in ionic liquids (50 ◦C) under vacuum conditions enabled the synthesis of high molar mass
polymers (Mn > 30,000 g/mol). The polymerization performed by the molybdenum-alkylidene
catalyst afforded the highest-molecular-weight polyesters (44,000–49,400 g/mol, in toluene at 25 ◦C)
exhibiting promising tensile properties (strength and elongation at break) compared to polyethylene
and polypropylene. Depolymerizations of these polyesters, including closed-loop chemical recycling,
were also demonstrated. Catalyst developments (more active, under mild conditions) play a key role
in the efficient synthesis of these materials.

Keywords: bio-based; polyester; metathesis polymerization; plant oil; circular economy; chemical
recycling; tensile properties; homogeneous catalysts

1. Introduction

The development of sustainable polymers from renewable feedstocks attracts consid-
erable attention from the viewpoints of the circular economy as well as green sustainable
chemistry. Hydrocarbon-rich molecular biomasses, such as vegetable oils (castor, coconut,
linseed, olive, palm, soybean, sunflower, etc.) presented as triglycerides with fatty acids, or
fatty acid esters (FAEs) are naturally abundant and are recognized as low-cost molecular
biomass products [1–11]. A study on bio-based advanced polyesters (exhibiting tunable
mechanical properties and biodegradability), in particular, long-chain aliphatic polyesters
(LCAPEs), are semicrystalline materials considered as a promising alternative of polyethy-
lene [6,8]. The melting temperatures (Tm values) of polyesters are generally influenced by
the methylene length (and the direction of dipoles called the odd–even effect) [6,12–14]; the
placement of longer methylene units should be effective for the obtainment of polyesters
without softening them at elevated temperatures. It has been considered that the precise
polymerization technique provides a new strategy and methodology for the design of
macromolecular architectures.

Two condensation polymerization approaches—(i) condensation polymerization by
transesterification (dicarboxylic acid and diol, etc.) and (ii) acyclic diene metathesis
(ADMET) polymerization (nonconjugated α,ω-dienes)—and subsequent hydrogenation
(Scheme 1) are considered for the synthesis from FAEs [6,8]. The ring-opening polymer-
ization (ROP) approach from cyclic monomers can also be considered, but the method
has a limited monomer scope; the method also faces the difficulty of catalysts enabling
the synthesis of high molar mass polymers [15,16]. Studies on alternative approaches
to polymers are also under investigation [17–20]. Moreover, the recent progress in the
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development of olefin metathesis catalysts for the conversion of plant oils (FAEs) is well
known [21–24].
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The conventional condensation polymerization approach through transesterification
(ester bond exchange) requires high temperatures with the efficient removal of by-products
(such as alcohols and water) to obtain high molar mass polymers with a high degree of
polymerization (DPn). For example, the synthesis of poly(ethylene terephthalate) from
terephthalic acid (which must be purified) with excess ethylene glycol requires high tem-
peratures up to 290 ◦C under a reduced pressure [25]. This method, however, seems to
be difficult to apply for the synthesis of LCAPEs due to the difficulty of removing diols
with high boiling points (e.g., 1,12-dodecanediol, 189 ◦C/12 Torr; 1,16-hexadecane diol
197–199 ◦C/3 mmHg). Moreover, precise stoichiometric control (hydroxy and carboxylic
groups) is needed for this purpose [6,26–28]; polymerization with the precise stoichiometric
ratios of diols (algae oil) and diesters (C17 and C19) is required to create high molar mass
polymers (Mn = 4.0 × 104) possessing a Tm value of 99 ◦C [28].

The synthesis of bio-based aliphatic polyesters by adopting the ADMET polymeriza-
tion [29–31] approach, especially using commercially available (Grubbs-type) ruthenium
carbene catalysts, has been explored by many researchers, since the reactions do not
require severe conditions for condensation polymerization through transesterification (de-
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scribed above). In this mini review, reports concerning the synthesis of bio-based aliphatic
polyesters by the ADMET approach are summarized.

2. Synthesis of Bio-Based Aliphatic Polyesters by ADMET Polymerization
2.1. Synthesis of Aliphatic Polyesters by ADMET Polymerization and Hydrogenation

Reports on the synthesis of bio-based polyesters by ADMET polymerization, especially
using commercially available (Grubbs-type) ruthenium carbene catalysts RuCl2(PCy3)2(CHPh)
(G1; Cy = cyclohexyl), RuCl2(PCy3)(IMesH2)(CHPh) (G2; IMesH2 = 1,3-bis(2,4,6-trimethylphenyl)
imidazolin-2-ylidene), and RuCl2(IMesH2)(CH-2-OiPr-C6H4) (HG2), shown in Scheme 2, are
well known. These ruthenium catalysts have been employed [8] because these complexes
can be readily available and do not require treatment with the strict Schlenk technique due
to their insensitivities toward water and oxygen (better functional group tolerance) [32–35].
More recently, the example using a molybdenum-alkylidene catalyst (Mo cat.) [36–38], shown
below, also demonstrates the synthesis of high molar mass polymers that exhibit good tensile
properties [39].
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The synthesis of a bio-based polyester, expressed as PE1, by the ADMET polymeriza-
tion of undec-10-en-1-yl undec-10-enoate (M1), prepared by the reaction of 10-undecenoic
acid with 10-undecenol (derived from castor oil) was reported by the group of Meier in
2008 [40]. The resultant PE1 synthesized by G2 (0.5 or 1.0 mol%, 80 ◦C, 24 h, Scheme 3)
possessed a rather high molecular weight (Mn = 22,000, 26,500), and the Mn values were
controlled by the addition of terminal olefins, such as methyl 10-undecenoate and stearyl
acrylate [40]. In contrast, the group reported that the polymerization of bis(undec-10-enoate)
with isosorbide (M2, Scheme 3) conducted at 70–100 ◦C under bulk conditions yielded
rather low-molecular-weight polymers (PE2, Table 1) [41], whereas the Mn values seemed
to improve when the polymerizations were conducted at high temperatures and/or under
nitrogen-purge conditions (for the removal of by-produced ethylene). This was probably
due to the catalyst decomposition caused by conducting the reaction at 70–100 ◦C [42–47],
because these ruthenium catalysts are known to decompose under these conditions to
produce ruthenium-hydride species [44] and/or nanoparticles [46], which induce olefin
isomerization and/or certain side reactions by the formed radicals [42–48]. G2 showed a
more significant degree of olefin isomerization compared to G1 and a higher percentage of
isomerization (estimated by GC-MS, after treating the mixture with MeOH-H2SO4 under
reflux conditions) [41]. Later, the degree of isomerization was extensively suppressed when
the polymerizations were conducted in the presence of benzoquinone [48].

The ADMET polymerization of M1 by G1 under high-vacuum conditions for two
days produced PE1 (Mn = 28,000, Mw/Mn = 1.9) and a subsequent hydrogenation step
(Pd/C, 50 bar H2, 60 ºC) produced a saturated polyester (HPE1, PE-20.20, Scheme 4) [49].
The Tm value (103 ◦C) achieved was somewhat low compared to the HPE1 prepared
by the condensation polymerization of 1,20-eicosanedioic acid with eicosane-1,20-diol
(Tm = 108 ◦C) to form ‘regio-regular’ ester groups, C(O)-O, aligned with the polymer chain
(Scheme 4). It was thus suggested that the microstructural control directly affected the
thermal property, as described above [6,14]. ADMET polymerizations of α,ω-dienes with
different methylene chain lengths, di(icos-19-en-1-yl)tricosanedioate (M3) and di(tricos-22-
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en-1-yl)tricosanedioate (M4), using G1 and the subsequent olefin hydrogenation conducted
by Ru(CHOEt)Cl2(PCy)2 (40 bar H2, 70 ◦C, 2 d), prepared from G1, yielded the correspond-
ing values of PE-38.23 (HPE3) and PE-44.23 (HPE4), respectively (Scheme 4) [50]. The
polycondensation of 1,26-hexacosanedioate, prepared by the cross-metathesis of erucic acid,
with the corresponding diol (produced by a reduction with LiAlH4) with Ti(OBu)4 also
produced the corresponding polyester (HPE5, PE-26.26, Tm = 114 ◦C) [51]. The thermal
properties (Tm values) of the resultant LCAPEs with different methylene lengths, prepared
by ADMET [50] and polycondensation [51,52] approaches, revealed that the Tm values
achieved a constant value (Figure 1a) [50]. A linear relationship between the Tm val-
ues and the number of ester groups in 1000 carbon atoms was observed (Figure 1b) [50].
Polyesters PE-26.26, PE-12.26 and PE-4.26 [51], and PE-18,18 [53] were also prepared by
polycondensation.
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Table 1. Synthesis of PE2 by ADMET polymerization using ruthenium catalysts [41] 1.

Ru cat. Temp.
/◦C

Nitrogen
Purge 2 Mn

3 Mw/Mn
3 Isomerization 4

/%

G2 60 no 5600 1.65 48
G1 70 no 4400 1.57 3
G2 70 no 6000 1.71 49
G1 80 no 4750 1.56 4
G2 80 no 6100 1.61 69
G1 80 yes 6600 1.77 3
G2 80 yes 8400 1.75 76
G1 90 no 5450 1.69 3
G2 90 no 6200 1.65 66
G1 100 no 5000 1.61 42 5

1 Conditions: Ru cat 1.0 mol%, 5 h. 2 N2 purge during polymerization. 3 GPC in THF vs. polystyrene stds.
4 Isomerized diesters (%) estimated with GC-MS after transesterification. 5 Unidentified side products.
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The one-pot synthetic method used for the bio-based aliphatic polyesters by AD-
MET polymerization and subsequent hydrogenation was demonstrated (Scheme 5) [54].
The polymerization of bis(undec-10-enoate)s with isosorbide (M2), isomannide (M6),
1,3-propanediol (M7), and 1,4-cyclohexanedimethanol (M8), derived from castor oil and
glucose in chloroform by G2 or HG2 under a reduced pressure at 50 ◦C produced unsat-
urated polymers (expressed as PE2 and PE6–PE8, respectively) [54]. The Mn values in
the produced polymers (Mn = 11,900–15,900) were somewhat higher than those reported
previously (Mn = 4400–8400), conducted at 70–100 ◦C [41], and the Mn values did not
change, even under rather scaled-up conditions [54]. One reason for the obtainment of
high-molecular-weight product could be that the degree of the catalyst decomposition was
significantly suppressed by conducting the polymerization at 50 ◦C (and the polymerization
was conducted under a continuously reduced pressure) [54].

As described above (Scheme 4) and below [55], conventional olefin hydrogenation
requires a high hydrogen pressure and high temperature after the isolation of unsaturated
polyesters after ADMET polymerization [49,50,55]. In contrast, one-pot hydrogenation
under rather mild conditions (1.0 MPa, 50 ◦C, 3 h) was demonstrated following the addition
of a small amount of Al2O3 (ca. 1 wt%) to the reaction mixture (Scheme 5). The completion
of the olefin hydrogenation was confirmed by DSC thermograms (uniform compositions)
due to the difficulty (accuracy of the integration of olefinic protons) of obtaining the
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1H NMR spectra. No significant differences in the Mn and Mw/Mn values were observed
before/after hydrogenation [54].
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Scheme 5. One-pot synthesis of bio-based polyesters by Ru-catalyzed ADMET polymerization and
hydrogenation [46].

As shown in Figure 1b, the melting temperatures (Tm values) of the polyesters are
influenced by the methylene unit number (n). As shown in Scheme 6, the copolymerization
of M1 with undeca-1,10-diene (UDD) followed by olefin hydrogenation (H2 40 bar, 110 ◦C,
2 d) produced various LCAPEs with different chain lengths (ranging from 0.9 to 52.6 ester
groups per 1000 carbon atoms), expressed as H2-poly(M1-co-UDD) [55]. A linear corre-
lation of the melting temperatures (Tm values) with the average number of ester groups
per methylene unit was thus demonstrated, whereas the ester group was incorporated
in a random manner. A similar trend was observed in the copolymerization of M2 with
1,9-decadiene (DD) and the subsequent one-pot hydrogenation [56]. The saturated poly-
mers possessed Tm values in the range of 71.7–107.6 ◦C, depending on the molar ratios of
M2 and DD.
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with isosorbide (M2) with nonconjugated dienes, and subsequent hydrogenation [55,56].

The polymerization of bis(undec-10-enoate)s with D-xylose (1,2-O-isopropylidene-α-
D-xylofuranose, M9c), and D-mannose (M10) by G2 was studied under a dynamic-vacuum
(0.1 mbar) condition without solvent (bulk) conditions (60–90 ◦C, 20 h, Scheme 7) [57].
The molecular weights of the resultant polymers (PE9c, PE10) were affected by the poly-
merization temperature employed and the monomer/Ru molar ratios. Conducting the
polymerization at 90 ºC under a low Ru concentration (0.1 mol%) seemed to be the opti-
mized condition (PE9c: Ru, Mn = 7.14–7.16 × 104, Mw/Mn = 2.2–2.3, PE10: Mn = 3.24 × 104,
Mw/Mn = 2.4) [49]. Due to the fact that the polymerization was conducted without a sol-
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vent, the PDI (Mw/Mn) values were rather high due to the difficulty pf controlling the
stirring [57]. Later, the polymerizations of D-xylose diester analogs with different methy-
lene lengths (M9, x = 0, 2, 8, Scheme 7) and the corresponding diether analogs (M11) were
explored [58]. The Mn values of the resultant polymers decreased upon decreasing the
methylene length, and the monomers did not possess a methylene spacer [58]. Some poly-
merization runs failed due to precipitation or the difficulty of performing isolations [58].
The resultant unsaturated polymers were amorphous, except PE11a, and both glass tran-
sition temperatures (Tg) increased after reducing the olefinic double bonds by treating
them with p-toluenesulfonyl hydrazide as a reducing agent; most of the resultant saturated
polymers (HPE9 and HPE11) were amorphous, except HPE9a and HPE11a derived from
the castor oil (10-undecenoate), suggesting that the placement of the methylene spacer
was important (as shown in Figures 1a and 2) [58]. The resultant hydrogenated polymer
films, especially the HPE11a-oriented film, exhibited a good tensile strength (43 MPa) with
an elongation at a break of 155%; but, the hot-press film showed a much weaker tensile
strength (7.8 MPa) with and improved elongation at the break (667%) [58].
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Scheme 7. ADMET polymerization of α,ω-dienes containing D-xylose, D-mannose, vanillin, and
eugenol as the monomer units [57–60].

The syntheses of polyesters containing vanillin (PE12) [59] afforded high-molecular-
weight PE12 (Mn = 10,000, Mw/Mn = 1.6) possessing a Tg value of 4 ◦C (Scheme 7), whereas
the polymerization of 4-allyl-2-methoxyphenyl 10-undecenoate (M13) by G2 produced
amorphous high molar mass polymers with low PDIs (Mw/Mn) with Tg at −9.6 ◦C [60]. The
ADMET polymerization of M13 in the presence of 5-formylbenzene-1,2,3-triyl tris(undec-
10-enoate) produced rather high molar mass network polymers [60].
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Figure 2. Plots of melting temperature (Tm) vs. number of ester groups per 1000 C (methylene units)
in the hydrogenated copolymers, H2-poly(M1-co-UDD)s [55].

The polymerization of trehalose bis(10-undecenoate) (M14) by HG2 (4.0 mol%) in
THF at 45 ºC for 24 h (Scheme 8) produced semicrystalline polymers (PE14) possess-
ing high molecular weights with unimodal molecular-weight distributions (Mn = 13,200,
Mw/Mn = 2.1) with higher Tm values (156 ◦C) [61]. Both the molecular weights and melting
temperatures (Tm values) of the resulting copolyesters with undec-10-en-1-yl undec-10-
enoate (M1) decreased with the increase in the percentage of M1 [61].
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The polymerization of bis(10-undecenoate)s with isosorbide (M2) and glucarodilactone
(M15) and copolymerizations with different molar ratios were conducted in the presence of
methyl-10-undecenoate (MU, 1.0 mol%) by using G2 (1.0 mol%) at 80 ◦C for 16 h under a
reduced pressure (Scheme 8) [62]. MU was employed as the monofunctional chain stopper
(chain transfer reagent by the placement of the MU unit as the end group) [62]. The resultant
polymers possessed high molecular weights with unimodal molecular-weight distributions.
Copolymerizations with bis(hydroxymethylfuran) undecenoate (M16) were conducted [63].
The resultant PE2 possessed a low Tg value (−10 ◦C) compared to PE15 (Tg = 32 ◦C), and
the homopolymers, PE2 and PE15, were brittle materials, whereas the copolyesters were
rubbery materials possessing better tensile properties, an elastic behavior, as well as shape
memory properties.

The copolymerizations of α,ω-dienes (linear M17 and n-hexyl branched M18), derived
from castor oil and vernonia oil, by G1 at 85 ◦C, produced LCAPEs containing branches
at a certain percentage (after subsequent hydrogenation by Pd/C, Scheme 8) [64]. These
polymers were considered as LLDPE (linear low-density polyethylene) and VLDPEs (very
low-density polyethylene) mimics. However, their DSC thermograms presented multiple
melting temperatures, suggesting the compositions of the resultant copolymers were not
uniform [64].

2.2. Synthesis of High Molecular-Weight Polymers Exhibiting Tensile Properties beyond
Polyethylene and Polypropylene

There are many reports on the synthesis of bio-based aliphatic polyesters by the
ADMET polymerization of α,ω-diene monomers containing carbohydrate units (such as
M2, M6, M9, M10, M14, and M15) using ruthenium catalysts [41,54,57,58,61–63]; however,
the reports on the synthesis of high-molecular-weight polymers (ca. Mn ≥ 30,000 considered
for their better mechanical properties, such as their films, shown below) are limited to date
(Scheme 9) [58,62,63]. Catalyst decomposition was highly considered when metathesis
polymerizations (reactions) were conducted at high temperatures (70–100 ◦C) and the
subsequent isomerization and/or undesired side reaction caused by formed radicals were
known [42–47]. The catalyst decomposition also caused the difficulty of separating the
metal (present as ruthenium metal particles) from the resultant polymers, and this is
often observed in metathesis polymerization chemistry, especially when using ruthenium
catalysts. Moreover, the reported synthetic methods were conducted under direct-vacuum
and bulk conditions without a solvent [58,62,63]; the methods thus presented the difficulty
of stirring high-viscosity products [58] and was applicable to for the synthesis of amorphous
or semicrystalline materials with Tm values below 90 ◦C. Therefore, the development of the
methods for the solution polymerization in the presence of appropriate solvent seemed to be
better in terms of the process control (by lowering the viscosity of the reaction mixture under
rather mild conditions to avoid catalyst decomposition) and the wide monomer scope.

ADMET polymerization is a condensation polymerization method that by-produces
small molecules (ethylenes), and the removal is quite effective for the obtainment of high
molar mass polymers under certain equilibrated conditions. Conducting the polymeriza-
tion under continuous dynamic-vacuum and bulk conditions [58,62,63] is thus effective
for this purpose. A consideration of these points shows that ionic liquids (ILs) can be
considered as ideal solvents, not only due to their absent (or extremely low) vapor pressure
and ability to provide homogeneous conditions due to their good miscibility with polymers,
organic compounds, and metal catalysts, but also due to their high stability ranging from
−30 to >300 ◦C [65–72]. Although olefin metathesis reactions in ILs are known, the reported
examples for ADMET polymerizations are still limited [73–78].

More recently, the synthesis of high-molecular-weight polymers (PE2, Mn = 32,200–39,200)
was demonstrated in the polymerization of α,ω-diene monomer (M2, dianhydro-D-glucityl
bis(undec-10-enoate)) using the HG2 catalyst in ionic liquids (ILs) under continuous-vacuum
conditions at 50 ◦C (Scheme 10) [79]. The Mn values were apparently higher than those
reported previously (Mn = 5600–14,700) [41,54]. 1-n-Butyl-3-methyl imidazolium hexafluo-
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rophosphate, [Bmim]PF6, and 1-n-hexyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)
imide, [Hmim]TFSI, were found to be effective as solvents among a series of imida-
zolium salts and pyridinium salts. As summarized in Table 2, the method was also
effective for the syntheses of high molar mass polymers containing isomannide (PE6),
1,4-cyclohexanedimethanol (PE8), and 1,4-butanediol (PE7) units as the diol segments used
instead of isosorbide (PE2); the Mn values did not decrease, even under the scale-up condi-
tions (300 mg → 1.0 g scale) [79]. The tandem hydrogenation of the resultant unsaturated
polymers (PE2) in the [Bmim]PF6–toluene biphasic system upon the addition of Al2O3
(H2 1.0 MPa at 50 ◦C) produced the corresponding saturated polymers (HPE2).
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Table 2. ADMET polymerizations of M2, M6–M8 by HG2 in [Hmim]TFSI [79] 1.

Monomer Yield 2/% Mn
3 Mw/Mn

3

M2 93 39,200 1.95
M24 86 37,500 1.91
M6 92 26,000 1.95
M7 89 33,400 2.30

M7 4 87 34,900 1.82
M8 94 38,800 3.38

1 Conditions: monomer (300 mg) in IL 0.14 mL (initial conc. 4.48 M (M2), 4.48 M (M6), 5.07 M (M7), 4.69 M (M8)),
HG2 1.0 mol%, 50 ◦C in vacuo. 2 Isolated yield. 3 GPC data in THF versus polystyrene standards. 4 Reaction
scale: monomer (1.0 g) in [Hmim]TFSI 0.30 mL (initial concentrations: 6.97 M (M2) and 7.80 M (M7)).

As described above, the polymerization of M2 conducted in ILs with the continuous
removal of by-produced ethylene afforded high molar mass polymers (Scheme 10) [79],
whereas the polymerizations conducted in toluene or CHCl3 (even under optimized con-
ditions with the careful removal of ethylene) afforded polymers with Mn values up to
15,000 [54]. The development of the method without using (expensive) ILs is favorable
from a practical point of view.

We more recently demonstrated that the synthesis of higher molar-mass polymers
(Mn = 44,000–49,400 g/mol) could be achieved by polymerization in toluene using the
molybdenum-alkylidene catalyst, Mo(CHCMe2Ph)(2,6-Me2C6H3)[OC(CH3)(CF3)2] (Mo cat.,
Scheme 11) [39]. As summarized by the results in Table 3, the Mn values are affected by
the M2/Mo molar ratios and amount of toluene used. As observed in the conventional
ADMET polymerization, polymerization with low catalyst loading under high initial
monomer conditions was suited to the condensation polymerization; it seemed that the Mn
value in PE2 increased when the reaction scale was increased (90.5 (43.5 mg) → 261 µmol
(543 mg)) with the increase in the initial monomer concentration (by varying the amount of
toluene) [39]. This method is applicable to the other monomers (M6, M19). Olefinic double
bonds in the resultant polymers were hydrogenated by using a rhodium catalyst under
mild conditions (1.0 MPa, 50 ◦C), and no significant changes in the Mn or PDI values of the
polymers after hydrogenation were observed.
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It should be noted that both the tensile strength (stress) and elongation at break (strain)
in the prepared polymer films of HPE2 increased remarkably upon increasing the Mn
value (Figure 3) [39]; a fairly good linear correlation was observed between the stress and
strain; and the HPE2 sample with the highest Mn value (Mn = 48,200) exhibited a tensile
strength of 39.7 MPa along with an elongation at break of 436%. The value was not only
higher than PE-18,18, prepared with C18 dimethyl dicarboxylate and the corresponding
diol by condensation polymerization [9], but also poly(lactic acid) (PLA), poly(ethylene
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terephthalate) (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE),
and polypropylene (PP) [39,80]. The PE2 sample before hydrogenation showed a higher
strain (elongation at break) with less stress (tensile strength) compared to HPE2, and
the isomannide-based HPE6 showed a similar tensile property to the isosorbide-based
HPE2 [39]. The importance of the development of a synthetic method for the synthesis of
high molar mass polymers by ADMET polymerization was thus demonstrated [39].

Table 3. ADMET polymerizations of M2, M6, and M19 with the molybdenum catalyst (25 ◦C, 6 h) [39] 1.

Monomer (µmol) cat./mol% Yield 2/% Mn
3/g·mol−1 Mw/Mn

3

M2 (90.5) 5.0 99 16,000 1.79
M2 (90.5) 2.5 90 25,100 1.43
M2 (90.5) 1.0 88 34,400 1.49
M2 (272) 1.0 88 46,100 2.08
M2 (272) 1.0 91 46,100 1.84
M6 (272) 1.0 87 34,800 1.87

M19 (272) 1.0 99 67,200 2.27
M2 (272) 0.5 90 48,700 2.04

M2 (543) 4 0.5 91 49,400 2.47
1 Conditions: Mo(CHCMe2Ph)(N-2,6-Me2C6H3)[OC(CH3)(CF3)2]2 (Mo), toluene (0.72 mL), quenched by
C6H5CHO or 4-Me3SiOC6H3CHO (for termination through Wittig-type cleavage). 2 Isolated yield (as MeOH
insoluble fraction). 3 GPC data in THF (at 40 ◦C) vs. polystyrene standards. 4 Toluene: 1.0 mL.
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(LDPE), and polypropylene (PP) [39].

2.3. Chemical Recycling of Polyesters

PE18,18, prepared by the condensation polymerization of 1,18-octadeca dicarboxylic
acid with 1,18-octadecanediol, was treated with MeOH (150 ◦C, 12 h) to produce a solid
mixture consisting of dicarboxylic acid and diol after MeOH removal. The resultant
solid was used for the subsequent condensation polymerization with Ti(OnBu)4 to yield
recycled PE18,18 with a high molecular weight (Mn = 79,000, Mw/Mn = 1.9, Scheme 12) [9].
Moreover, the treatment of polycarbonate (PC18, Mn = 90,000, Mw/Mn = 2.7), prepared
by the condensation polymerization of 1,18-octadecane diol with diethyl carbonate (DEC)
in the presence of LiH, with a 10 wt% KOH ethanol solution (at 120 ◦C, 24 h) exclusively
produced 1,18-octadecanediol (yield: 98%, and purity: 99% after recrystallization from
MeOH). The subsequent polycondensation with DEC produced recycled PC18 without a
reduction in the Mn value (Mn = 70,000, Mw/Mn = 3.4), which exhibited similar properties as
the fresh sample [9]. These results indicate the possibility of closed-loop chemical recycling.
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Although the conventional method for the depolymerization of polyester requires
excess acid or base materials (or MeOH under high temperatures), more recently, exclu-
sive acid- and base-free chemical conversions of polyesters (poly(ethylene adipate) (PEA),
poly(butylene adipate) (PBA), poly(ethylene terephthalate) (PET), and poly(butylene tereph-
thalate) (PBT)) into the corresponding monomers (diethyl adipate, diethyl terephthalate,
ethylene glycol, and 1,4-butane diol) by transesterification with ethanol using the Cp’TiCl3
(Cp’ = Cp, Cp*) catalyst were demonstrated [81,82]. The depolymerizations proceeded the
completed conversions (>99%) of PET and PBT to afford diethyl terephthalate and ethylene
glycol or 1,4-butanediol exclusively (selectivity > 99%, 150–170 ◦C, Ti 1.0 or 2.0 mol%) [82].
The resultant reaction mixture after the depolymerization of PBA with ethanol by the
CpTiCl3 catalyst (1.0 mol%, 150 ◦C, 3 h), consisting of diethyl adipate and 1,4-butanediol,
was heated at 150 ◦C in vacuo for 24 h to afford high-molecular-weight recycled PBA with
a unimodal molecular-weight distribution (Mn = 11,800, Mw/Mn = 1.6, Scheme 12), demon-
strating the possibility of one-pot (acid and base free) closed-loop chemical recycling [82].
The method can also be applicable to bio-based aliphatic polyesters; the reaction of HPE2
with ethanol by CpTiCl3 afforded the corresponding dicarboxylic acid and isosorbide prod-
ucts exclusively [79]. Since the depolymerization (transesterification) method by titanium
catalysts can be applied to various polyesters, including bio-based ones [79,81,82], the
importance of the basic concept of the one-pot method can be emphasized.
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3. Concluding Remarks

This review summarizes the recent developments for the synthesis of bio-based
LCAPEs by the acyclic diene metathesis (ADMET) polymerization of α,ω-dienes, de-
rived from plant oils and bio-based chemicals (carbohydrates and their derivatives) in the
presence of ruthenium-carbene catalysts (G1, G2, HG2; Scheme 2). The development of
subsequent (one-pot) tandem hydrogenation afforded saturated polyesters under mild
conditions. Reported examples for the synthesis of high-molecular-weight polymers are
still limited; polymerizations under bulk conditions (without solvent, 80–90 ◦C) or in
ionic liquids (50 ◦C) under vacuum conditions enabled the synthesis of high molar mass
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polymers (Mn > 30,000) that exhibited better mechanical properties than films. However,
high-temperature polymerizations (at 70–100 ◦C) created the possibility of catalyst de-
compositions. The polymerizations using the molybdenum-alkylidene catalyst afforded
the highest molecular-weight polyesters (44,000–49,400 g/mol) even in toluene at 25 ◦C.
Hydrogenated polyester films, prepared by the polymerization of bis(10-undecenoate)
with isosorbide and the subsequent hydrogenation phase, exhibited promising tensile
properties (strength and elongation at break) beyond polyethylene and polypropylene. The
significant effects of molecular weight on the tensile properties were demonstrated, clearly
indicating the importance of the synthesis of high molar mass polymers to produce better
materials properties. The reported procedures for the closed-loop chemical recycling of
polyesters by depolymerization and re-polymerization methods were also introduced. The
depolymerization of poly(butylene adipate) (PBA) with ethanol using the CpTiCl3 catalyst
afforded diethyl adipate and 1,4-butandiol exclusively, and the subsequent polycondensa-
tion produced PBA without a loss of the Mn value. Catalyst developments (more active,
under mild conditions) play a key role in efficient synthesis practices.
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