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Abstract: In this work, the behaviour of photoanodes made of TiO2, SnS2 and TiO2/SnS2 was exam-
ined in the presence and absence of pharmaceuticals diclofenac (DCF), memantine hydrochloride
(MEM) and salicylic acid (SA). The focus of the current research is on the following photoelectrochem-
ical (PEC) characterisation methods: linear polarisation, electrochemical impedance spectroscopy
(EIS), and open circuit potential (OCP) monitoring. Linear polarisation and EIS provided useful
information about the interaction between the pharmaceuticals and the photocatalytic materials. The
presence of the selected pharmaceuticals affects the OCP value, mainly due to the pH change. The
results obtained by PEC characterisation were compared to the photocatalytic (PC) efficiency of phar-
maceutical degradation. In addition to the photocurrent response, the linear voltammogram indicates
the electrochemical oxidation of DCF and SA. Geometry optimizations using density functional the-
ory (DFT) showed that the HOMO orbitals’ position of DCF and SA are above the position of the TiO2

HOMO level and below the position of the SnS2 HOMO level. Due to this, the characteristic current
peak for DCF and SA was registered, but only for TiO2 and TiO2/SnS2 photoanodes. The oxidation
current peak was not registered for MEM, although h+ scavenging properties were noticed for TiO2

in the presence of MEM. Apparently, this is an interplay between the protonated and non-protonated
forms of MEM and the differences in their HOMO positions.

Keywords: photocatalysis; pharmaceuticals adsorption; linear polarisation; electrochemical
impedance spectroscopy

1. Introduction

Photoelectrochemical (PEC) and photocatalytic (PC) processes attract significant atten-
tion as promising methods for water remediation and water splitting. Furthermore, PEC
effect is fundamental for photocatalytic fuel cells, photocatalytic sensors or for photocat-
alytic corrosion protection [1–3]. It is therefore not surprising that a large number of papers
related to PEC and PC have been published. The development in this field started in 1969
when photoelectrolysis was demonstrated for the first time by A. Fujishima and K. Honda,
who exposed an n-type TiO2 photoanode to UV irradiation resulting in photocurrent and
water electrolysis [4].

Their discovery prompted further research in this area using TiO2 as photoactive
material. TiO2 is attractive due to its high photoresponse, high chemical stability, low cost
and nontoxicity. However, it is only active in the ultraviolet (UV) region; therefore, there
is a need to develop alternative material with activity in the visible range (Vis) as well,
which will enable a more efficient harvesting of solar energy. For this purpose, different
approaches, including the dye sensitization of TiO2 or TiO2 doping with metals, nitrogen,
sulfur or carbon, were developed [4]. TiO2 application is also hampered by a significant
recombination of photogenerated hole–electron (h+/e−) pairs; therefore, much attention
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has been paid to decreasing its recombination rate. This can be achieved by the non-metal
doping of TiO2 [4], where trapping centers for the photogenerated e− are introduced to the
TiO2 structure, or by composite material formation [5,6], where h+/e− pairs are separated
by a heterojunction formation. Another approach to increasing solar energy harvesting is
the utilization of materials active in the visible spectrum, such as BiVO4, SnS2, CuS, MoS2,
or the development of various composite and bilayer structures of these materials.

Pharmaceuticals are known to have a significant impact on the aquatic environment
and pose an ecological risk. Accordingly, it is important to develop an innovative and
practical water treatment technique, which will be able to effectively remove/degrade
such persistent pollutants. The PC or PEC treatments are promising techniques for the
degradation of various pharmaceuticals due to their efficiency, simplicity and low cost.
These techniques are based on the light absorption by a photoactive material that generates
h+/e− pairs. The resulting h+ reacts with water (i.e., hydroxyl ion (HO−)), producing
hydroxyl radicals (HO•), as a main representative of reactive oxidation species (ROS),
which are involved in the indirect oxidation of pharmaceuticals [7–12]. The photogenerated
e− in PC reacts with oxygen to form superoxide radicals (O2•−), while the e− generated in
PEC is continuously drained to the counter-electrode. The general conclusion for an efficient
PEC or PC process is that the adsorption of a pharmaceutical molecule at the surface of
a photocatalytic material is highly preferred, enabling the direct oxidation/reduction of
pharmaceuticals at the surface, thus overcoming diffusion limit issues related to the transfer
of short-lifetime ROS species [13–15]. There are also reports that pharmaceutical oxidation
takes place through direct oxidation by the valence band h+ [8,9,16]. Due to the complexity
of the process, the determination of the exact mechanism is a rather challenging task [10,11].

In this work, the influence of three different pharmaceuticals (diclofenac (DCF), me-
mantine hydrochloride (MEM), and salicylic acid (SA)), on PEC response and, consequently,
PC effectiveness, was studied. Most reports related to DCF PC degradation were carried
out using TiO2 photoactive material [17–20], but there are reports on other materials, such
as V2O5 [21], TiO2/WO3 [22–25] or TiO2/SnS2 [5], as well. Silva et al. [26] developed
photocatalytic membranes containing TiO2. Moctezuma et al. [27] showed that positively
charged TiO2 surface and negatively charged oxygen atoms of the carbonyl group in DCF
molecules strongly interact, promoting the quick chemisorption of DCF on the catalyst
surface. They also established the relationship between the DCF concentration and the
degradation and adsorption rate. Achari at al. [28] demonstrated that the rate of degrada-
tion of DCF increases with the increase in concentration up to 25 mg/L of DCF (0.084 mM),
which is consistent with pseudo-first-order kinetics. A decrease in the order of reaction
is noted with an increase in concentration. Sun et al. [18] studied a PEC process using
the I-doped TiO2 photoanode active in the visible light range; the results revealed that
the degradation of DCF was mainly caused by h+ (66.6%) and HO• (27.6%). In the case
of MEM, there are only a few reports, in which TiO2 and TiO2/SnS2 photocatalysts were
used [15,29,30]. Photocatalytic degradation of SA, a widespread water-contaminant, was
also reported [31–39]. It was found that the degradation is pH-dependent; an optimal value
is found under strong acidic conditions due to the favourable interaction between TiO2 and
SA [33,35]. The strong chemisorption of SA at TiO2 through the formation of inner sphere
surface complexes is a well-known phenomenon. The adsorption takes place through the
coordination of deprotonated carboxylates and Ti atoms [32,40–42].

Electrochemical techniques can be a powerful tool in the field of PC or PEC, enabling
material and material/solution interface characterisation. A review of the literature has
indicated that a large number of reports are related to the photocatalyst characterisation
by electrochemical methods; however, reports related to the influence of pharmaceuticals
on the photocatalyst electrochemical response are still scarce [11,31,33,35,43,44]. The aim
of this work was an examination of the influence of pharmaceuticals (DCF, MEM and SA)
on the PEC response of TiO2, TiO2/SnS2 and SnS2 photoactive materials using simple and
fast electrochemical methods. For this purpose, linear polarisation, open-circuit potential
monitoring and electrochemical impedance spectroscopy were used. This research can
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provide a stepping-stone to determine the ideal conditions for PC or PEC treatment. To
correlate the results of the PEC characterisation and the PC degradation, DCF and MEM
degradation was carried out using TiO2 or SnS2 photocatalysts.

2. Results and Discussion

In this work, the PEC properties of different materials such as TiO2, SnS2 and TiO2/SnS2
were examined in the presence of three pharmaceuticals (DCF, MEM and SA) and in a
pure NaCl solution as benchmark. The structures of the investigated pharmaceuticals are
shown as inset figures within Figure 1a–c. The photocurrent density (jph) is the result
of the photoactivity of a material, and its value is the difference between light and dark
current response (jph = jlight − jdark). Therefore, the good PEC activity of TiO2 in NaCl is
evident in Figure 1, as jlight >> jdark. The dark characteristic for TiO2 electrodes in NaCl
shows no current in the potential range from −0.25 V to 1 V, while the light characteristic
shows currents of about 30 µA cm−2 (Figure 1a–d). The obtained current values for the
illuminated TiO2 are in agreement with the results of Marugán et al. [45]. As can be seen in
Figure 1a–d, by linear polarisation, a constant current value is immediately obtained, which
is characteristic of the current saturation of the irradiated electrode. When charge carrier
separation in the semiconductor is the performance-limiting step, the current continuously
increases with the potential increase, which is not characteristic of our electrode. The fast
current saturation was previously associated with the size of the TiO2 nanoparticles [16,45].
The small TiO2 P25 particle size used in this work [46] limits the thickness of the depletion
layer and prevents complete band-bending through the film, quickly reaching a saturated
current density. It is also evident that both dark and light features show a significant current
increase at a more positive potential than 1.25 V or more negative potential than −0.2 V
(Figure 1a–d), apparently due to the supporting electrolyte reaction [47,48].

It is well-known that, for n-type semiconductors, a depletion layer is present at more
positive potentials than the flat-band potential; therefore, no oxidative current is expected
in the dark. However, in our experiment, the dark characteristic shows a current peak
related to the redox reaction of DCF and SA, with a current peak at ~1.1 V (Figure 1a,b) [49].
It is obvious that an electric field above 1 V generates h+, enabling the redox reaction of
DCF and SA [47]. Similar results were obtained for TiO2 electrodes in solutions containing
antioxidants [50]. The dark characteristic of MEM (Figure 1c) showed no current peak,
indicating that, compared to SA and DCF, MEM is more stable during electrochemical
oxidation. The presence of pharmaceutical compounds also affected the current value.
Again, the influence was similar for DCF and SA solutions (Figure 1a,b) and different for
the MEM solution (Figure 1c,d). The responses of irradiated TiO2 electrodes in DCF and SA
solutions show a current peak similar to that of the dark characteristic, as well as a decrease
in the current compared to the current in the NaCl solution [35,43]. The decrease in current
can be explained by the adsorption of SA and DCF on the electrode surface, blocking the
surface-active sites. The literature data have shown that significant amounts of DCF [15]
and SA [32,40–42] can be adsorbed on the TiO2 surface. It is also worth noting that the UV
absorption of SA and DCF (λmax,SA = 240 nm and λmax,DCF = 276 nm) reduces the photon
flux available at the TiO2 surface [35,51], which further reduces the photoactivity of TiO2.

A similar linear polarisation response was obtained when the TiO2 electrode was
stabilised in DCF and SA solutions for 5 min or when it was stabilised in the same solution
for 30 min before measurement. This observation indicates the fast adsorption process of
SA and DCF. On the other hand, the linear polarisation response significantly varied for
electrodes stabilised in an MEM solution for 5 min (Figure 1d) and 30 min (Figure 1c). In
the short-term stabilisation, the presence of MEM increased the photocurrent. It seems
that although MEM could not be oxidised in the dark by an electrochemical process, it is
oxidised in the photocatalytic process [15,29]. The current increase indicates the radical/h+

scavenging properties of MEM, which apparently depend on its concentration (Figure 1d).
However, when the electrode is stabilised in the dark for 30 min in the MEM solution, the
current decreases, indicating a similar effect to that observed in the case of DCF and SA.
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Moreover, it is evident that MEM (Figure 1c) affects the current response to a lesser extent
than DCF and SA (Figure 1a,b). This behaviour is expected for MEM due to its structure,
which does not absorb UV radiation; it only blocks active sites that are important for the
photocatalytic response, while SA and DCF absorb UV radiation.
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electrode in the presence and absence of (a) DCF, (b) SA, (c,d) MEM. Stabilisation of the electrode
in a solution containing DCF, SA or MEM was carried out 30 min before the measurement (a–c).
Stabilisation of the electrode in a solution containing MEM was carried out 5 min before measurement
(d). The chemical structures of the used pharmaceuticals are shown within the figures (a–c).

To prove that the decrease in current is related to the pharmaceuticals’ adsorption,
each electrode was thoroughly washed with water after the test and then polarised in NaCl
solution (Figure 1a–c). The obtained responses show that the decrease in current is similar
to the response obtained in the pharmaceutical solution. It is obvious that the adsorbed
pharmaceuticals remain on the electrode surface even after they are transferred to the NaCl
solution, so the current decrease is due to the adsorption of pharmaceuticals on the electrode
surface. To prove the stability of the TiO2 electrode used in this work, each electrode was
treated with UV light and annealed in air at 200 ◦C at the end of the experiment. These
procedures completely removed the pharmaceuticals from the electrode surface, and the
electrode response in the NaCl solution was the same as before the electrode was exposed
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to the pharmaceutical solution (Figure 1a–c). This result doubtlessly supports the previous
conclusions regarding current decrease and pharmaceuticals’ adsorption.

OCP was recorded to study the generation, accumulation, and recombination of the
photoinduced charge carriers in chopped light irradiation (Figure 2a–d). In addition, the
influence of pharmaceuticals on the OCP was investigated. When light illumination is ap-
plied, the OCP exhibits a more negative value for all samples, which indicates photovoltage
value. Although similar behaviour was observed for all tested samples, it is obvious that
the most negative value was obtained for the solution containing MEM, while the potential
values for solutions containing SA and DCF were less negative compared to the NaCl
solution. A similar effect was found in several studies: by Li et al. [31], who investigated
the degradation of SA, formic acid and methanol on TiO2, by Palmas et al. [48], who in-
vestigated the degradation of bisphenol A on TiO2, and by Jin et al. [52], who investigated
the interactions between methanol and the TiO2 nanotube assembly. In addition to the
influence of pharmaceutical adsorption, pH could also be a determining factor for the elec-
trode potential. In our study, the pH values varied slightly between pH= 5.7 and pH = 6.5.
To keep the pH constant in all experiments, additional experiments were performed in
buffered solution in the presence and absence of the studied pharmaceuticals (Figure 2b–d).
The results obtained in buffered solution (pH = 6) showed that only the presence of MEM
slightly affected the OCP value. Therefore, it is obvious that the natural pH changes that
occur in the presence of DCF, SA and MEM affect the final OCP value. The effect of adsorp-
tion of the studied pharmaceuticals on the OCP value was not significant, suggesting that
the addition of pharmaceuticals affects the photocurrent but not the photovoltage.

Figure 3a–c shows the EIS responses of the TiO2 electrode in NaCl with and without
DCF, SA, and MEM. Measurements were performed for the irradiated electrode at the
OCP value and at 50 mV, 500 mV, and 1000 mV for DCF, SA, and MEM. The impedance
data were analysed using the electrical equivalent circuit, shown as an inset figure within
Figure 3a–c. This model provided a reliable description of the electrochemical systems;
the numerical values of the impedance parameters for the TiO2 electrode in NaCl, DCF,
SA, and MEM solutions are summarised in Table 1. It is evident that the resistance R1 at
the OCP increases with the addition of pharmaceuticals (Figure 3a–c, Table 1a–c), while
the value of Q1 for DCF and SA decreases (Table 1a–c). It was concluded that R1 at the
OCP is related to the charge transfer resistance (Rct) and Q1 is a constant phase element
related to the capacitance of the double layer (Qdl). A constant phase element is usu-
ally introduced instead of an ideal capacitance element because the measured capacitive
response is not ideal due to the certain heterogeneity of the electrode surface [53]. Its
impedance can be defined by Z = [Q (jω)n]−1, whereω is the angular frequency and n is
the power of the constant-phase element. Higher values of the charge transfer resistance
in the presence of pharmaceuticals indicate a slower PEC response, which is consistent
with the lower current values in the linear voltammogram. It is obvious that the studied
pharmaceuticals adsorb on the electrode surface and, in this way, decrease the photoactivity
of the electrode. Accordingly, the decrease in capacitance obtained for SA and DCF at
OCP can also be explained by the presence of pharmaceutical molecules on the electrode
surface. Rct was expected to decrease due to the electrode polarisation at more positive
potentials than the OCP, due to band-bending and more efficient charge separation. Sur-
prisingly, when polarised from 50 mV to 1 V, the opposite behaviour was observed in both
NaCl and pharmaceutical solutions. Therefore, it was concluded that the EIS response
obtained for the irradiated electrode at different polarisation potentials (50 mV, 500 mV,
and 1000 mV) is related to the space charge properties. This is also supported by the
Q1 values, which decrease with increasing potential in agreement with the Mott-Schotky
behaviour for the n-type semiconductor [54]. It follows that the Q1 obtained by polar-
isation at different potentials is related to the space charge capacitance. Although the
linear polarisation results indicate that the space charge thickness is confined by the small
particle size, it follows from the EIS results that the space charge thickness increases due to
electrode polarisation.
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Figure 2. Open-circuit potential of the TiO2 electrode in chopped light irradiation in (a) NaCl solution
containing MEM, SA or DCF, (b) in a buffer solution and a buffer solution containing DCF, (c) in
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Table 1. Numerical values of impedance parameters for the TiO2 electrode in NaCl and (a) DCF,
(b) SA and (c) MEM solutions.

(a) for DCF Rel/Ω R1 × 10−5/Ω Q1 × 105/S sn n1

NaCl OCP 54.94 0.069 4.24 0.85

NaCl 50 mV 55.73 1.10 1.48 0.93

NaCl 500 mV 55.34 0.92 1.14 0.94

NaCl 1000 mV 54.42 0.50 1.09 0.92

DCF OCP 57.59 0.13 2.44 0.92

DCF 50 mV 56.82 1.08 1.65 0.92

DCF 500 mV 57.12 0.77 1.23 0.93

DCF 1000 mV 56.69 1.02 1.17 0.92

(b) for SA Rel/Ω R1 × 10−5/Ω Q1 × 105/S sn n1

NaCl OCP 54.44 0.083 2.95 0.91

NaCl 50 mV 56.76 1.13 1.44 0.95

NaCl 500 mV 57.53 1.41 1.14 0.95

NaCl 1000 mV 56.88 2.19 0.967 0.95

SA OCP 53.75 1.22 2.65 0.92

SA 50 mV 57.44 0.731 1.57 0.95

SA 500 mV 54.28 1.17 1.18 0.95

SA 1000 mV 53.90 1.18 1.21 0.95

(c) for MEM Rel/Ω R1 × 10−5/Ω Q1 × 105/S sn n1

NaCl OCP 56.18 0.068 2.02 0.92

NaCl 50 mV 55.63 0.973 0.724 0.94

NaCl 500 mV 54.41 2.545 1.29 0.94

NaCl 1000 mV 53.98 2.275 0.516 0.96

MEM OCP 51.22 0.070 2.20 0.92

MEM 50 mV 51.54 1.250 2.11 0.92

MEM 500 mV 51.22 1.208 0.84 0.94

MEM 1000 mV 51.30 1.628 0.38 0.95

From the presented results, it can be concluded that photoelectrochemical measure-
ments are a simple and fast method to determine the adsorption process, as well as the
influence of pharmaceuticals on the response of the photoactive material. Therefore, ad-
ditional measurements were performed with SnS2 and TiO2/SnS2 electrodes. Due to its
small band gap, SnS2 can be used for solar radiation utilisation, so its PEC study is of
great importance. SnS2 is also an attractive material for hydrogen production because the
position of its conduction band is more negative than the standard reduction potential of
H2O/H2. In PEC processes, the h+ generated by SnS2 is suitable for oxygen generation
but not for HO•·generation; the potential of its valence band does not allow for such a
reaction. However, TiO2/SnS2 has been used in PC processes as a photoactive material
for the degradation of pharmaceutical compounds because it forms strong radicals with
the help of excited electrons [5]. The information obtained from the PEC study may be
useful for the application of this material in the PC degradation of pharmaceuticals and,
furthermore, for the application of this material in hydrogen production.

From Figure 4, it is evident that jlight >> jdark, indicating the good photoactivity of
the TiO2/SnS2 composite material. The current response of the TiO2/SnS2 electrode in the
NaCl solution is not constant, as in the case of TiO2. During the potential sweep, the current
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value increases continuously, which is a consequence of the more effective separation of the
photogenerated charge carriers in the presence of an electric field. The more effective charge
separation is the result of a process involving an upward bending of the conduction and
valence bands and the formation of a depletion layer at the electrode/electrolyte surface,
which directs the photogenerated e− to the FTO substrate and h+ to the electrode/electrolyte
interface. This phenomenon is related to the influence of the positive potential on the n-
type semiconductors [47,54]. A thicker depletion layer is expected for SnS2 compared to
TiO2 because of the larger SnS2 particle size. The morphological properties of SnS2 and
TiO2/SnS2 were reported by Kovacic at al. [55]. The presence of pharmaceuticals reduces
the TiO2/SnS2 current in the NaCl solution (Figure 4) in a similar way as in the case of TiO2
(Figure 1a–c). For DCF and SA solutions, the current decrease is evident only at potentials
more negative than 0.5 V, because the current peak associated with the electrochemical
reaction dominates at positive potentials higher than 0.5 V (Figure 4a,b). Although SA
and DCF do not absorb light in the visible range, they affect the photocurrent response by
blocking the active sites for the photocatalytic reaction. In the case of MEM (Figure 4c), a
significant current decrease was obtained, which is different from the behaviour of TiO2 in
the MEM solution (Figure 1c). These results indicate that MEM affects the composite much
more than TiO2.
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Figure 4. Linear sweep voltammetry photocurrent response of the TiO2/SnS2 electrode in the
presence and absence of (a) SA, (b) DCF and (c) MEM.

To clarify the obtained behaviour, the SnS2 electrode was also investigated in the
presence of the studied pharmaceuticals. The results (Figure 5) indicate that the SnS2
electrode has a higher photocurrent compared to the TiO2/SnS2 electrode (Figure 4), which
is not surprising since SnS2 has a smaller band gap compared to TiO2 and absorbs light in
the visible region, while TiO2 is not active in the visible region. It should be noted that the
LED illumination used in this work provides only visible light [56]. The current value in
the NaCl solution for SnS2 and TiO2/SnS2 electrodes at 0.5 V was about 6 µA and 4 µA,
respectively, while at 1 V it was 12 µA and 6 µA, respectively. The influence of SA and
DCF on the electrochemical response of SnS2 electrode (Figure 5a,b) was not significant;
however, the influence of MEM (Figure 5c) was similar to that in the case of TiO2/SnS2.
It is also evident from Figure 5 that the characteristic current peak related to the redox
reaction of DCF and SA did not occur for the SnS2 electrode, while it did for TiO2 and
TiO2/SnS2. This can be explained by the position of the valence band of SnS2, which is
above the Fermi levels of SA and DCF. The current peak was obtained for the TiO2/SnS2
composite electrode due to the position of the TiO2 valence band.
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Figure 5. Linear sweep voltammetry photocurrent response of the SnS2 electrode in the presence and
absence of (a) SA, (b) DCF and (c) MEM.

To confirm this, DFT calculations were performed for DCF, MEM and SA. The oxida-
tion of pharmaceuticals in the presence of SnS2 and TiO2 depends on the HOMO position
of the pharmaceuticals and the HOMO position of SnS2 and TiO2. The position of HOMO
of the metal oxide used in this work was described in a previous work [5], and in this work
it is related to the HOMO positions of the studied pharmaceuticals (Figure 6, Table 2).
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Table 2. Quantum chemical reactivity descriptors obtained from HOMO and LUMO energies for
DCF, MEM, SA and their charged forms by DFT calculations.

DCF DCF− SA SA− MEM MEM+

EHOMO, eV −6.044 −5.615 −6.772 −6.073 −6.684 −8.102
ELUMO, eV −1.084 −0.980 −1.790 −0.896 −0.083 −0.448

∆EHOMO-LUMO, eV −4.960 −4.636 −4.982 −5.177 −6.601 −7.654
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It follows that the HOMO position of SA and DCF is above the position of TiO2,
leading to the oxidation of SA and DCF by the electrochemically generated h+. This is well-
supported by the current peak formed during electrochemical polarisation (Figure 1a,b).
The HOMO position of MEM strongly depends on its protonation. The h+-scavenging
effect of MEM (Figure 1c) indicates that the unprotonated form was involved in the PEC
reaction. It is obvious that the protonated form of MEM (MEM+) with the position of
HOMO below that of TiO2 is important for electrochemical oxidation at high potentials.
The unfavourable ratio between the TiO2 HOMO and the MEM+ HOMO prevents the
electrochemical oxidation of MEM+ and the formation of current peaks (Figure 1c). For the
SnS2 electrode, the situation is completely different because h+ cannot oxidise SA, DCF, or
MEM, resulting in no current peak occurring when the SnS2 electrode is polarised.

Finally, considering the results obtained for TiO2, TiO2/SnS2 and SnS2 electrodes, it
can be concluded that the adsorption of SA and DCF was most pronounced at the TiO2
electrode (Figure 1a,b), while MEM adsorption occurred at the SnS2 electrode (Figures 4c
and 5c). This behaviour is supported by the pKa values for DCF, SA and MEM, as well as
by the pH values of solutions, which are 4.15 (pH = 5.9), 3 (pH = 5.7) and 10.5 (pH = 6.45),
respectively, and by the point of zero charge (pHPZC) values of TiO2 and SnS2, which are
6 and 4.61, respectively [5]. Negatively charged DCF and SA are more strongly adsorbed
on nearly neutral TiO2 than on negatively charged SnS2, while positively charged MEM is
more strongly adsorbed on negatively charged SnS2 than on nearly neutral TiO2.

Considering the negative correlation between adsorption and photocurrent behaviour,
it follows that UV irradiation and photoactive material TiO2 are suitable for the photocat-
alytic degradation of MEM, while visible light and photoactive material SnS2 are more
suitable for the degradation of SA and DCF. The radical/h+-scavenging effect of MEM
contributes to a higher photocurrent, resulting in a more effective degradation of the phar-
maceutical pollutants. The TiO2 photocurrent registered in the presence of MEM (43 µA) is
9.77 times higher than that of SnS2 (4.4 µA) in the same solution. However, in the case of
SA and DCF, the degradation by visible light and the photoactive material SnS2 is more
acceptable. The higher photocurrents, as well as a lower pharmaceutical influence, give
SnS2 preference over the TiO2/SnS2 electrode. Although the SnS2 photocurrent in the
presence of DCF and SA (6.3 µA and 6.8 µA) is lower than the TiO2 photocurrent in the
same solution (17.0 µA and 20.0 µA), the ratio is 2.72 (Table 3) for DCF and 2.94 for SA.
Thus, it is obvious that the ratio is not as large as in the case of MEM and TiO2.

Table 3. Comparison of the results obtained by the PEC characterisation, current density at
0.5 V (Figure 1a,c and Figure 5b,c), and results obtained by PC process (TiO2 and SnS2 degradation
efficiency for DCF and MEM).

Catalyst PEC
j0.5V/µA jTiO2,0.5V/jSnS2,0.5V

Degradation
Efficency/%

TiO2 PC
Efficiency/SnS2
PC Efficiency

DCF
TiO2 17

2.70
79.86

1.34SnS2 6.3 58.75

MEM
TiO2 43

9.77
80.70

4.15SnS2 4.4 19.43

To correlate the PEC results with the PC process, the degradation of DCF and MEM
was carried out using TiO2 and UV light and SnS2 and LED irradiation. From Table 3, it can
be seen that the DCF degradation ratio is 1.34 times higher in the case of TiO2, and the MEM
degradation ratio is 4.15 times higher in the case of TiO2 than SnS2. Although the ratio of
jTiO2, 0.5 V/jSnS2, 0.5 V does not correspond to the (TiO2 PC efficiency)/(SnS2 PC efficiency)
(Table 3), it has been shown in this work that electrochemical methods can provide useful
and fast information about the photocatalytic degradation of a pharmaceutical. Moreover,
the photoactivity of the anode affects the overall current within the electrochemical system;
therefore, this aspect is also important for the hydrogen production process [57].
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3. Materials and Methods
3.1. Photocatalyst Synthesis and Immobilization

The TiO2 used in this work was Aeroxide P25 TiO2 (TiO2-P25, Evonik). The hydrother-
mal method, according to a procedure adopted from Zhang et al. [58], was applied to
prepare SnS2 and TiO2/SnS2 composite. Hence, SnS2 was synthesized by dissolving an
aliquot of tin(IV) chloride and thioacetamide precursor in a 5% v/v solution of acetic acid
in ethanol with constant stirring in a Teflon reaction vessel, which was then transferred
to a stainless steel autoclave and treated for 12 h at 180 ◦C. After cooling naturally to
room temperature, the obtained suspension was rinsed with distilled water, centrifuged
(3500 rpm for 3 min), dried in a vacuum (3 h at 60 ◦C), and then homogenized with a
porcelain pestle and mortar. The same procedure was applied for TiO2/SnS2 composite
synthesis, using corresponding precursors (tin(IV) chloride, thioacetamide, and TBO); the
stoichiometric was adjusted to obtain a composite with a SnS2 content of 40%.

In order to prepare the working electrodes (TiO2 electrode, SnS2 electrode and TiO2/SnS2
electrode) for PEC measurements, spin-coating (KW-4A spin-coater, Chemat Technology,
Northridge, CA 91324, USA) was performed at 1500 rpm to immobilize the photoactive
materials (TiO2, SnS2 or TiO2/SnS2) onto FTO glass slides. Prior to the coating, FTO glass
slides were sonicated for 10 min separately in acetone, ethanol, and Milli Q water, and then
dried at room temperature. Then, for each layer, 100 µL aliquot of photoactive material
dispersed within the titania/silica binder [56] was dropped onto the FTO substrate and dried
at 200 ◦C for 2 h in a laboratory oven (UN-55, Memmert, Schwabach, Germany).

It should be noted that the characterisation of the prepared materials (SnS2 and
TiO2/SnS2) for their morphological, structural, surface and optical properties was reported
in our previous publications [5,55].

3.2. Photoelectrochemical Characterisation

PEC measurements of the as-prepared materials were performed using a potentio-
stat/galvanostat (SP-150, Biologic, Seyssinet-Pariset, France) and a three-electrode system,
consisting of a Pt counter-electrode, SCE reference electrode, and as-prepared photoactive
materials (TiO2, SnS2 or TiO2/SnS2) working electrode (1 cm2). For the TiO2 electrode, a
UV-A light source was used, while for SnS2 or TiO2/SnS2 electrodes, an LED light source
was used [56].

Investigations were performed in 0.1 mol dm−3 NaCl solution in the presence and
absence of 0.1 mmol dm−3 of the studied pharmaceuticals (DCF, SA or MEM). Addi-
tional measurements were carrid out in the presence of MEM with a concentration of
0.5 mmol dm−3. Linear sweep voltammetry was carried out with a scan rate of 20 mV s−1

in the dark and under light illumination. All potentials are reported versus saturated
calomel electrode (SCE).

Electrochemical impedance spectroscopy (EIS) measurements were carried out for the
TiO2 electrode in the three-electrode system in 0.1 mol dm−3 NaCl solution, and in the
presence and absence of 0.1 mmol dm−3 of studied pharmaceuticals (DCF, SA or MEM).
The frequency range was scanned from 100 kHz to 100 mHz at OCP and a dc potential
of 0 V, 0.5 V and 1 V vs. SCE, with the amplitude of ±5 mV. The impedance spectra were
analysed by complex non-linear least squares regression with modulus weighting using
ZSimpWin 3.2 software.

3.3. Photocatalytic Degradation Experiments

Photocatalytic degradation experiments were performed for DCF and MEM using
TiO2 and SnS2 photocatalysts for each pharmaceutical compound. Degradation was carried
out in a glass reactor using 100 mL of 1 mg mL−1 pharmaceutical solution and 0.1 g of the
powdered photocatalytic material. The experiments were carried out for 2 h under continu-
ous stirring, including 30 min in dark conditions and 90 min under light illumination. For
TiO2 photoactive material, a UV-A light source was used, and for SnS2, an LED light source
was used.
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The changes in concentration of selected pharmaceuticals DFC and MEM during
applied PC treatment were monitored by LC-20 series (Shimadzu, Kyoto, Japan) HPLC
equipped with an SPD-M20A UV/DAD detector (Shimadzu, Kyoto, Japan). It should
be noted that MEM detection was performed, employing a pre-column derivatization
procedure, explained in detail in our previous paper [15]. For the detection of derivated
MEM products on the HPLC instrument, a gradient elution method, was used with an initial
methanol (HPLC grade, Darmstadt, Sigma-Aldrich, St. Louis, MO, USA) concentration of
85%, which was increased during the course of detection up to 95% v/v; maximum detection
peak was λ = 265 nm. DCF samples were analyzed using an isocratic chromatographic
method, with a mobile phase made of 70% v/v methanol and 30% 0.1 mM aqueous formic
acid (HPLC grade, Sigma-Aldrich); maximum detection peak was λ = 276 nm. In both
cases, a Zorbax Eclipse C18 (Agilent, Santa Clara, CA 95051, USA), 250 mm × 4.6 mm
(5 µm) column was used.

3.4. Computational Details

Geometry optimizations using density functional theory (DFT) of DCF, SA, and MEM
in aqueous medium were performed in Gaussian16 rev. C [59]. For this purpose, the
B3LYP hybrid functional based on Becke’s three-parameter hybrid function (B3) and com-
bined with Lee–Yang–Parr (LYP) correlation hybrid functional [60–63] was used with the
6-311+G(2d,2p) basis set [64]. The polarizable continuum model (PCM) using the integral
equation formalism variant (IEFPCM), as implemented in Gaussian, was used to simulate
the effect of the solvent [65,66]. Tight convergence criteria were used for both the SCF
and optimization convergence, along with a “superfine” integration grid. The obtained
structures were confirmed to be minimal by frequency calculations, indicating that the
obtained structures are stationary points.

4. Conclusions

In this work, PEC characterisation demonstrated a notable effect of the adsorption of
DCF, SA, and MEM on various photocatalysts via linear polarisation and electrochemical
impedance spectroscopy measurements. On the other hand, the OCP values were only
somewhat affected by the presence of pharmaceuticals, mainly due to the pH change. The
adsorption resulted in a decrease in photocurrents and an increase in the charge transfer
resistance. The significant decrease in the TiO2 photocurrent was achieved in the presence
of DCF and SA. Furthermore, an increase in TiO2 photocurrent was obtained in a solution
containing MEM, indicating the positive effect of MEM on the photocurrent value. It is
important to point out that this effect was only observed when TiO2 was stabilised for a
short time in the MEM solution. When illuminated with visible light, higher photocurrent
values were obtained for SnS2 compared to TiO2/SnS2. The decrease in the photocurrent
observed for TiO2/SnS2 and SnS2 was more pronounced for MEM than for SA and DCF,
indicating a strong interaction between MEM and SnS2. The weaker interaction of SA and
DCF with SnS2 compared to TiO2 does not significantly reduce the photocurrent, especially
in the case of SnS2. The obtained results indicate that TiO2 is suitable for the photocatalytic
degradation of MEM, while SnS2 is suitable for the degradation of SA and DCF. The results
obtained by PEC characterisation can be related to the PC efficiency.
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