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Abstract: In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of
chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium
hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate
with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a
and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated
systems in various organic transformations were evaluated. The use of copper sulfate as the source
of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the
generation of conventional coarse-grained powder. Cholesterol-containing systems have proven
to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira,
Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic
acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt
nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The
elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent
available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions
proceed selectively, and the isolation of the product does not require column chromatography. The
product is separated from the catalyst by simple filtration or centrifugation.

Keywords: chitosan; copper; nanoparticles; green catalysis; Sonogashira reaction; Buchwald reaction;
aldol reaction; dipolar cycloaddition

1. Introduction

The ever increasing demand for environmentally friendly processes and materials
from both basic science and industry has significantly promoted the research of chitosan
as a component of catalytic systems (for example, as a polymeric support or as a fully
organic active component) [1,2]. The ever-increasing number of highly cited publications
in this field indeed testifies to the importance of this direction and the great deal of interest
in it. Chitosan is one of the most abundant natural polymers, and it is characterized by
prominent biodegradability and biocompatibility [3].

Chitosan can be employed as a catalyst in various organic transformations; however,
the scope of these reactions is strongly limited by the simplest reactions such as carbonyl
compounds condensation [2].

Recently, our scientific group has developed a number of chitosan-based catalytic
systems [4–9]. However, although the systems are very efficient, they require sophisticated
and laborious preparation. Facile catalytic systems are undoubtedly more advantageous
and are of much greater interest.
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On the other hand, there are several reports in the literature on the efficiency of copper
ions in the catalysis of organic transformations [10–14]. Copper ions can be considered as
universal catalysts for important C–C, C–O, and C–N bond formation and a number of
multicomponent reactions and domino reactions, including those leading to the formation
of complex heterocyclic systems. Progress in this area has been extensively discussed in
recent reviews [15–21]. These prominent examples also include copper ions as a component
of chitosan-based systems [22–24]. However, we failed to find any studies in the litera-
ture in which a number of structurally related simple catalytic chitosan-based systems
containing copper ions were tested as catalysts towards various types of organic reactions.
Furthermore, such studies are of high value, since they are the first and necessary step
towards understanding the so-called “structure—catalytic activity relationships”, which
are of fundamental scientific importance. In the current study, we intended to prepare
various structurally related catalytic systems based on chitosan and Cu(II). The mentioned
systems were obtained according to the approaches described below:

(i) By simple treatment of chitosan by Cu(II) sulfate or Cu(II) acetate as sources of Cu2+

ions (Figure 1, 1a, 1b; Table 1, 1–6);
(ii) By coating of 1–6 with a layer of hyaluronate-Na (Figure 1, 2a, 2b; Table 1, 7–12);
(iii) By the treatment of a cholesterol–chitosan conjugate by Cu(II) sulfate or Cu(II) acetate

as sources of Cu2+ ions (Figure 1, 3a, 3b; Table 1, 13–18);
(iv) By the succination of 1–12 with succinic anhydride (Figure 1, 4a, 4b, 5a, 5b; Table 1,

19–30).
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Table 1. The elaborated chitosan/copper(II) composites and their characteristics.

Composition of
the Sample No. Size (nm) Zeta-Potential

(mV)
Copper(II)

Content (%) Tonset (◦C)

Non-succinated

CS12+CuSO4 1 307 13.98 ± 0.32 17.4 205
CS200+CuSO4 2 266 14.16 ± 0.13 18.1 202
CS500+CuSO4 3 286 14.07 ± 0.14 17.7 207
CS12+CuOAc 4 - - 13.3 157
CS200+CuOAc 5 - - 13.8 168
CS500+CuOAc 6 - - 13.6 182
CS12+CuSO4+NaHA 7 329 7.08 ± 0.10 13.2 200
CS200+CuSO4+NaHA 8 271 7.03 ± 1.12 13.0 205
CS500+CuSO4+NaHA 9 288 7.37 ± 0.07 13.0 206
CS12+CuOAc+NaHA 10 - - 8.3 177
CS200+CuOAc+NaHA 11 - - 8.5 184
CS500+CuOAc+NaHA 12 - - 8.7 186
CS12Chol+CuSO4 13 99 8.22 ± 0.17 15.7 202
CS200Chol+CuSO4 14 108 8.55 ± 0.15 15.7 201
CS500Chol+CuSO4 15 93 8.37 ± 0.21 15.5 202
CS12Chol+CuOAc 16 - - 10.9 185
CS200Chol+CuOAc 17 - - 10.4 174
CS500Chol+CuOAc 18 - - 10.6 181

Succinated

CS12+CuSO4 19 287 −4.14 ± 0.22 10.1 167
CS200+CuSO4 20 271 −4.62 ± 0.10 10.0 161
CS500+CuSO4 21 290 −4.23 ± 0.17 10.0 169
CS12+CuOAc 22 - - 7.4 161
CS200+CuOAc 23 - - 7.6 164
CS500+CuOAc 24 - - 7.7 163
CS12+CuSO4+NaHA 25 315 −21.06 ± 0.11 8.3 175
CS200+CuSO4+NaHA 26 276 −21.18 ± 0.15 8.4 -
CS500+CuSO4+NaHA 27 283 −20.88 ± 0.18 8.2 -
CS12+CuOAc+NaHA 28 315 −21.12 ± 0.30 5.6 -
CS200+CuOAc+NaHA 29 284 −20.66 ± 0.14 5.8 -
CS500+CuOAc+NaHA 30 303 −20.74 ± 0.21 5.8 -

Further, we intended to evaluate the catalytic activity of these systems in the greenest
solvent available, i.e., water, towards a series of essential organic transformations: cross-
coupling reactions (Sonogashira, Buchwald–Hartwig, and Chan–Lam), the aldol reaction,
and nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. Our findings and experimental details
are discussed in the sections below.

2. Results and Discussion
2.1. Preparation and Characterization of Chitosan/Copper(II) Composites
2.1.1. Preparation of Chitosan/Copper(II) Composites

The elaborated chitosan/copper(II) composites 1–30 are presented in Table 1. The
simplest composites 1–6 were obtained by the conventional addition of a chitosan solution
to copper(II) sulfate (for 1–3) or copper(II) acetate (for 4–6) solutions. Composites 7–12
were prepared from 1–6 by their coating with sodium hyaluronate. Composites 13–18 were
synthesized by the treatment of a cholesterol–chitosan conjugate by copper(II) sulfate (for
13–15) or copper(II) acetate (for 16–18) solutions. The cholesterol–chitosan conjugate, in its
turn, was prepared by the treatment of chitosan with succinyl cholesterol in the presence of
EDC and NHS (the so-called carbodiimide method [25,26], Scheme 1).
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The treatment of the amino groups of the chitosan moieties in 1–12 by succinic anhy-
dride (Scheme 2, [27]) resulted in succinated chitosan/copper(II)-based systems 19–30 (the
degree of succination was ca. 20%, as confirmed by elemental analysis).
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Scheme 2. The succination of the NH2 groups of chitosan (CS—chitosan, Suc—succinic anhydride,
CH-Suc—succinated chitosan).

Unfortunately, the treatment of 13–18 by succinic anhydride did not lead to their
smooth succination, but rather to their destruction with the release of copper(II) ions. Thus,
succinated analogues of 13–18 were prevented from being prepared.
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2.1.2. Characterization of the Chitosan/Copper(II) Composites
Form of the Samples

The composites 1–3, 7–9, 13–15, 19–21, and 25–30 were in the form of particles of
submicron size. Their sizes and ζ-potentials are presented in Table 1. The particles were of
spherical shape, and this was confirmed by SEM (as an example, see Figure 2).
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In chitosan chemistry, particles of such sizes are commonly referred to as nanoparti-
cles [28]. Thus, we refer to 1–3, 7–9, 13–15, 19–21, and 25–30 composites as nanoparticles
hereinafter in this paper. All other samples (4–6, 10–12, 16–18, and 22–24) were obtained as
coarse-grained powder not prone to the formation of nanoparticles.

X-ray Diffraction Study

The X-ray diffraction patterns of 1–12 (Figure 3a,b) demonstrated not only expressed
a chitosan peak (18–26◦ 2θ) but also intense peaks corresponding to Cu(OAc)2 dihydrate
(12.8◦, 14.3◦, 15,1◦, 15,4◦, 16.5◦ 2θ). These peaks indicate the preservation of copper(II)
acetate dihydrate as a crystalline phase in the samples caused by the incomplete coordi-
nation of Cu2+ ions with chitosan. Cu(OAc)2 dihydrate peaks were observed even when
CuSO4 was used as the source of Cu2+, while no CuSO4 peaks were observed. This is
because a 1% acetic acid solution of chitosan was used to obtain the samples. Thus, the
large excess of acetate ions in the solution, as well as the lower solubility of Cu(OAc)2
dihydrate, in comparison with CuSO4, resulted in the crystallization of Cu(II) in the acetate
form (Cu(OAc)2 dihydrate). It is also obvious that diffraction patterns of 7–12 exhibited
extra peaks associated with the introduction of sodium hyaluronate into the composites.

According to X-ray diffraction data, samples 13–14 contain no Cu(OAc)2 dihydrate
phase, but rather contain CuSO4 pentahydrate. Sample 15 revealed only traces of CuSO4
pentahydrate. This is explained by the fact that due to the poor solubility of the starting
CH-Chol in 1% acetic acid, a prolonged stirring of the reaction mixture (overnight) was
required to achieve the conversion. Apparently, the dominant part of acetic acid could
evaporate from the open beaker during this period of time. In the case of samples 16–18,
their X-ray diffraction patterns displayed Cu(OAc)2 dihydrate peaks, and this is completely
understandable, since we used copper(II) acetate to prepare 16–18. In general, 13–18 contain
higher fractions of the crystalline phase than 1–12. This is due to the lower hydrophilic-
ity and coordinating ability of the cholesterol–chitosan derivative used to obtain 13–18
compared to conventional chitosan involved in the preparation of 1–12.
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As for the succinated species 25–30, their diffraction patterns are quite remarkable.
These diffraction patterns are characterized by the absence of sets of crystalline peaks,
which were observed for all previous samples 1–24. Neither Cu(OAc)2 dihydrate nor
CuSO4 were present in 25–30. Therefore, Cu2+ ions are exclusively coordinated to the
polymer. Additionally, X-ray diffraction data indicated a higher fraction of the amorphous
phase therein.
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Thus, the X-ray diffraction study showed that 1–24 contain (i) a polymer phase and
(ii) crystalline copper(II) salt, while 25–30 contain mainly the polymer phase. The polymer
phase is represented by chitosan (1–12 and 19–30) or its cholesterol derivative (13–18), as
well as sodium hyaluronate (1–12, 25–30). In addition, as mentioned above in Section 2.1.2,
the polymer phase can exist both in the form of a coarse-grained powder (4–6, 10–12, 16–18,
22–24) and in the form of nanoparticles (1–3, 7– 9, 13–15, 19–21, 25–30).

It is important to note that samples 5 and 17 have similar and interesting characteristic
features. Sample 17 is well crystallized and contains Cu(OAc)2 dihydrate nanoparticles.
Sample 5 also contains Cu(OAc)2 dihydrate nanoparticles, as well as some unidentified
impurities, as evidenced by a split peak at 12.8◦ 2θ.

The detected inorganic nanoparticles in samples 5 and 17 are described by the mon-
oclinic syngony, space group A2/a. The calculated cell parameters were as follows:
a = 13.840(1) Å, b = 8.564(4) Å, and c = 13.180(1) Å, β = 117.03(7)◦. The maximum dif-
ference between the calculated and experimental positions of diffraction reflections did
not exceed ~0.01o. To estimate the sizes of these Cu(OAc)2 dihydrate nanoparticles, we
approximated the X-ray diffraction profiles using the Pseudo-Voigt function and refined
the peak position, intensity, and half-width. The refinement quality was controlled using
statistical criteria. Crystallite sizes calculated using the Scherrer formula from the profiles of
the first five peaks (maximum peak, reflection (0 1 1) and reflections (2 0 0), (0 0 2), (−2 0 2),
and (−2 1 1)) were 315–486 Å (mainly ~380 Å, reflections (0 1 1), (2 0 0), and (−2 0 2)), and
the average size was 387 Å.

FTIR

In addition to the IR spectra for all obtained samples, we also recorded the spectra of
starting materials: chitosans (MW 12, 200, and 500 kDa), sodium hyaluronate, and copper(II)
sulfate and acetate. The IR spectra of the starting materials are shown in Figures 4 and 5.
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The spectra of samples 1–6 (Figures 4 and 5) displayed a narrowing and weakening of
a wide band at 3100–3500 cm−1, corresponding to the stretching vibrations of O–H and
N–H bonds. This narrowing of the band indicates a decrease in the involvement of the
NH2 and OH groups into hydrogen bonding caused by the coordination of the NH2 and
OH functionalities to the copper(II) center. Moreover, the band at 1653 cm–1 (bending
vibrations of the NH2 group) was shifted to 1604 cm–1, which indicates the coordination of
the amino groups of chitosan to the copper(II) center. The IR spectra 1–6 displayed (Figure 6)
bands inherited from copper(II) acetate, which is consistent with the X-ray analysis data
discussed above.
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The IR spectra of samples 13–18 (Figure 8) exhibited intense absorption bands, cor-
responding to the bands of the starting copper(II) salts. This is in agreement with the
results of X-ray analysis indicating the presence of a large amount of the crystalline phase
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Figure 8. IR spectra of 13–18.

The IR spectra of succinated samples 19–30 (Figures 9 and 10) showed a high-intensity
band at 1630 cm−1, which corresponds to the stretching vibrations of the C=O bond of the
amide group. The amide bond arises as a result of succination (Scheme 2). An intense band
at 1420 cm−1 was also observed, which corresponds to a deprotonated carboxylate group,
which also confirms successful succination.
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TGA

To determine the thermal stability of the obtained systems, we carried out a thermo-
gravimetric analysis for samples 21–25, the results of which were used to determine the
onset decomposition temperatures (the corresponding values are presented in Table 1).

According to Figure 11, the molecular weight of the starting chitosan did not signif-
icantly affect the thermal stability of the resulting composites. For similar samples, the
onset decomposition temperatures were also close to each other. Only for samples obtained
using copper(II) acetate were some differences in thermal stability observed, depending on
the molecular weights of the chitosan.
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Figure 11. Dependence of the onset decomposition temperature on a series of samples for different
molecular weights of chitosan.

Figure 12 plots the onset decomposition temperature versus number of series of
samples, in which copper(II) sulfate or acetate was used as the source of copper(II) ions.
As can be seen, the resultant samples were characterized by higher thermal stability when
copper(II) sulfate was used.
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Figure 12. Dependence of onset decomposition temperature on a series of samples for different
copper(II) salts.

Figure 13 displays dependences for the following different types of samples: CS + Cu(II)
salt (1–6), CS + Cu(II) salt + NaHA (7–12), CS-Chol + Cu(II) salt (13–18), and CS + Cu(II) salt
succinated (19–24). It can be seen that for the succinated samples, there was no dependence
of the onset decomposition temperature on the type of Cu(II) salt used as a source of the
Cu2+ ions.
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X-ray Fluorescence Analysis

The X-ray fluorescence analysis was designed to determine the elemental composition
of the sample. Since the technique only detects the presence of elements heavier than
sodium, we expected to detect only peaks corresponding to copper and, in the case of
copper(II) sulfate content in the sample, peaks corresponding to sulfur.

We found no foreign elements in any of the recorded spectra. This fact is important for
further studies of the catalytic activity of the composites, since even amounts of impurities
of cations of other metals can determine the catalytic activity of materials [29]. Examples of
the spectra are shown in Figures 14 and 15.
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2.2. Catalytic Studies
2.2.1. Catalytic Studies of the Sonogashira Reaction

Since its discovery, the Sonogashira reaction (Scheme 3) remains among the most
powerful C–C cross-couplings. The Sonogashira reaction is focused on the metal-catalyzed
C–C bond formation between a terminal sp-hybridized carbon of an alkyne component
and an sp2-hybridized carbon atom of an aryl halide component. In many instances, a
vinyl component can be involved into the Sonogashira cross-coupling instead of the aryl
component. Moreover, aryl or vinyl halides can be replaced by the corresponding triflates.
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Scheme 3. The Sonogashira C–C cross-coupling reaction.

The Sonogashira reaction is widely employed in synthetic chemistry since it facilitates
a wide array of challenging organic transformations as a part of the total synthesis of
natural compounds, including plant or bacterial metabolites ((+)-(S)-laudanosine, (–)-(S)-
xylopinine, and benzylisoquinoline or indole alkaloids), calicheamicin γ, dynemicin A,
pyrrho-xanthin, callipeltoside A, and many other sophisticated natural metabolites, which
are of paramount importance as bioactive compounds or starting materials in chemical
biology studies. Recent outstanding advancements in this area are thoroughly reviewed in
a recent paper [30]. The versatility of the Sonogashira reaction makes it an outstanding tool
for the preparation of a range of pharmaceuticals. Thus, the Sonogashira reaction is used
for the synthesis of sapinofuranone A [31]; (−)-harveynone [32], which possess antitumor
activity [32]; (−)-tricholomenyn [32], which has antimitotic activity [33]; lappaconitine
derivatives [34], exhibiting cardiotropic effects [35]; and many other important pharmaco-
logically active compounds successfully employed in clinical practice (see review [36]).
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A conventional protocol for the Sonogashira reaction implies a treatment of alkyne and
aryl (or vinyl) components in toluene with a Pd-based catalyst in the presence of a Cu-based
co-catalyst. Moreover, this complex catalytic system functions successfully only at high
temperatures (above 100 ◦C) and under anaerobic conditions. Numerous efforts have been
put forth for the development of new, highly efficient catalysts for the Sonogashira reaction,
allowing the synthetic protocol to be adapted to milder and so-called “green” conditions.

The main trends in the development of new catalytic systems for the Sonogashira
reaction emerging in the contemporary literature can be divided into three basic cate-
gories: (i) simplification of catalytic systems while making them capable of functioning
under aerobic conditions; (ii) development of catalytic systems based on metals cheaper
than palladium; (iii) the introduction of non-toxic, biocompatible, and biodegradable met-
als/ligands/supports in catalytic systems, as well as the use of eco-friendly solvents (as an
essential part of the green chemistry concept) [37–39]. The ideal candidate, of course, must
meet all three trends, but such examples are extremely rare in the literature.

In the current study, we evaluated the catalytic activity of the prepared samples 1–30,
which seem compliant with all three trends mentioned above. Firstly, 1–30 are simple
systems, and their preparation procedure is extremely facile. Moreover, we conducted
preliminary experiments and revealed that some of the 1–30 composites are capable of
catalyzing the Sonogashira reaction under aerobic conditions. Secondly, copper, indeed,
is sufficiently cheaper than palladium (ca. 8000 times). Thirdly, the elaborated catalytic
systems 1–30 contain the chitosan macromolecule as ligand and support. Chitosan, in turn,
is a naturally occurring carbohydrate polymer, which is biocompatible, biodegradable, and
essentially non-toxic.

We performed catalytic tests for 1–30 in a model Sonogashira reaction under aerobic
conditions in water. The model Sonogashira reaction is presented in Scheme 4.
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Scheme 4. The model Sonogashira reaction (X = Cl, Br, I).

For preliminary experiments, we used the following conditions: 20 mol% of catalyst,
based on Cu2+; an alkyne:aryl halide molar ratio of 1:1.1; K3PO4 as a base; boiling water;
and a reaction time of 10 h. We found that only 13–18 demonstrated catalytic activity in the
model Sonogashira reaction (Scheme 4, X = I, Table 2, entries 1–6). Thus, samples 13–18
were chosen for further optimization of the catalytic conditions.

Table 2. Catalytic test results for the model Sonogashira reaction.

Entry Catalyst Base/X mol% T, ◦C Time, h Yield,%

1 13 K3PO4/I 20 100 10 54
2 14 K3PO4/I 20 100 10 56
3 15 K3PO4/I 20 100 10 50
4 16 K3PO4/I 20 100 10 18
5 17 K3PO4/I 20 100 10 16
6 18 K3PO4/I 20 100 10 16
7 13 K2CO3/I 20 100 10 58
8 14 K2CO3/I 20 100 10 60
9 15 K2CO3/I 20 100 10 60

10 16 K2CO3/I 20 100 10 22
11 17 K2CO3/I 20 100 10 22
12 18 K2CO3/I 20 100 10 20
13 13 Cs2CO3/I 20 100 10 59
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Table 2. Cont.

Entry Catalyst Base/X mol% T, ◦C Time, h Yield,%

14 14 Cs2CO3/I 20 100 10 57
15 15 Cs2CO3/I 20 100 10 57
16 16 Cs2CO3/I 20 100 10 20
17 17 Cs2CO3/I 20 100 10 20
18 18 Cs2CO3/I 20 100 10 23
19 13 KF/I 20 100 10 40
20 14 KF/I 20 100 10 44
21 15 KF/I 20 100 10 45
22 16 KF/I 20 100 10 17
23 17 KF/I 20 100 10 17
24 18 KF/I 20 100 10 15

25–30 13–18 Et3N or Py/I 20 100 10 traces
31 13 LiOH/I 20 100 10 100
32 14 LiOH/I 20 100 10 100
33 15 LiOH/I 20 100 10 100
34 16 LiOH/I 20 100 10 54
35 17 LiOH/I 20 100 10 53
36 18 LiOH/I 20 100 10 53
37 13 LiOH/I 20 90 3 100
38 14 LiOH/I 20 90 3 100
39 15 LiOH/I 20 90 3 100
40 16 LiOH/I 20 90 3 50
41 17 LiOH/I 20 90 3 52
42 18 LiOH/I 20 90 3 54
43 13 LiOH/Br 20 90 3 66
44 14 LiOH/Br 20 90 3 64
45 15 LiOH/Br 20 90 3 69
46 13 LiOH/Cl 20 90 3 31
47 14 LiOH/Cl 20 90 3 30
48 15 LiOH/Cl 20 90 3 26

Recent reviews and books have repeatedly emphasized that the base plays a very
important role in this reaction. Thus, the choice of a suitable base is a key step in opti-
mizing the reaction conditions, and this issue must be addressed for each catalytic system
individually. During the course of evaluation of the effect of the base on the model reaction
(Scheme 4, X = I), we identified lithium hydroxide to be most efficient (Table 2, entries
31–36). Other tested bases (i.e., potassium carbonate, cesium carbonate, sodium orthophos-
phate, sodium fluoride) showed significantly weaker effects (Table 2, entries 1–24). Organic
bases, such as triethylamine and pyridine, were found to be inactive (Table 2, entries 25–30).

Variations of reaction time and temperature demonstrated that the optimum tempera-
ture was 90 ◦C, and the optimum reaction time was 3 h (Table 2, entries 37–42). A further
decrease in temperature to 80 ◦C resulted in a decrease in the reaction yield. When the
temperature was increased higher than 110 ◦C, the reaction lost its selectivity and furnished
a broad mixture of compounds in addition to the desired cross-coupling product (6 spots
in TLC). In this mixture, we identified, in particular, diyne Ph–C≡C–C≡C–Ph and the
product of undesired oxidative homocoupling of the terminal acetylene Ph–C≡CH.

We also found that under all the aforementioned conditions, composites 16–18 (based
on copper(II) acetate and occurring in the form of coarse-grained powder) demonstrated
much lower catalytic activity than 13–15 (based on copper(II) sulfate and occurring as
nanoparticles). Thus, nanoparticles 13–15 were the most promising catalytic systems for
the Sonogashira reaction under aerobic conditions in water (Table 2, entries 1–42).

All the above-listed results were valid for the model Sonogashira reaction (Scheme 4)
when X = I. In contrast, the yields of the cross-coupling product were much lower when
the aryl bromide (X = Br) and aryl chloride (X = Cl) were involved in the model reaction as
the aryl components (Table 2, entries 43–48).
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Figure S1 shows the 1H NMR spectrum of the Sonogashira reaction product.

2.2.2. Catalytic Studies of the Buchwald–Hartwig and Chan–Lam Reactions

The Buchwald–Hartwig and Chan–Lam reactions are similar reactions represented
by the palladium-catalyzed C–N cross-couplings between aryl halogenide (Buchwald–
Hartwig reaction) or aryl boronic acid (Chan–Lam reaction) and primary or secondary
amines [40,41] (Scheme 5). The C–N cross-couplings are an essential tool for the synthesis,
especially in preparative chemistry, of biologically active substances and pharmaceuticals.
A classic synthetic protocol for the Buchwald–Hartwig and Chan–Lam reactions implies
the use of sufficiently hazardous solvents under anaerobic conditions. Improvements to
these protocols include the development of cheap metal-based and simple ligand-based
catalyst systems that can operate under aerobic conditions in eco-friendly solvents [40,41].
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Scheme 5. The model Buchwald–Hartwig and Chan–Lam C–N cross-coupling reactions.

Herein, we tested the catalytic activity of 1–30 in the model Buchwald–Hartwig and
Chan–Lam C–N cross-couplings (Scheme 5). For condition optimization, we also used
20 mol% (based on Cu2+) of catalysts 1–30. At the preliminary stages of our work, we
found that only 13–18 were able to catalyze the model reactions. The results are presented
in Table 3. However, preliminary experiments demonstrated low yields of both cross-
couplings in water even under harsh anaerobic conditions, i.e., 120 ◦C, 24 h (Table 3,
entries 1–12). This was not surprising, as the literature is abundant with such reports [42].
Conventionally, to overcome this obstacle, I–-containing additives (KI, ZnI2, etc.) are
used [43,44]. By applying this approach, we were able to achieve high yields of desired
products in the model reactions (Scheme 5, X = I, Table 3, entries 13–24)) even under aerobic
conditions. The best catalytic results were demonstrated by 13–15; therefore, they were
used for further experiments (Table 3, entries 13–15 and 19–21).

Table 3. Catalytic studies of the model Buchwald–Hartwig and Chan–Lam C–N cross-coupling
reactions.

Entry Catalyst X mol% T (◦C) Time (h) Yield (%)

1 * 13 I 20 120 24 18
2 * 14 I 20 120 24 15
3 * 15 I 20 120 24 16
4 * 16 I 20 120 24 traces
5 * 17 I 20 120 24 traces
6 * 18 I 20 120 24 traces
7 * 13 B(OH)2 20 120 24 23
8 * 14 B(OH)2 20 120 24 22
9 * 15 B(OH)2 20 120 24 20
10 * 16 B(OH)2 20 120 24 5
11 * 17 B(OH)2 20 120 24 5
12 * 18 B(OH)2 20 120 24 5
13 13 + ZnI2 I 20 120 24 100
14 14 + ZnI2 I 20 120 24 100
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Table 3. Cont.

Entry Catalyst X mol% T (◦C) Time (h) Yield (%)

15 15 + ZnI2 I 20 120 24 100
16 16 + ZnI2 I 20 120 24 43
17 17 + ZnI2 I 20 120 24 40
18 18 + ZnI2 I 20 120 24 40
19 13 + ZnI2 B(OH)2 20 120 24 100
20 14 + ZnI2 B(OH)2 20 120 24 100
21 15 + ZnI2 B(OH)2 20 120 24 100
22 16 + ZnI2 B(OH)2 20 120 24 48
23 17 + ZnI2 B(OH)2 20 120 24 50
24 18 + ZnI2 B(OH)2 20 120 24 45
25 13 + ZnI2 I 20 120 15 100
26 14 + ZnI2 I 20 120 15 100
27 15 + ZnI2 I 20 120 15 100
28 13 + ZnI2 B(OH)2 20 120 15 100
19 14 + ZnI2 B(OH)2 20 120 15 100
30 15 + ZnI2 B(OH)2 20 120 15 100
31 13 + ZnI2 I 20 100 15 51
32 14 + ZnI2 I 20 100 15 54
33 15 + ZnI2 I 20 100 15 48
34 13 + ZnI2 B(OH)2 20 100 15 55
35 14 + ZnI2 B(OH)2 20 100 15 55
36 15 + ZnI2 B(OH)2 20 100 15 59
37 13 + ZnI2 I 20 80 15 0
38 14 + ZnI2 I 20 80 15 0
39 15 + ZnI2 I 20 80 15 0
40 13 + ZnI2 B(OH)2 20 80 15 traces
41 14 + ZnI2 B(OH)2 20 80 15 traces
42 15 + ZnI2 B(OH)2 20 80 15 traces
43 13 + ZnI2 Br 20 120 15 100

* anaerobic conditions.

In the next step, we estimated the optimum reaction time and temperature. At a
temperature of 120 ◦C, the optimum time for both reactions was 15 h (Table 3, entries
25–30). If the reactions run for 14 h, this already results in a decrease in the effective yields.
Reducing the temperature is disadvantageous for these reactions, since it leads to a sharp
decrease in the yields (100 ◦C, Table 3, entries 31–36) or even termination of the reactions
(80 ◦C, Table 3, entries 37–42).

For the model Buchwald–Hartwig cross-coupling, we found that the type of halogen
atom is also important. Thus, if X = I or Br, the reaction yield is ca. 100% (Table 3, entries
43–45). In contrast, the reaction yield decreases dramatically to ca. 60% on going from aryl
iodides and bromides to chlorides (Table 3, entries 37–42).

Figure S2 shows the 1H NMR spectrum of the Buchwald–Hartwig and Chan–Lam
reactions product.

2.2.3. Catalytic Studies of the Aldol Reaction

The aldol reaction is also among most powerful tools for the C–C bond formation
in synthetic chemistry, and it has not lost its actuality since its discovery in the 19th
century [45]. The aldol reaction is a sort of coupling between two aldehyde or ketone
molecules, where one of the molecules plays the role of a nucleophile, and the second acts
as an electrophile (Scheme 6).
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Many important natural compounds contain structural blocks, or synthons, corre-
sponding to components of the aldol reaction [46,47]. The industrial synthesis of pen-
taerythritol (the starting compound to produce many formulations) [48], as well as the
industrial production of atorvastatin (a cholesterol-lowering drug), is based on the aldol
reaction [49,50]. Immunomodulatory compounds (e.g., FK506), antifungal drugs (e.g., am-
photericin B), and even anti-cancer bioactives (e.g., discodermolide) can also be synthesized
using the aldol reaction [51].

The main disadvantages of traditional aldol reaction protocols are the use of harsh
alkaline catalysts (sodium ethoxide, sodium diisopropylamide), the use of non-aqueous
solvents, and frequent undesired side reactions (conversion of the forming aldol into the
corresponding olefine). In addition, often a strong base is used not in a catalytic, but in a
stoichiometric amount [45]. These limitations, as well as the challenges of green chemistry,
have spurred the development of new, highly efficient aldol catalysts, and these studies are
relevant and up to date (see reviews [52,53]).

In this study, we tested Cu(II)/chitosan composites 1–30 in the model aldol reaction
between acetone (as a nucleophilic component) and 4-nitrobenzaldehyde (as an electrophilic
component) (Scheme 7).
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As a result of preliminary experiments in water at 50 ◦C (3 h), we found that the most
efficient catalysis of the aldol reaction was achieved using catalytic systems 25–30 (Table 4,
entries 1, 6, 11, 16, 21, 26). All other systems proved to be inactive—their use caused at
best the appearance of only traces of the desired product. Thus, 25–30 was selected for
further studies. By varying the reaction conditions (Table 4), we demonstrated that the
optimum temperature was at ca. 60 ◦C, and the optimum reaction time was 4 h. Applying
these conditions (with a molar ratio of acetone:aldehyde of 3:1 and 20 mol% of the catalyst),
we achieved almost quantitative yields of the product (Table 4, entries 3, 8, 13, 18, 23, 28).
Figure S3 shows the 1H NMR spectrum of the aldol reaction product.
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Table 4. Catalytic studies of the model aldol reaction.

Entry Catalyst mol% T (◦C) Time (h) Yield (%)

1 25 20 50 3 42
2 25 20 60 3 90
3 25 20 60 4 100
4 25 10 60 4 80
5 25 50 60 3 90
6 26 20 50 3 40
7 26 20 60 3 90
8 26 20 60 4 100
9 26 10 60 4 83
10 26 50 60 3 90
11 27 20 50 3 44
12 27 20 60 3 92
13 27 20 60 4 100
14 27 10 60 4 78
15 27 50 60 3 90
16 28 20 50 3 40
17 28 20 60 3 90
18 28 20 60 4 100
19 28 10 60 4 83
20 28 50 60 3 90
21 29 20 50 3 37
22 29 20 60 3 90
23 29 20 60 4 100
24 29 10 60 4 80
25 29 50 60 3 92
26 30 20 50 3 43
27 30 20 60 3 92
28 30 20 60 4 100
29 30 10 60 4 85
30 30 50 60 3 93

2.2.4. Catalytic Studies of the 1,3-Dipolar Cycloaddition of Nitrile Oxides to Nitriles

The 1,3-dipolar cycloaddition ([3+2]-cycloaddition) between a dipole and a dipo-
larophile is the most powerful one-stage way for the construction of five-membered het-
erocycles, including those of biomedical importance [54]. Nitrile oxides belong to the
so-called propargyl anion type of dipoles, and they are isoelectronic to organic azides.
For organic azides, the 1,3-dipolar addition reactions are widely known, even for such
inert dipolarophiles as nitriles (they were discovered in 2011 by two-time Nobel laureate
Barry Sharpless) [55]. The cycloaddition of organic azides to nitriles is efficiently catalyzed
by Zn2+ ions and many other suitable metal centers [56]. In contrast to azides, no metal-
catalyzed cycloadditions of nitrile oxides to nitrile functionality have been described. The
rare examples that can be found in the literature focused on the cycloaddition of nitrile
oxides to nitrile ligands in their kinetically inert platinum or palladium complexes [57].
However, in this case, the reaction is not formally catalytic, since the resulting heterocycle
remains in the coordination sphere of the complex; i.e., the catalytic cycle is not closed.

We were intrigued by the following question: Are 1–30 capable of catalyzing the
1,3-dipolar cycloaddition of nitrile oxides to nitriles? Preliminary experiments have shown
that traditional nitriles containing electron-donating alkyl substituents (MeCN, EtCN) or
weakly electron-withdrawing substituents (PhCN) interact with nitrile oxides neither in
water nor in the corresponding nitrile medium, even under harsh conditions (120 ◦C, 24 h).
There was no point in studying the catalytic activity of 1–30 in the reaction of nitrile oxides
with nitriles containing strong electron acceptors (CCl3CN), since these reactions proceed
spontaneously on heating without any catalyst [58].

However, the literature describes a special type of nitriles, the so-called push–pull
nitriles, which are often superior in their reactivity to traditional nitriles (alkyl- and aryl-
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nitriles). Push–pull nitriles include dialkylcyanamides Alk2NCN [59]. To the best of our
knowledge, there are no reports on the metal-free or metal-catalyzed cycloaddition of nitrile
oxides to push–pull nitriles. However, we were surprised that some of the composites 1–30
were able to catalyze the model reaction of cycloaddition of nitrile oxides to push–pull
dimethylcyanamide nitrile (Scheme 8).
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We found that among 1–30, only 5 and 17 catalyzed the model reaction (in the dimethy-
cyanamide medium). The TLC monitoring showed that the reaction proceeded at 80 ◦C,
giving rise to the selective formation of the desired heterocycle. The composite 17 was
proven to be most efficient (the reaction time for 17 was 3 h, while for 5, the reaction time
was 12 h or more). An increase in temperature led to a loss of selectivity of the reaction
(5 spots on TLC).

Thus, 17 efficiently catalyzes the cycloaddition of nitrile oxides to dialkylcyanamides.
Of course, expanding the range of push–pull nitriles and nitrile oxides with various sub-
stituents is very interesting in order to broaden the limits of the discovered catalysis, and
this project is underway in our group.

Figure S4 shows the 1H NMR spectrum of the product of the 1,3-dipolar cycloaddition
of nitrile oxides to nitriles.

2.2.5. Final Remarks on Catalytic Studies

The results of the catalytic studies should be considered from the following perspec-
tives.

Firstly, we revealed that 13–15 are efficient aerobic catalysts for the studied three
cross-couplings (Sonogashira, Buchwald–Hartwig, and Chan–Lam reactions) in water. The
studied C,N cross-couplings (Buchwald–Hartwig and Chan–Lam reactions) catalyzed by
13–15 require ZnI2 for successful catalysis, while the studied C,C cross-coupling (Sono-
gashira reaction) requires only the presence of a strong base, i.e., LiOH. This indicates that
copper(II) is the catalytic species in the Sonogashira reaction, while copper(I) is the catalytic
species in the Buchwald–Hartwig and Chan–Lam reactions. It is important that among all
tested catalysts 1–30, only 13–18 were capable of catalyzing the studied cross-couplings in
water. This fact suggests that not only copper(I or II) is necessary for successful catalysis,
but also the cholesterol moiety in the composition of the catalytic system. We believe that
the cholesterol moiety, due to its hydrophobic binding to cross-coupling substrates, ensures
their efficient interaction with the metal center. Among catalysts 13–18, 13–15 turned out
to be the most efficient, and this is not surprising, because they are dispersed to the nano
level. An increase in the catalytic activity of chitosan-based systems upon going to sizes
smaller than 1000 nm is a classic issue in modern catalysis science and has been repeatedly
described in recent reviews [60,61].

Secondly, we found that 25–30 were the most active catalysts for the aldol reaction
in water among all 1–30 tested systems. We suppose that this can be explained by the
synergism of the catalytic capabilities of copper(II) ions, chitosan, and sodium hyaluronate,
as well as by the small size of catalytic particles (about 600 nm).
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Thirdly, we established that 5 and 17 are able to catalyze the 1,3-dipolar cycloaddition
of nitrile oxides to push–pull nitriles, i.e., dialkylcyanamides. Interestingly, only the men-
tioned 5 and 17 composites contain nanoparticles of copper(II) acetate dihydrate. Obviously,
it is the presence of nanoparticles that provides the efficient catalysis of the studied cycload-
dition by 5 and 23. The highest catalytic effect is characteristic for cholesterol-containing
system 17. We believe that this is the result of the functioning of the cholesterol moieties in
catalytic systems (similarly as described above for cross-couplings).

Fourthly, we confirmed the recyclability of catalytic systems (13–15 in the model cross-
couplings, 25–30 in the model aldol reaction, and 17 in the model dipolar cycloaddition).
The systems do not lose their catalytic activity even after ten runs.

Fifthly, we determined that all studied model reactions are catalyzed genuinely by the
corresponding chitosan/copper(II)-based systems rather than by leached copper species
(13–15, 25–30, and 17). For this purpose, we carried out the model reactions with the corre-
sponding catalyst under optimum conditions (see Section 3) until the effective conversion
approached 50%. After that, the reaction mixture was subjected to centrifugation followed
by filtration to completely remove catalysts 13–15, 25–30, or 17. Continued heating of
the filtrate under optimum conditions (see Section 3) did not lead to a further increase in
conversion. This observation is convincing proof of the catalysis of the studied reactions
directly by 13–15, 25–30, or 17.

Finally, we also conducted blank experiments for all studied catalytic reactions. The
experiments consisted of processing the starting materials under the same conditions but
in the absence of catalysts 13–15, 25–30, or 17. In all cases, no formation of the desired
product was detected, and only traces of the target product were observed in the case of the
aldol reaction. This fact is convincing evidence that the reactions under study are catalyzed
directly by 13–15, 25–30, or 17.

3. Materials and Methods
3.1. Materials

Chitosan of viscosity-average molecular weights 12, 200, and 500 kDa and degree of
acetylation 10% was purchased from Bioprogress (Moscow, Russia). Copper(II) sulfate
pentahydrate, copper(II) acetate dehydrate, potassium phosphate, potassium and cesium
carbonates, potassium fluoride, lithium hydroxide, and zinc iodide were from Sigma
Aldrich. Succinic anhydride, triethylamine, pyridine, phenylacetylene, 4-methoxy chloro-
(bromo- or iodo-) benzene, phenyl boronic acid, chloro- (bromo- or iodo-) benzene, acetone,
4-nitrobenzaldehyde, dimethylcyanamide, and nitrile oxide (2,4,6-trimethyl phenylcyanide
N-oxide) were also from Sigma Aldrich (Burlington, NJ, USA). Other chemicals and solvents
were also from commercial sources and used as received without any further purification.

3.2. Preparation and Characterization of Chitosan/Copper(II) Composites

1–6. Chitosan (0.150 g) was dissolved in 150 mL of 1% CH3COOH and stirred for 1 h.
CuSO4 × 5H2O or Cu(CH3COO)2 × 2H2O (0.150 g) was dissolved in 150 mL of distilled
water and stirred for 1 h. The resulting chitosan solution was transferred into a 1 L beaker
and mixed very intensely with a mechanical stirrer. The copper(II) salt solution was poured
as a thin stream to the vigorously stirred solution of chitosan, and the resulting mixture
was intensely stirred for 5 min. As a result, a slightly cloudy blue mixture was obtained,
which was frozen and freeze-dried.

7–12. Chitosan (0.150 g) was dissolved in 150 mL of 1% CH3COOH and stirred for 1 h.
CuSO4 × 5H2O or Cu(CH3COO)2 × 2H2O (0.150 g) was dissolved in 150 mL of distilled
water and stirred for 1 h. A sodium hyaluronate load (0.150 g) was dissolved in 150 mL of
distilled water and stirred for 1 h. The resulting chitosan solution was transferred into a
1 L beaker and stirred intensely with a mechanical stirrer. The copper(II) salt solution was
poured as a thin stream to the stirring solution of chitosan, and then the sodium hyaluronate
solution was poured as a thin stream, and the resulting mixture was intensively mixed for
5 min. A cloudy, opalescent mixture was obtained, which was frozen and freeze-dried.
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13–18. Chitosan–cholesterol conjugate [62] (degree of substitution 3%) was dissolved
in 1% acetic acid to obtain a solution with a concentration of 1 mg/mL. CuSO4 × 5H2O
or Cu(CH3COO)2 × 2H2O was dissolved in water to give a 1 mg/mL solution. The
resulting chitosan solution was transferred into a 1 L beaker and vigorously stirred with
a mechanical stirrer. The Cu(II) salt solution was added as a thin stream to the stirring
solution of chitosan–cholesterol conjugate. The resulting mixture was frozen and freeze-
dried.

19–30. Ten milliliters of ethyl acetate and 0.300 g of succinic anhydride were added
to 0.100 g of any of 19–30, and the resulting mixture was vigorously stirred overnight at
40 ◦C. The reaction mixture was centrifuged, and the precipitate was washed with ethyl
acetate, water, 5% sodium bicarbonate solution, and again water. The washed precipitate
was dispersed in water (15 mL), and the resulting suspension was frozen and freeze-dried.

3.3. Catalytic Experiments
3.3.1. Sonogashira Reaction

Catalytic activity screening was performed according to the slightly modified proce-
dure described by us previously [63]. Briefly, the reaction vial was loaded with aryl halide
from Table 2 (100 mg, 1 equiv), base from Table 2 (2.5 equiv), phenylacetylene (1.5 equiv),
the tested catalyst (20 mol% based on Cu), and water (15 mL) and equipped with a Teflon-
coated magnetic stirrer bar. The vial was closed with a septum and aluminum crimp seal
and kept in an oil bath (for temperature and time, see Table 2). After cooling to room
temperature, the reaction mixture was evaporated to dryness, and 1,2-dimethoxyethane
(1 equiv; used as an NMR internal standard) was added. The content of the vial was
extracted with three portions of CDCl3; all fractions were combined, dried over Na2SO4,
and analyzed by 1H NMR spectroscopy. The product peak assignments were based on
the published data [64], while quantifications were performed via the integration of the
selected peaks of the product and comparison of their intensities with those of the standard.

3.3.2. Buchwald–Hartwig and Chan–Lam Reactions

The reaction vial was loaded with aniline (100 mg, 1 equiv), aryl halide (see Table 3)
or phenylboronic acid (1.7 equiv), the tested catalyst (20 mol% based on Cu), and water
(15 mL) and equipped with a Teflon-coated magnetic stirrer bar. The vial was closed with
a septum and aluminum crimp seal and kept in an oil bath (for temperature and time,
see Table 3). After cooling to room temperature, the reaction mixture was evaporated to
dryness, and 1,2-dimethoxyethane (1 equiv; used as an NMR internal standard) was added.
The content of the vial was extracted with three portions of CDCl3; all fractions were
combined, dried over Na2SO4, and analyzed by 1H NMR spectroscopy. The product peak
assignments were based on the published data [65], while quantifications were performed
via the integration of the selected peaks of the product and comparison of their intensities
with those of the standard.

3.3.3. Aldol Reaction

The catalytic experiments on the aldol reaction were performed completely according
to the standard procedure reported by some of us previously [66].

1,3-Dipolar Cycloaddition Reaction

Nitrile oxide (0.100 g, 1 equiv) was dissolved in dimethylcyanamide (0.5 mL), and the
tested catalyst (5, 11, 17, or 23; 20 mol% based on Cu) was added into the reaction flask.
The reaction mixture was stirred at 80 ◦C for 3 h (17) or 12 h (5, 11, or 23). The reaction was
monitored by TLC. After total conversion of nitrile oxide (TLC monitoring), the solvent
was evaporated in vacuo, and tetraethyl orthosilicate (1 equiv; used as an NMR internal
standard) was added. The content of the flask was extracted with three portions of CDCl3;
all fractions were combined, dried over Na2SO4, and analyzed by 1H NMR spectroscopy.
The product peak assignments were based on the published data [67], while quantifications
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were performed via the integration of the selected peaks of the product and comparison of
their intensities with those of the standard.

3.4. Instrumentation

Particle size measurements were performed by dynamic light scattering using a
thermally stabilized semiconductor laser with a wavelength of 638 nm on a Photocor
Compact-Z particle size analyzer at 25 ◦C.

The zeta-potential of the particles was measured by the electrophoretic light scattering
on a Photocor Compact-Z device with a graphite electrode.

The IR spectra of the compounds were recorded on a Shimadzu IRPrestige 21 Fourier
transform IR spectrometer equipped with an MCT detector using a Miracle ATR unit
manufactured by Pike.

Differential thermal thermogravimetric analysis (DTA/TG) was performed on an SDT
Q600 thermal analyzer (TA Instruments, USA) in the temperature range of 25–80 ◦C in
the dynamic mode. The heating rate was 10◦/min. The experiments were carried out in
ceramic crucibles.

X-ray analysis of the samples was carried out on a Dron-7 X-ray diffractometer. The 2θ
angle interval from 7◦ to 40◦ with scanning step ∆2θ = 0.02◦ and exposure of 7 s per point
was used. Cu Kα radiation (Ni filter) was used, which was subsequently decomposed into
Kα1 and Kα2 components during the processing of the spectra.

X-ray fluorescence analysis of the samples was performed on a Clever C-31 X-ray
fluorescence spectrometer. The relative measurement error was ±7%. A rhodium tube with
a voltage of 50 kV and a current of 100 µA acted as a generator of γ-rays. The samples were
taken without filters for 2000 s.

1H NMR spectra were recorded on a Bruker Advance II spectrometer (Karlsruhe,
Germany) operating at a frequency of 400 MHz.

Thin-layer chromatography (TLC) was performed on Merck 60 F254SiO2 plates with a
hexane:chloroform 1:1 (v:v) mixture as eluent. Visualization was carried out in ultraviolet
light using an HP-UVISfi UV-lamp (Russia).

High-resolution electrospray ionization mass spectrometry (the positive ion mode)
was carried out on a Bruker APEX-Qe ESI FT-ICR instrument (USA) with CH3CN as a
solvent.

Inductively coupled plasma-atomic emission spectroscopy measurements were per-
formed with a Leeman ICP-AES Prodigy XP spectrometer.

Elemental analyses were carried out using a Perkin-Elmer elemental analyzer. Degree
of succination (DSu) was calculated from elemental analysis data as follows [68]:

DSu =
1
4

[w(C)/w(N)succinated system − w(C)/w(N)starting system] × (14/12) × 100

4. Conclusions

Several main aspects of this research can be emphasized:

(i) Indeed, treatment of chitosan (or its cholesterol conjugate) with copper(II) sulfate or
acetate, followed by coating with a layer of sodium hyaluronate or succination (if
necessary), makes it possible to obtain a wide range of structurally similar systems
(Figure 1, Table 1). In addition, we were able to obtain some of these systems in
the form of nanoparticles (mainly copper(II) sulfate-based systems), and the second
part is a coarse-grained powder (mainly copper(II) acetate-based systems). The
molecular weight of the used chitosan practically does not affect the characteristics of
the systems obtained;

(ii) Cholesterol-containing systems have proven to be highly efficient catalysts for cross-
couplings (Sonogashira, Buchwald–Hartwig, and Chan–Lam); succinated systems
coated with a layer of hyaluronic acid are catalysts for the aldol reaction; systems
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containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-
oxide-to-nitrile 1,3-dipolar cycloaddition;

(iii) The elaborated catalytic systems efficiently catalyze the mentioned reactions in the
greenest solvent available, i.e., water, under aerobic conditions. The studied catalytic
reactions proceed selectively, and the isolation of the product does not require column
chromatography. The product is separated from the catalyst by simple filtration
or centrifugation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010203/s1, Figure S1: 1H NMR spectrum of the product
of the model Sonogashira reaction; Figure S2: 1H NMR spectrum of the product of the Buchwald-
Hartwig and Chan-Lam reactions; Figure S3: 1H NMR spectrum of the aldol reaction; Figure S4: 1H
NMR spectrum of the 1,3-dipolar cycloaddition of nitrile oxides to nitriles.

Author Contributions: Conceptualization, A.P.D. and A.S.K.; methodology, A.P.D. and A.R.E.;
software, V.V.R.; validation, A.A.K., A.G.T., and A.S.K.; formal analysis, N.N.L.; investigation,
A.P.D.; resources, R.G.; data curation, O.K.; writing—original draft preparation, A.R.E. and O.K.;
writing—review and editing, A.G.T.; visualization, V.N.K.; supervision, A.S.K.; project administra-
tion, A.S.K.; funding acquisition, A.S.K. and V.N.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper has been supported in part by the RUDN University Strategic Academic
Leadership Program (award no. 025235-2-000, recipient: V.N. Khrustalev). Funding for this research
was provided by the Ministry of Education and Science of the Russian Federation (award no. 075-03-
2020-223 (FSSF-2020-0017)).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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