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Abstract: A copper catalyzed tandem CuAAC/ring cleavage/[4+2] annulation reaction of terminal
ynones, sulfonyl azides, and imines has been developed to synthesize the functionalized oxazines
under mild conditions. Particularly, the intermediate N-sulfonyl acylketenimines undergo cycload-
dition of an inverse electron demand Diels–Alder reaction with imines and a series of 1,3-oxazine
derivatives were obtained successfully in good yields.
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1. Introduction

Oxazines, a six-membered ring containing one nitrogen and one oxygen atom, are
important functionalized skeletons and play a crucial role in medicinal chemistry [1]. Its
derivatives are widely used as therapeutic agents, such as analgesic (1) [2], anticancer (2) [3],
antioxidant (3) [4], anti-inflammatory (4) [5], BACE1 inhibitors (5) [6], and anti-HIV (6) [7]
(Figure 1). Owing to pharmacological activity, these types of oxazine derivatives have
numerous applications in drug discovery and medicinal chemistry [1,8–11]. Consequently,
there is an attendant interest in the development of novel, concise, and flexible routes to
construct such oxazine rings.
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important functionalized skeletons and play a crucial role in medicinal chemistry [1]. Its 
derivatives are widely used as therapeutic agents, such as analgesic (1) [2], anticancer (2) 
[3], antioxidant (3) [4], anti-inflammatory (4) [5], BACE1 inhibitors (5) [6], and anti-HIV 
(6) [7] (Figure 1). Owing to pharmacological activity, these types of oxazine derivatives 
have numerous applications in drug discovery and medicinal chemistry [1,8–11]. Conse-
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Figure 1. Examples of oxazine drug candidates. 
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Figure 1. Examples of oxazine drug candidates.

Over the past decades, various reaction routes have been reported for the synthesis of
1,3-oxazine in the literature, involving the following six methods: (a) Mannich reaction by
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using an aromatic amines reaction with phenol and formaldehyde [12–15]. (b) Au catalyzed
rearrangement of ortho-propargylic oximes via N-O Bond cleavage or Pd catalyzed cascade
arene/alkyne annulation [16,17]. (c) [4+2] Cycloaddition of N-tosylhydrazones with ortho-
quinone methides [18]. (d) Cycloaddition reaction of 2-azadienes derived and carbonyl
compounds [19]. (e) [4+2] Cycloaddition reaction of α-fluorostyrenes with imines [20].
(f) Our previous study has disclosed that a semblable strategy about tandem CuAAC/ring
cleavage/[4+2] annulation reaction from sulfonyl azides, terminal ynones, and oximes [21]
(Scheme 1a–f). However, a majority of these reactions have been reported to need expensive
metal catalysts and have poor regioselectivity, a long reaction time, and a high temperature
while having low yields. Thus, an efficient and new route for the synthesis of multi-
substituted 1,3-oxazine derivatives is still required.
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On the other side, the [4+2] cycloaddition has become a venerable strategy in synthetic
routes to create sophisticated frameworks, especially the inverse-electron-demand Diels–Alder
reactions (IEDDA). These reactions between easily available chemicals enable the concise
construction of six-membered rings under mild conditions [22–26]. During the past decade,
a series of substrates or intermediates, such as alkenes, enol ethers, indoles, enamines, and
enolates, have been successfully exploited to undergo such types of annulation reactions,
enriched the toolbox of organic chemists for further studies, and delivered various chiral
cyclohexenes or six-membered heterocycles [27–36]. The IEDDA has been a central initial
reaction in domino sequences, especially with azadienes toward complex heterocycles.

Herein, we report a high-efficiency copper catalyzed inverse-electron-demand oxa-
Diels–Alder reaction using terminal ynones, sulfonyl azides, and imines, and a series of
novel 1,3-oxazine derivatives were obtained (Scheme 1g).

2. Results and Discussion

We began the study on a multicomponent reaction by choosing N-Benzylideneaniline
1a, with sulfonyl azides 2a and but-3-yn-2-one 3a as the model substrates to synthesize
2,3-dihydro-4H-1,3-oxazin-4-ylidene 4a. The reaction was carried out in the presence of
CuCl in acetone at room temperature for 4 h, and 4a was isolated in a 21% yield (Table 1,
entry 1). Based on this finding, the reaction conditions were screened. First, the solvents
were screened, and a lower or comparable yield was obtained when THF, DMF, DCM,
and DMSO were used as solvents, while MeCN gave 4a the highest yield of 84% (Table 1,
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entry 2–6). Then, the effects of catalysts were screened, and most CuI-catalysts exhibited a
higher catalytic reactivity than CuII-catalysts in this reaction (Table 1, entries 7–13). Other
catalysts such as AgTFA failed to produce the desired product (Table 1, entries 14). The
effects of different additives were also evaluated, and the screening results revealed that
additive-free achieved a superior result compared to an added base or acid (Table 1, entries
15–19). The reason maybe is that the terminal ynones will take a self-condensation under
the base conditions according to previous reports [37–39]. Ultimately, we investigated the
effect of reaction time and temperature and get the optimized conditions (Table 1, entries
20–24).

Table 1. Optimization of conditions a.
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(10 mol%)

Base
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(2 mL)
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(◦C)

Time
(h)

Yield
(%) b

1 CuCI - Acetone rt 4.0 21
2 CuCI - THF rt 4.0 65
3 CuCI - DMF rt 4.0 12
4 CuCI - DCM rt 4.0 21
5 CuCI - DMSO rt 4.0 15
6 CuCI - MeCN rt 4.0 84
7 CuI - MeCN rt 4.0 78
8 Cu(OAc)2 - MeCN rt 4.0 71
9 Cu(acac)2 - MeCN rt 4.0 22

10 CuO - MeCN rt 4.0 Trace
11 CuBr - MeCN rt 4.0 65
12 Cu(SO4)2 - MeCN rt 4.0 Trace
13 Cu(TFA)2 - MeCN rt 4.0 32
14 AgTFA - MeCN rt 4.0 0
15 CuCI DMAP MeCN rt 4.0 Trace
16 CuCI TsOH MeCN rt 4.0 Trace
17 CuCI K2CO3 MeCN rt 4.0 12
18 CuCI HOAc MeCN rt 4.0 24
19 CuCI Et3N MeCN rt 4.0 42
20 CuCI - MeCN 40 4.0 76
21 CuCI - MeCN 60 4.0 62
22 CuCI - MeCN 80 4.0 41
23 CuCI - MeCN rt 3.0 77
24 CuCI - MeCN rt 5.0 84

a Reaction conditions: To 1a (0.5 mmol), Cat. 10 mol%, base 1.5 equivalent in the solvent (2 mL) was added 2a
(0.75 mmol) and 3a (0.75 mmol), stirred at specified temperatures and times (monitored by TLC). b Isolated yields.

With this optimized condition in hand (Table 1, entries 6), the substrate diversity of the
reaction was explored, as depicted in Scheme 2. Firstly, the scope of N-Benzylideneanilines
were examined. It was found that the R1 with the electron-donating group (including
OMe, Me) was superior to the electron-withdrawing group (including CN, NO2, Cl, etc).
The 4-N(Me)2C6H4 group (4h) presented the highest yield (91%) as well as 4-MeC6H4
(4b) in 79% yields. The R1 with electron-withdrawing groups such as 4-nitrophenyl (4g)
and 4-cyanobenzene (4f) were well-tolerated and showed a moderate reaction effect. In
addition, 1-naphthyl was also tested in the reaction and afforded the desired products 4i in
63%. Presumably, because of the steric hindrance effect and strong electronic effect, 2-Me,
3-Me, and 2-furan failed to generate the desired products.
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Scheme 2. The synthesis of products 4a–4v. Scheme 2. The synthesis of products 4a–4v.

The scope of sulfonyl azides were further examined under optimized conditions.
Surprisingly, Alkyl 4j–4m then was screened to participate in the transformation and
smoothly get the desired compound in a moderate yield (68–74%). With R2 changed
by aromatic substituents or aliphatic aryl groups, 4n–4t were well-tolerated and gave
satisfactory yields (51–82%). The 4-OMeC6H4 group (4t) as an electron-donating group
provided excellent yields in 88% yields. Likewise, when R3 was an n-pentyl or –Ph group,
the terminal ynones afforded acceptable yields (4u, 52% and 4v, 56%).

The structures of (4a–4v) 1,3-oxazine products are unreported, and their structures
were confirmed by 1HNMR, 13CNMR, IR, and HRMS. The structure of 4a unambiguously
was confirmed by X-ray crystallography (Figure 2, CCDC deposition number 2164715).
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A possible reaction pathway for the formation of 2,3-dihydro-4H-1,3-oxazin-4-ylidene
(4a) from precursors 1a, 2a, and 3a is shown in Scheme 3. Thus, in keeping with earlier
proposals, the substrates 2a and 3a are expected to react, in the presence of the copper (I)
catalyst, so as to form the metallated triazole A that fragments with accompanying loss
of nitrogen to form a highly active intermediate α-acyl-N-sulfonyl ketenimine B. This last
species is captured by 1a via inverse electron demand [4+2] cycloaddition to deliver the
observed product 4a.
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3. Materials and Methods
3.1. General Methods

All melting points were determined on a Yanaco melting point apparatus and were
uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer.
All spectra of 1H NMR (400 MHz) and 13C NMR (100 MHz) were recorded on a Bruker
AVANCE NEO 400 MHz spectrometer in DMSO-d6 or CDCl3 (otherwise as indicated), with
TMS used as an internal reference and the J values given in Hz. HRMS were obtained
on a Thermo Scientific Q Exactive Focus Orbitrap LC-MS/MS spectrometer. All imines
(1a–2i, see Supplementary Materials Section S1), sulfonyl azides (2a–2l, see Supplementary
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Materials Section S1), and terminal alkynes (2a–2b, see Supplementary Materials Section S1)
were prepared by literature methods [40–42].

3.2. General Procedure for the Synthesis of 2,3-Dihydro-4H-1,3-Oxazin-4-Ylidenes (4a–4v)

The solution of (E)-N,1-diphenylmethanimine (1, 91 mg, 0.5 mmol), CuI (95 mg,
0.05 mmol) in MeCN (1.0 mL) was added. Then, the mixture of TsN3 (2, 147.8 mg,
0.75 mmol) and But-3-yn-2-one (3, 51.0 mg, 0.75 mmol) was added in MeCN (2 mL).
After the reaction mixture was stirred at room temperature for 4 h (monitored by TLC),
the solvent was removed. The residue was purified by flash chromatography (silica gel,
33% EtOAc in petroleum ether (60–90 °C)) to give the corresponding products 4a–4v.
Details of the compound characterizations:

4-Methyl-N-(6-methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzene-
sulfonamide (4a) (176 mg, 84%), a white solid, m.p. = 164.9–166.4 ◦C (Rf = 0.30 in 1:3 v/v
ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.0 Hz,
2H), 7.44–7.36 (m, 5H), 7.26–7.12 (m, 7H), 6.60 (s, 1H), 6.51 (s, 1H), 2.38 (s, 3H), 2.00 (s, 3H);
13C NMR (100 MHz, CDCl3) δ 165.6, 156.9, 142.0, 140.5, 139.9, 135.4, 129.8, 129.0 (2C),
128.9 (2C), 128.7 (2C), 127.3 (3C), 126.5 (2C), 126.3 (2C), 97.4, 89.7, 21.5, 20.4; IR νmax
(KBr) 3063, 3036, 2920, 1639, 1545, 1366, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for
C24H22N2O3S, [M+H]+ 419.1427, Found 419.1427.

4-Methyl-N-(6-methyl-3-phenyl-2-(p-tolyl)-2,3-dihydro-4H-1,3-oxazin-4-ylidene) ben-
zenesulfonamide (4b) (171 mg, 79%), a white solid, m.p. = 158.1–160.0 ◦C (Rf = 0.30 in 1:3
v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 7.6 Hz,
2H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 (t, J = 7.8 Hz, 2H), 7.17 (t, J = 8.6 Hz, 5H), 7.12 (t, J = 8.0 Hz,
2H), 6.59 (s, 1H), 6.47 (s, 1H), 2.37 (s, 3H), 2.34 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 165.6, 157.1, 142.1, 140.6, 140.0, 139.9, 132.5, 129.5 (2C), 129.1 (2C), 128.9 (2C), 127.3
(2C), 127.2, 126.6 (2C), 126.3 (2C), 97.3, 89.8, 21.5, 21.4, 20.5; IR νmax (KBr) 3117, 3059, 2920,
1640, 1546, 1303, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for C25H24N2O3S, [M+H]+

433.1581, Found 433.1582.
N-(2-(4-Fluorophenyl)-6-methyl-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-

methylbenzenesulfonamide (4c) (161 mg, 74%), a white solid, m.p. = 162.4–163.2 ◦C
(Rf = 0.20 in 1:4 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3)
δ 7.67 (d, J = 8.0 Hz, 2H), 7.43–7.39 (m, 2H), 7.27–7.17 (m, 5H), 7.10–7.02 (m, 4H), 6.62 (s,
1H), 6.48 (s, 1H), 2.37 (s, 3H), 2.00 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.6, 163.4 (d,
J = 248.4 Hz, 1C), 156.9, 142.1, 140.4, 139.7, 131.2 (d, J = 3.2 Hz, 1C), 129.2 (d, J = 8.6 Hz, 2C),
129.0 (2C) 128.9 (2C), 127.4, 126.6 (2C), 126.2 (2C), 115.8 (d, J = 21.8 Hz, 2C), 97.3, 89.1, 21.4,
20.3; IR νmax (KBr) 3109, 3067, 2970, 1639, 1546, 1431, 1084 cm–1; HRMS (ESI-TOF) m/z:
Calculated for C24H21FN2O3S, [M+H]+ 437.1330, Found 437.1333.

N-(2-(4-Chlorophenyl)-6-methyl-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-
methylbenzenesulfonamide (4d) (176 mg, 78%), a white solid, m.p. = 191.2–191.3 ◦C
(Rf = 0.20 in 1:4 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ
7.67 (d, J = 8.0 Hz, 2H), 7.39–7.32 (m, 4H), 7.26 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.4 Hz, 3H), 7.10
(t, J = 7.2 Hz, 2H), 6.61 (s, 1H), 6.48 (s, 1H), 2.37 (s, 3H), 2.00 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 165.6, 156.9, 142.4, 140.4, 139.8, 136.0, 134.1, 129.2 (2C), 129.1 (2C), 129.0 (2C),
128.8 (2C), 127.5, 126.6 (2C), 126.4 (2C), 97.5, 89.2, 21.6, 20.5; IR νmax (KBr) 2971, 2919, 2839,
1720, 1496, 1366, 1088 cm–1; HRMS (ESI-TOF) m/z: Calculated for C24H21ClN2O3S, [M+H]+

453.1034, Found 453.1038.
N-(2-(4-Bromophenyl)-6-methyl-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-

methylbenzenesulfonamide (4e) (179 mg, 72%), a white solid, m.p. = 207.4–209.2 ◦C
(Rf = 0.22 in 1:4 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3)
δ 7.68 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.32–7.24 (m, 4H), 7.21 (d, J = 7.8 Hz,
3H), 7.10 (d, J = 7.6 Hz, 2H), 6.61 (s, 1H), 6.46 (s, 1H), 2.38 (s, 3H), 2.00 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 165.5, 156.7, 142.1, 140.3, 139.7, 134.6, 132.0 (2C), 129.1 (2C), 129.0 (2C)
128.9 (2C), 127.4, 126.4 (2C), 126.3 (2C), 124.2, 97.4, 89.1, 21.5, 20.4; IR νmax (KBr) 3117, 3059,
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2920, 1500, 1496, 1304, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for C24H21BrN2O3S,
[M+H]+ 497.0529, Found 497.0521.

N-(2-(4-Cyanophenyl)-6-methyl-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-
methylbenzenesulfonamide (4f) (162 mg, 73%), a white solid, m.p. = 163.5–165.2 ◦C
(Rf = 0.10 in 1:4 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ
7.69–7.65 (m, 4H), 7.57 (d, J = 8.0 Hz, 2H), 7.30–7.19 (m, 5H), 7.10 (d, J = 8.4 Hz, 2H), 6.63 (s,
1H), 6.54 (s, 1H), 2.38 (s, 3H), 2.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.6, 156.4, 142.3,
140.6, 140.1, 139.6, 132.6 (2C), 129.1 (2C), 129.0 (2C), 128.0 (2C), 127.6, 126.4 (2C), 126.3 (2C),
117.9, 113.9, 97.7, 88.7, 21.5, 20.3; IR νmax (KBr) 3117, 3059, 2920, 1497, 1412, 1304, 1084 cm–1;
HRMS (ESI-TOF) m/z: Calculated for C25H21N3O3S, [M+H]+ 444.1107, Found 444.1146.

4-Methyl-N-(6-methyl-2-(4-nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)
benzenesulfonamide (4g) (130 mg, 56%), a white solid, m.p. = 221.3–223.2 ◦C (Rf = 0.20
in 1:3 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 8.22 (d,
J = 8.4 Hz, 2H), 7.68–7.63 (m, 4H), 7.30–7.19 (m, 5H), 7.12 (d, J = 7.6 Hz, 2H), 6.65 (s, 1H),
6.59 (s, 1H), 2.38 (s, 3H), 2.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.7, 165.6, 148.8, 142.5,
142.4, 140.2, 139.6, 129.3 (2C), 129.2 (2C), 128.4 (2C), 127.8, 126.5 (2C), 126.4 (2C), 124.1 (2C),
97.8, 88.7, 21.6, 20.4; IR νmax (KBr) 3113, 2994, 2924, 1620, 1497, 1304, 1087 cm–1; HRMS
(ESI-TOF) m/z: Calculated for C24H21N3O5S, [M+H]+ 464.1275, Found 464.1279.

N-(2-(4-(Dimethylamino)phenyl)-6-methyl-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-
ylidene)-4-methylbenzenesulfonamide (4h) (210 mg, 91%), a white solid, m.p. = 188.3–
189.6 ◦C (Rf = 0.25 in 1:3 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz,
CDCl3) δ 7.69 (d, J = 8.0 Hz, 2H), 7.27–7.17 (m, 7H), 7.11 (d, J = 7.6 Hz, 2H), 6.63 (d,
J = 8.4 Hz, 2H), 6.58 (s, 1H), 6.41 (s, 1H), 2.95 (s, 6H), 2.36 (s, 3H), 1.96 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 165.7, 157.4, 151.2, 141.9, 140.7, 140.0, 129.0 (2C), 128.7 (2C), 128.5
(2C), 127.1, 126.7 (2C), 126.3 (2C), 122.0, 111.7 (2C), 96.9, 90.1, 40.2 (2C), 21.5, 20.4; IR νmax
(KBr) 3043, 2955, 2808, 1539, 1450, 1277, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for
C26H27N3O3S, [M+H]+ 462.1846, Found 462.1848.

4-Methyl-N-(6-methyl-2-(naphthalen-2-yl)-3-phenyl-2,3-dihydro-4H-1,3-oxazin-4-
ylidene)benzenesulfonamide (4i) (147 mg, 63%), a white solid, m.p. = 142.9–144.3 ◦C
(Rf = 0.20 in 1:4 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ
7.87–7.81 (m, 4H), 7.72 (t, J = 8.0 Hz, 2H), 7.54–7.51 (m, 3H), 7.26–7.17 (m, 7H), 6.66 (s, 1H),
6.63 (s, 1H), 2.38 (s, 3H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.5, 157.1, 142.1, 140.5,
140.0, 133.7, 132.6, 132.5, 129.1 (2C), 128.9 (3C), 128.5, 127.7, 127.3 (3C), 126.8 (2C), 126.4 (2C),
126.3 (2C), 97.3, 89.9, 21.5, 20.4; IR νmax (KBr) 3113, 3059, 1632, 1501, 1308, 1150, 1084 cm–1;
HRMS (ESI-TOF) m/z: Calculated for C28H24N2O3S, [M+H]+ 469.1581, Found 469.1584.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) methane sulfonamide
(4j) (116 mg, 68%), a white solid, m.p. = 175.4–176.0 ◦C (Rf = 0.30 in 1:3 v/v ethyl acetate/
60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.45–7.41 (m, 2H), 7.39–7.36 (m, 3H),
7.32–7.26 (m, 2H), 7.22 (t, J = 8.4 Hz, 3H), 6.50 (s, 1H), 6.45 (s, 1H), 2.90 (s, 3H), 2.00 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 165.6, 157.0, 139.8, 135.4, 129.8, 128.9 (2C), 128.7 (2C),
127.3 (3C), 126.7 (2C), 97.5, 89.7, 43.0, 20.3; IR νmax (KBr) 3109, 3059, 2936, 1632, 1551, 1493,
1119 cm–1; HRMS (ESI-TOF) m/z: Calculated for C18H18N2O3S, [M+H]+ 343.1111, Found
343.1111.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) ethane sulfonamide
(4k) (123 mg, 69%), a white solid, m.p. = 140.7–142.2 ◦C (Rf = 0.25 in 1:3 v/v ethyl acetate/
60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.46–7.41 (m, 2H), 7.38–7.36 (m, 3H),
7.28 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 8.0 Hz, 3H), 6.50 (s, 1H), 6.46 (s, 1H), 2.99–2.89 (m, 2H),
2.01 (s, 3H), 1.23 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 165.4, 157.3, 139.8, 135.4,
129.8, 128.8 (2C), 128.7 (2C), 127.3 (2C), 127.2, 126.9 (2C), 97.6, 89.7, 49.3, 20.3, 8.3; IR νmax
(KBr) 3063, 2986, 2940, 1647, 1497, 1431, 1115 cm–1; HRMS (ESI-TOF) m/z: Calculated for
C19H20N2O3S, [M+H]+ 357.1268, Found 357.1273.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)propane-1-sulfonamide
(4l) (133 mg, 72%), a white solid, m.p. = 140.7–142.4 ◦C (Rf = 0.28 in 1:3 v/v ethyl acetate/
60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.45–7.41 (m, 2H), 7.38–7.36 (m, 3H),
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7.28 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 3H), 6.49 (s, 1H), 6.46 (s, 1H), 2.96–2.84 (m, 2H),
2.00 (s, 3H), 1.78–1.68 (m, 2H), 0.91 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 165.3,
157.2, 139.8, 135.4, 129.8, 128.8 (2C), 128.7 (2C), 127.3 (2C), 127.2, 126.9 (2C), 97.6, 89.7, 56.7,
20.3, 17.3, 12.9; IR νmax (KBr) 3109, 2971, 2874, 1639, 1555, 1369, 1115 cm–1; HRMS (ESI-TOF)
m/z: Calculated for C20H22N2O3S, [M+H]+ 371.1424, Found 371.1424.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)butane-1-sulfonamide
(4m) (142 mg, 74%), a white solid, m.p. = 127.6–129.9 ◦C (Rf = 0.35 in 1:3 v/v ethyl
acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.46–7.42 (m, 2H), 7.38–7.36
(m, 3H), 7.28 (t, J = 7.2 Hz, 2H), 7.18 (t, J = 8.0 Hz, 3H), 6.49 (s, 1H), 6.46 (s, 1H), 2.98–2.86
(m, 2H), 2.00 (s, 3H), 1.72–1.64 (m, 2H), 1.35–1.25 (m, 2H), 0.83 (t, J = 7.2 Hz, 3H); 13C NMR
(100 MHz, CDCl3) δ 165.4, 157.2, 139.8, 135.4, 129.8, 128.8 (2C), 128.7 (2C), 127.3 (2C), 127.2,
127.0 (2C), 97.6, 89.7, 54.7, 25.7, 21.4, 20.3, 13.6; IR νmax (KBr) 3109, 2971, 2932, 1636, 1547,
1288, 1111 cm–1; HRMS (ESI-TOF) m/z: Calculated for C21H24N2O3S, [M+H]+ 385.1581,
Found 385.1579.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-1-phenyl methanesul-
fonamide (4n) (148 mg, 71%), a white solid, m.p. = 154.1–155.6 ◦C (Rf = 0.30 in 1:3 v/v ethyl
acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.33–7.25 (m, 9H), 7.20 (t,
J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 4H), 6.40 (s, 1H), 6.33 (s, 1H), 4.12 (q, 2H), 1.93 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ 165.4, 157.6, 139.5, 135.0, 131.1 (2C), 130.3, 129.7, 128.9 (2C), 128.6
(2C), 128.1 (2C), 127.8, 127.5 (2C), 127.4 (3C), 97.4, 89.8, 60.7, 20.1; IR νmax (KBr) 3040, 2970,
2870, 1647, 1493, 1354, 1107 cm–1; HRMS (ESI-TOF) m/z: Calculated for C24H22N2O3S,
[M+H]+ 419.1424, Found 418.1351.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzene sulfonamide
(4o) (145 mg, 72%), a white solid, m.p. = 153.1–154.7 ◦C (Rf = 0.30 in 1:3 v/v ethyl acetate/
60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 7.6 Hz, 2H), 7.48–7.35 (m,
7H), 7.28–7.17 (m, 4H), 7.13 (d, J = 8.4 Hz, 2H), 6.61 (s, 1H), 6.52 (s, 1H), 2.01 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ 165.8, 157.0, 143.3, 139.8, 135.4, 131.5, 129.8, 128.9 (2C), 128.7 (2C),
128.4 (2C), 127.3, 127.2 (2C), 126.6 (2C), 126.2 (2C), 97.4, 89.7, 20.4; IR νmax (KBr) 3059, 1636,
1501, 1454, 1362, 1308, 1157, 1088 cm–1; HRMS (ESI-TOF) m/z: Calculated for C23H20N2O3S,
[M+H]+ 405.1268, Found 405.1271.

4-Chloro-N-(6-methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzene sul-
fonamide (4p) (164 mg, 75%), a white solid, m.p. = 141.9–143.1 ◦C (Rf = 0.40 in 1:3 v/v
ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.4 Hz,
2H), 7.44–7.41 (m, 2H), 7.39–7.33 (m, 5H), 7.28–7.18 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 6.57 (s,
1H), 6.52 (s, 1H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 166.2, 157.1, 141.9, 139.6, 137.7,
135.1, 129.9, 128.9 (2C), 128.8 (2C), 128.6 (2C), 127.7 (2C), 127.5, 127.3 (2C), 126.6 (2C), 97.3,
89.7, 20.4; IR νmax (KBr) 3098, 3067, 2974, 1543, 1393, 1431, 1084 cm–1; HRMS (ESI-TOF)
m/z: Calculated for C23H19ClN2O3S, [M+H]+ 439.0878, Found 439.0879.

4-Bromo-N-(6-methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzene sul-
fonamide (4q) (178 mg, 74%), a white solid, m.p. = 160.6–161.9 ◦C (Rf = 0.35 in 1:3 v/v
ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.4 Hz, 2H),
7.51 (d, J = 8.4 Hz, 2H), 7.44–7.36 (m, 5H), 7.28–7.18 (m, 3H), 7.11 (d, J = 7.6 Hz, 2H), 6.57
(s, 1H). 6.52 (s, 1H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 166.3, 157.2, 142.4, 139.6,
135.1, 131.6 (2C), 129.9, 128.9 (2C), 128.8 (2C), 127.9 (2C), 127.5, 127.3 (2C), 126.7 (2C), 126.2,
97.3, 89.7, 20.4; IR νmax (KBr) 3117, 3086, 1639, 1510, 1458, 1393, 1138, 1084 cm–1; HRMS
(ESI-TOF) m/z: Calculated for C23H19BrN2O3S, [M+H]+ 483.0373, Found 483.0376.

N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-nitro benzenesul-
fonamide (4r) (148 mg, 66%), a white solid, m.p. = 176.3–177.7 ◦C (Rf = 0.30 in 1:3 v/v ethyl
acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.8 Hz, 2H), 7.92
(d, J = 8.8 Hz, 2H), 7.45–7.36 (m, 5H), 7.30–7.21 (m, 3H), 7.12 (d, J = 7.2 Hz, 2H), 6.54 (d,
J = 7.2 Hz, 2H), 2.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 167.0, 157.5, 149.3, 149.0, 139.3,
134.8, 130.1, 129.1 (2C), 128.8 (2C), 127.8, 127.5 (2C), 127.3 (2C), 126.8 (2C), 123.7 (2C), 97.3,
89.8, 20.4; IR νmax (KBr) 3105, 1624, 1435, 1300, 1169, 1142, 1084 cm–1; HRMS (ESI-TOF)
m/z: Calculated for C23H19N3O5S, [M+H]+ 450.1118, Found 450.1122.
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N-(6-Methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)-4-(trifluoromethyl)
benzenesulfonamide (4s) (120 mg, 51%), a white solid, m.p. = 166.0–166.7 ◦C (Rf = 0.40
in 1:3 v/v ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.89 (d,
J = 8.4 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.45–7.36 (m, 5H), 7.29–7.21 (m, 3H), 7.13 (d,
J = 7.6 Hz, 2H), 6.58 (s, 1H), 6.53 (s, 1H), 2.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 166.6,
157.4, 146.7, 139.5, 135.0, 133.2 (q, J = 32.6 Hz, 1C), 130.0, 129.0 (2C), 128.8 (2C), 127.7, 127.3
(2C), 126.7 (4C), 125.6 (q, J = 3.7 Hz, 2C), 123.5 (q, J = 271.1 Hz, 1C), 97.3, 89.8, 20.4; IR νmax
(KBr) 3507, 3475, 2924, 1539, 1427, 1141, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for
C24H19F3N2O3S, [M+H]+ 473.1141, Found 473.1145.

4-Methoxy-N-(6-methyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene)benzenesul
fonamide (4t) (178 mg, 82%), a white solid, m.p. = 135.5–136.5 ◦C (Rf = 0.20 in 1:3 v/v ethyl
acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.8 Hz, 2H),
7.45–7.42 (m, 2H), 7.38–7.34 (m, 3H), 7.24 (d, J = 7.6 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.12
(d, J = 7.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.60 (s, 1H), 6.51 (s, 1H), 3.82 (s, 3H), 1.99 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 165.6, 162.0, 156.8, 139.9, 135.4, 129.8, 128.8 (2C), 128.8
(3C), 128.2 (2C), 127.3 (2C), 127.2, 126.5 (2C), 113.6 (2C), 97.3, 89.7, 55.5, 20.4; IR νmax (KBr)
3102, 3067, 2947, 1647, 1593, 1498, 1258, 1084 cm–1; HRMS (ESI-TOF) m/z: Calculated for
C24H22N2O4S, [M+H]+ 435.1373, Found 435.1376.

4-Methyl-N-(2,3,6-triphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzene sulfonamide
(4u) (125 mg, 52%), a white solid, m.p. = 135.1–136.6 ◦C (Rf = 0.20 in 1:4 v/v ethyl acetate/
60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 4H), 7.54–7.46 (m,
3H), 7.43–7.35 (m, 5H), 7.28 (t, J = 7.2 Hz, 3H), 7.22–7.16 (m, 5H), 6.72 (s, 1H), 2.37 (s, 3H);
13C NMR (100 MHz, CDCl3) δ 161.6, 157.5, 142.1, 140.5, 139.9, 135.1, 132.3, 131.0, 129.8, 129.1
(2C), 128.9 (2C), 128.8 (4C), 127.3, 127.2 (2C), 127.1 (2C), 126.4 (2C), 126.3 (2C), 94.8, 89.9,
21.5; IR νmax (KBr) 3063, 2970, 1610, 1578, 1497, 1296, 1138, 1080 cm–1; HRMS (ESI-TOF)
m/z: Calculated for C29H24N2O3S, [M+H]+ 481.1581, Found 481.1584.

4-Methyl-N-(6-pentyl-2,3-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-ylidene) benzenesul-
fonamide (4v) (133 mg, 56%), a white solid, m.p. = 159.3–160.9 ◦C (Rf = 0.42 in 1:3 v/v
ethyl acetate/60–90 petroleum ether); 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.0 Hz, 2H),
7.34–7.21 (m, 12H), 7.08 (t, J = 7.4 Hz, 1H), 5.70 (d, J = 6.0 Hz, 1H), 5.15 (d, J = 6.0 Hz, 1H),
2.42 (s, 3H), 2.05–1.97 (m, 1H), 1.27–1.20 (m, 2H), 1.13–1.05 (m, 2H), 0.88–0.80 (m, 2H), 0.75
(t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 201.2, 160.7, 143.1, 138.9, 136.7, 132.0, 129.3
(3C), 129.0 (2C), 128.9 (2C), 127.4 (2C), 127.1 (2C), 125.2, 118.6 (2C), 63.8, 61.0, 44.0, 30.7,
22.3, 22.0, 21.6, 13.8; IR νmax (KBr) 2954, 2928, 2866, 1639, 1501, 1458, 1088 cm–1; HRMS
(ESI-TOF) m/z: Calculated for C28H30N2O3S, [M+H]+ 475.2050, Found 475.2076.

4. Conclusions

In summary, we have developed an operationally simple and effective means for
preparing 2,3-dihydro-4H-1,3-oxazin-4-ylidenes from a mixture of the corresponding
imines, sulfonyl azides, and terminal ynones, through CuAAC/ring cleavage/[4+2] annula-
tion process, base-free, and stirred at room temperatures. This methodology appears quite
flexible and offers a capacity to generate forms of the title products that will be particularly
useful in, for example, building more 1,3-oxazines block facility.
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