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Abstract: Recent knowledge in chemistry has enabled the material utilization of greenhouse gas
(CO2) for the production of organic carbonates using mild reaction conditions. Organic carbonates,
especially cyclic carbonates, are applicable as green solvents, electrolytes in batteries, feedstock for fine
chemicals and monomers for polycarbonate production. This review summarizes new developments
in the ring opening of epoxides with subsequent CO2-based formation of cyclic carbonates. The
review highlights recent and major developments for sustainable CO2 conversion from 2000 to the
end of 2021 abstracted by Web of Science. The syntheses of epoxides, especially from bio-based raw
materials, will be summarized, such as the types of raw material (vegetable oils or their esters) and
the reaction conditions. The aim of this review is also to summarize and to compare the types of
homogeneous non-metallic catalysts. The three reaction mechanisms for cyclic carbonate formation
are presented, namely activation of the epoxide ring, CO2 activation and dual activation. Usually
most effective catalysts described in the literature consist of powerful sources of nucleophile such
as onium salt, of hydrogen bond donors and of tertiary amines used to combine epoxide activation
for facile epoxide ring opening and CO2 activation for the subsequent smooth addition reaction
and ring closure. The most active catalytic systems are capable of activating even internal epoxides
such as epoxidized unsaturated fatty acid derivatives for the cycloaddition of CO2 under relatively
mild conditions. In case of terminal epoxides such as epichlorohydrin, the effective utilization of
diluted sources of CO2 such as flue gas is possible using the most active organocatalysts even at
ambient pressure.

Keywords: cycloaddition; ionic liquid; deep eutectic solvents; onium salt; homogeneous catalysts

1. Introduction

Carbon dioxide capture and utilization (CCU technologies) has been recognized as
a possible and cost-effective way to reduce worldwide greenhouse gas emissions [1–10].
The use of CO2 as a raw material in chemical synthesis is a research area of great scientific,
economic and ecological interest [1–14]. The abundance and benignity of carbon dioxide,
which is cheap, nontoxic and nonflammable, makes it a very attractive low-cost C1-synthon
in organic chemistry. Moreover, the mitigation of CO2 emission from industrial processes
in order to reduce CO2 causing the greenhouse effect encourages chemists to carry out
research in this area.

CO2 is thermodynamically stable (∆G0 = −394.228 kJ/mol) [10], however, and needs
catalytic activation and a corresponding reactive agent for its possible fixation into the
organic molecules. Thermodynamically non-stable three-membered heterocyclic rings such
as epoxides serve as ideal reactants for CO2 fixation. The reaction of epoxides and carbon
dioxide to produce cyclic carbonates is attractive because CO2 can be incorporated in the
epoxide molecule without the formation of any side products (with 100% atom-economy)
(Scheme 1) [1,2].
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The epoxides available for carbonation can be classified according to their bound 
substituents as terminal epoxides (containing at least one unsubstituted CH2 group in the 
oxirane ring) and internal epoxides (containing substituents on both carbon atoms of the 
oxirane ring, Figure 1). 

 
Figure 1. Epoxides available for cycloaddition reactions. 

The reaction conditions for the efficient carbonation of epoxides differ significantly, 
utilizing terminal (for example, glycidyl derivatives such as epichlorohydrin or glycidol 
and corresponding glycidyl ethers) [1–3,5–14]) or sterically, much more hindered internal 
epoxides (for example, epoxidized fatty acids and their derivatives [4,8–14]). From the 
sustainability point of view, bio-based epoxides ideally serve as suitable reactants for the 
production of cyclic carbonates utilizing waste CO2.  

In particular, the connection of direct air oxidation and carbonation of ethylene oxide 
serves as a simple and effective technology that is useful for the subsequent efficacious 
utilization of anthropogenic CO2 (Scheme 1). In case of ethylene carbonate (EC) produced 
from ethylene, 44 g of CO2 is utilized per mol of produced EC (approximately 2/3 of EC 
molecular weight creates CO2) according to the stoichiometry of this reaction. On the other 
hand, CO2 is emitted during the production of ethylene using conventional technologies 
such as steam cracking (discussed in Section 2). According to the life cycle assessment 
(LCA) methodology, technology based on the carboxylation of petrochemical ethylene via 
catalytic air oxidation emits only 0.92 t CO2/t EC [2]. 

 
Scheme 1. CO2 consumption for ethylene carbonate (EC) production applying the carbonation of 
oxirane produced from ethylene [2]. 

The catalytic carboxylation of epoxides may afford either cyclic carbonates (Scheme 
2, Path a) or eventually polycarbonates (Scheme 2, Path b) [4,7,9], depending on the used 
catalyst and the reaction conditions.  

The nucleophile-based ring opening of oxirane activated by the catalyst with the 
subsequent addition of CO2 and five-membered ring closure accompanied by the release 
of nucleophile is described in Scheme 1, Path a. The catalyst that activates oxirane (H-
bond donor or Lewis acid) decreases the highest reaction barrier of the ring opening 
(usually the rate-determining step) or/and stabilizes the alkoxide produced by the ring-
opening, thus promoting the cycloaddition reaction. Different Lewis bases act as 
nucleophiles, preferentially bromide or iodide.  

Scheme 1. CO2 consumption for ethylene carbonate (EC) production applying the carbonation of
oxirane produced from ethylene [2].

The epoxides available for carbonation can be classified according to their bound
substituents as terminal epoxides (containing at least one unsubstituted CH2 group in the
oxirane ring) and internal epoxides (containing substituents on both carbon atoms of the
oxirane ring, Figure 1).
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Figure 1. Epoxides available for cycloaddition reactions.

The reaction conditions for the efficient carbonation of epoxides differ significantly,
utilizing terminal (for example, glycidyl derivatives such as epichlorohydrin or glycidol
and corresponding glycidyl ethers) [1–3,5–14]) or sterically, much more hindered internal
epoxides (for example, epoxidized fatty acids and their derivatives [4,8–14]). From the
sustainability point of view, bio-based epoxides ideally serve as suitable reactants for the
production of cyclic carbonates utilizing waste CO2.

In particular, the connection of direct air oxidation and carbonation of ethylene oxide
serves as a simple and effective technology that is useful for the subsequent efficacious
utilization of anthropogenic CO2 (Scheme 1). In case of ethylene carbonate (EC) produced
from ethylene, 44 g of CO2 is utilized per mol of produced EC (approximately 2/3 of EC
molecular weight creates CO2) according to the stoichiometry of this reaction. On the other
hand, CO2 is emitted during the production of ethylene using conventional technologies
such as steam cracking (discussed in Section 2). According to the life cycle assessment
(LCA) methodology, technology based on the carboxylation of petrochemical ethylene via
catalytic air oxidation emits only 0.92 t CO2/t EC [2].

The catalytic carboxylation of epoxides may afford either cyclic carbonates (Scheme 2,
Path a) or eventually polycarbonates (Scheme 2, Path b) [4,7,9], depending on the used
catalyst and the reaction conditions.

The nucleophile-based ring opening of oxirane activated by the catalyst with the
subsequent addition of CO2 and five-membered ring closure accompanied by the release of
nucleophile is described in Scheme 1, Path a. The catalyst that activates oxirane (H-bond
donor or Lewis acid) decreases the highest reaction barrier of the ring opening (usually
the rate-determining step) or/and stabilizes the alkoxide produced by the ring-opening,
thus promoting the cycloaddition reaction. Different Lewis bases act as nucleophiles,
preferentially bromide or iodide.

Path b. describes the insertion of another oxirane molecule followed by alternate
copolymerization with carbon oxide and epoxide. The polymerization occurs in the case of
insertion of another epoxide molecule competes with the ring-closure process. Generally,
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the utilization of metal-based catalysts is necessary for the direct formation of polycarbon-
ates starting from CO2 and epoxides via ring-open6ing polymerization.
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Scheme 2. Reaction of CO2 with epoxides producing cyclic carbonates and/or polycarbonates [11]. 

Path b. describes the insertion of another oxirane molecule followed by alternate 
copolymerization with carbon oxide and epoxide. The polymerization occurs in the case 
of insertion of another epoxide molecule competes with the ring-closure process. 
Generally, the utilization of metal-based catalysts is necessary for the direct formation of 
polycarbonates starting from CO2 and epoxides via ring-opening polymerization.  

Scheme 2. Reaction of CO2 with epoxides producing cyclic carbonates and/or polycarbonates [11].

Utilizing CO2 via cycloaddition to epoxides is the exothermic process that can be
carried out under mild reaction conditions using a broad spectrum of catalysts [11,12].
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Cyclic carbonates are generally stable liquids, which enables the long-term sequestra-
tion of CO2, especially when cyclic carbonates are subsequently used for polymerization.
Although the production of cyclic carbonates from CO2 and epoxides has been industrial-
ized since 1958 and uses inexpensive catalysts such as KI, the current production processes
still suffer from major disadvantages, such as high reaction temperatures (180–200 ◦C),
high pressure (5–8 MPa) and stoichiometric amounts of activating reagents [13,14].

It is known that the increasing of the reaction rate with the increase in CO2 pressure is
not only counterproductive due to the high energy consumption, but is even limited. The
high increase in CO2 pressure (and the overrunning at a concentration of 0.47 g CO2/mL)
is accompanied by sudden decrease in reaction rate due to the dilution effect causing the
reduction in epoxide and catalyst concentrations in the reaction mixture [11].

Cyclic carbonates are used for polymer production, as electrolytes in lithium-ion bat-
teries, polar aprotic (ethylene or propylene carbonate) or protic solvents (glycerol carbonate,
etc.) and as chemical intermediates in organic synthesis [1–14] (Scheme 3).
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Alluding to cyclic carbonates used as solvents, a grade deal of attention has been given
to the application of glycerol carbonate as it possesses low toxicity and good biodegrad-
ability, and has a high boiling point and simple availability from lipids and CO2, giving it
many applications [10]. Generally, the direct fixation of CO2 in cyclic carbonates and their
products is regarded as a greener approach than the existing practices. As North et al. have
mentioned, only two reactions of CO2, the dry reforming of methane (for fuel production)
and cyclic carbonate chemical production, could consume up to 25% of the anthropogenic
CO2 produced annually [12].

The cyclic carbonate formation based on the cycloaddition of CO2 requires oxirane
ring opening in the first reaction step, which is followed by insertion of CO2 in the second
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reaction step and ring closure to form cyclic carbonate. The general mechanisms of this
reaction are illustrated in Scheme 4 [3,12].
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According to the computations, the epoxide ring-opening has the highest energetic
barrier. Due to this reason, the applicable catalysts decrease the reaction barrier, acting
as Lewis bases (nucleophile, Nu) that are capable of nucleophilic attack and opening the
oxirane ring and/or stabilizing intermediates. In addition, the oxirane can be activated
by hydrogen bond formation interacting with a Lewis acid or a hydrogen bond donor
(HBD), thereby decreasing the energetic barrier of the epoxide ring opening. In order
to catalyze cyclic carbonate formation most effectively, the best catalysts often contain a
combination of both Lewis base and Lewis acid components or Lewis base/HBD parts. If
the catalysis influencing the ring opening is very effective, then the ring closure step can be
the rate-determining step with a higher energetic barrier [15].

The action of some described effective catalysts is based even on the activation of
CO2, as is assumed. The activation of CO2 comprises formation of carbamate or carbonate,
which may also take part in the epoxide ring-opening step [3,5,10–12].

Catalytic cycle 1 in Scheme 4 (CO2 activation mechanism) describes the nucleophilic
activation of CO2 using nucleophiles such as tertiary amines, amidines, guanidines or
carbenes (Nu1) to form an intermediate A-1 (carbamate or carboxylate), which subsequently
promotes oxirane ring opening, leading to the second intermediate (I-1). A-1 attacks
oxirane or oxirane activated by Lewis acid (A-2). Cyclization then occurs to produce a
cyclic carbonate while the nucleophile (Nu1) is recycled for a new catalytic cycle. The CO2
activation mechanism requires a catalyst nucleophilic towards CO2, but not for epoxide [4,12].

In addition, catalytic cycle 2 demonstrates a more common carbonation pathway
through the activation of epoxide. The hydrogen bond donor(s) (HBDs) coordinate(s)
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to the epoxide ring (formation of intermediate A-2). Subsequently, the Lewis base, for
instance, onium halide salts, acting as nucleophile (Nu2) attacks the oxirane to enable the
ring opening, producing an intermediate (I-2). Subsequently, upon ring opening, the CO2
insertion occurs in the O-H bond of the intermediate (I-2), producing a new intermediate
(I-3). The cyclization of the intermediate (I-3) accompanied by cleavage of the leaving
group (Nu2), produces cyclic carbonate as the final product, and nucleophile is recycled for
a further reaction. Alternatively, cleavage of nucleophile Nu2 from I-2 before CO2 addition
causes the formation of alternative products such as corresponding ketones via a Meinwald
rearrangement.

2. Sources of Epoxides

Epoxides are generally accessible either via the oxidation of the C=C double bond
in alkenes (using peroxides or O2/Ag-based reaction) or via the dehydrohalogenation of
geminal halogenoethanols [5].

Terminal epoxides such as epichlorohydrin (EPIC), glycidol (GL), methyloxirane
(propylene oxide, PO) and oxirane (ethylene oxide, EO), and their functional derivatives,
are the most studied epoxides for the CO2/epoxide coupling reaction.

EPIC and GL are chemicals that were recently produced from bio-based glycerol ob-
tained as a by-product from the chemical utilization of lipids (Scheme 5). Transesterification
or hydrolysis of lipids is the main pathway for the production of bio-based glycerol and
fatty acid esters (for biodiesel) and soap (sodium or potassium salts of fatty acids are used
as surfactants) [5] (Scheme 6).
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The nucleophilic substitution of OH groups in the glycerol structure with Cl via
the action of gaseous HCl enables the formation of monochloropropanediols or dichloro-
propanols, in the presence of a catalyst, usually a carboxylic acid [2,5,16–18], as the crucial
feedstock for production.

The subsequent ring closure induced by an inorganic base such as calcium or sodium
hydroxide enables epoxide formation via a dehydrochlorination reaction with inorganic
chloride (NaCl or CaCl2) being obtained as a co-product [19,20] (Scheme 5).

Similarly, starting from chloropropanediols, glycidol is produced by basic hydrodechlo-
rination [20].
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EO and PO are still mainly derived from ethylene and propylene produced by the
cracking of petrochemical feedstock with subsequent silver-catalyzed direct air oxida-
tion [2].

The development of appropriate sustainable alkenes production is based on the utiliza-
tion of bio-based syngas (CO + H2) obtained by the gasification of waste biomass [21]. The
most promising pathway for alkene production exploits methanol as a crucial intermediate
simply available from syngas with its subsequent dehydrogenation/coupling catalyzed by
zeolites (methanol-to-olefins technology, MTO) [21]. Apart from the above-mentioned, the
direct catalytic cracking of vegetable oils (lipids) may produce propylene [21].

The other sustainable pathway for ethylene or butylene production is based on the
dehydrogenation of bio-based alcohols (bioethanol and biobutanol) [22] accessible by
fermentation of oligosaccharides. Brasco Co. produces bio-ethylene, for example, through
the dehydration of bioethanol for polyethylene production in Brazil [23].

In addition, other types of epoxide can be produced from waste biomass, such as
limonene oxide and limonene dioxide, which can be synthesized via the promising epoxida-
tion of bio-based limonene obtained from citrus peels, oak and pine tree, under solvent-free
conditions with hydrogen peroxide and a tungsten-based catalyst [24].

In addition, vegetable oil-derived triglycerides and fatty acids contain double bond(s)
(Scheme 6), which can undergo epoxidation with peroxides [2]. The epoxidized fatty acid
derivatives can be subsequently exploited as the starting materials for cycloaddition or
even a subsequent one-pot polymerization reaction with CO2 [25,26]. Scheme 6 shows the
transesterification of natural triglycidyl oleate producing methyl oleate and bioglycerol,
and the subsequent epoxidation of methyl oleate using hydrogen peroxide.

It is worth noting, however, that epoxidation is a highly exothermic reaction (as
∆H = −55 kcal/mol for each double bond); thus, H2O2 is slowly added or added in a
stepwise manner in semi-batch operations, and requires a long reaction time. In order to
avoid problems with heat and mass transfer, process intensification using a microreactor
was proposed [27]. The microreactor could significantly decrease the reaction time with
higher epoxide selectivity.
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3. Homogeneous Metal-Free Catalysts

This review focuses on the recent development of homogeneous organocatalysts for
the cycloaddition reaction of CO2 and epoxides (insertion of CO2 into the oxirane ring)
with the aim of producing cyclic carbonates. Homogeneous catalytic systems (catalyst and
reagent dissolved in the same phase) usually display the highest conversion and selectivity
and are usually significantly cheaper compared with heterogeneous ones. Metal-free
organocatalysts are usually readily available even from renewable sources, non-recalcitrant,
biodegradable, affordable, and inert towards air and moisture. They may, however, be
more difficult to separate and recycle from the produced cyclic carbonates. On the other
hand, after the discovery of a new effective homogeneous catalysts, subsequent attempts
to immobilize it on the insoluble surface have followed in order to solve problems with
catalyst separation and recycling [12].

3.1. Catalytically Active Amines and Their Salts

Generally, the effective absorption of CO2 into the liquid phase and its subsequent ac-
tivation of chemisorbed CO2 are important steps for the subsequent cycloaddition reaction
of CO2 with epoxides.

The alkaline absorbents described in the literature as being capable of effectively
absorbing CO2 are different amines [28], including amidines such as 1,8-diazabicyclo
[5.4.0]undec-7-ene (DBU) [28–30], guanidines such as 1,5,7-triazabicyclo[4.4.0]dec-5-enium
(TBD) [28,29], and azaheterocycles such as pyridines and imidazoles [31,32], which are
efficient for the chemisorption and activation of CO2.

The correlation between the structures of different organic amines and their catalytic
activity in the cycloaddition of CO2 was studied by Yu et al. [28]. Their article com-
pares the catalytic activity of a variety of nucleophilic aliphatic amines (ethanolamine,
bis-(3-aminopropyl)-amine, oleylamine), basic aminoacid arginine, nucleophilic aromatic
amines (1,2-phenylenediamine, 2-aminobenzylamine) and non-nucleophilic cyclic amines
such as TBD and DBU for the cycloaddition of CO2 to methyloxirane (propylene oxide,
PO) [28].

It is well known that the chemisorption ability of CO2 (formation of carbamate)
increases with the increasing basicity of amine [33,34]. Yu et al. observed no apparent rela-
tionship of the pKa value of conjugated acids of the tested amines with respect to their catalytic
activity in the case of propylene carbonate (PC) formation (Figure 2, Table 1). The authors
observed the lowest propylene carbonate conversion when applying aliphatic amines.

Low conversion was even observed in the case of amine forming intramolecular
hydrogen bonds (1,2-phenylenediamine and 2-aminobenzylamine).

In contrast, aromatic amines (such as 1,4-phenylenediamine) and amidines or guani-
dines involving conjugated “N=C–N” structures (arginine, TBD) were found to be the most
active ones [28].

According to the published information [35,36], tertiary amines are often higher in
activity than primary or secondary ones (Table 2, Entries 5, 10–12). It has been proven that
amidines containing the “N=C–N” bond in their structures are particularly favorable for
the cycloaddition of CO2 with epoxides (Table 1, Entries 6–8, 17 and Table 2, Entries 3 and
12) [2–4,6,32]. The above-mentioned observations are in agreement with the statement of
North et al. that for the efficient activation of CO2, compounds that nucleophilically attack
CO2 but not the epoxide ring are sought out [12].
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Azzouz et al. demonstrated the effective utilization of 2-aminopyridine (2-NH2-PY) as
a catalyst (using 10 molar % of 2-NH2-PY) for the carbonation of different terminal epoxides
at 60–85 ◦C and 1 MPa of CO2 [35]. This carbonation was performed even at pilot scale.

Interestingly, corresponding salts with protic (Bronsted) acids (base.HA) of the above-
mentioned non-nucleophilic amines (DBU.HA, N-methylimidazole (MIM.HA),
N,N-dimethylaminopyridine (DMAP.HA)) and, alongside these, even triethanolamine,
pyridine and caffeine (Figure 3), are quite catalytically active in the cycloaddition of CO2
with epoxides (Table 3, Entries 3–12, 15–24). Hydrogen halides in particular are the most
active in comparison with corresponding free bases [29,30,32,37–39] (Table 3, Entries 3–6,
8–12). The most active seems to be hydroiodides of the corresponding amines (Table 3,
Entries 10, 18–24, 26–27). For the above-mentioned catalytic action of amine salts, the
reaction mechanism based on the activation of epoxide via the protonation with amine
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salt in the role of Bronsted acid (HA) is proposed with subsequent anion-based epoxide
ring opening.

Table 1. Effect of amine structure on the cycloaddition of CO2 to propylene oxide (PO) producing
propylene carbonate (PC).
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10 Pyridine 1.2 2.5 120 3 77 99 [32]
11 Imidazole 1.2 1.2 120 3 28 99 [32]
12 Imidazole 1.2 2.5 120 3 63 99 [32]
13 DMAP 12.5 2 120 2 76 96 [31]
14 DMAP 1.2 2.5 120 3 71 99 [32]
15 DMAP 1.2 1.2 120 3 30.7 not specified [39]
16 DMAP 1.2 1.2 120 3 31 99 [32]
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Table 2. The effect of organic amines on the conversion of PO [36].

Entry Catalyst pKa
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)
Temperature (◦C) Reaction Time (h) Conversion (%) Selectivity (%)

1 TBD 26 11.3 2 120 2 8 96
2 MTBD 25.5 10.2 2 120 2 15 99
3 DBU 24.3 10.5 2 120 2 93 99
4 TEA 18.8 15.5 2 120 2 41 95
5 DMAP 18 12.5 2 120 2 87 99
6 PY 12.5 19.9 2 120 2 30 92
7 DEA 11 21.5 2 120 2 34 92
8 MEOA 9.5 25.7 2 120 2 64 88
9 DEOA 8.9 15 2 120 2 74 94

10 DABCO 8.7 14.1 2 120 2 80 98
11 TEOA 7.8 10.6 2 120 2 81 93
12 MIM 7.1 19.2 2 120 2 74 99
13 IM 7 23.1 2 120 2 10 93
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Table 3. Comparison of the catalytic effects of amines and their salts on the carbonation of PO.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temperature
(◦C)

Reaction
Time

(h)

Conversion/Yield
(%) Selectivity (%) Ref.

1 No catalyst 0 1 140 2 0 0 [29]
2 DBU 1 1 140 2 2 3 [29]
3 [HDBU]OAc 1 1 140 2 86 90 [29]
4 [HDBU]Cl 1 1 140 2 97 >99 [29]
5 [HTBD]Cl 1 1 140 2 86 93 [29]
6 [HMIM]Cl 1 1 140 2 83 90 [29]
7 [HPY]Cl 1 1 140 2 59 87 [29]
8 CAFH.Br 7 0.7 70 16 93 not specified [37]
9 CAFH.Br 7 0.7 70 6 >99 not specified [37]

10 [HTEA]I 1.88 2 110 6 91 not specified [37]
11 IM + CH3COOH 1.2 1.2 120 3 95 98 [39]
12 PY + CH3COOH 1.2 1.2 120 3 94 98 [39]
13 No catalyst 0 2 110 6 trace not specified [38]
14 TEOA 1.88 2 110 6 trace not specified [38]
15 [HTEOA]F 1.88 2 110 6 4 99 [38]
16 [HTEOA]Cl 1.88 2 110 6 5 99 [38]
17 [HTEOA]Br 1.88 2 110 6 6 99 [38]
18 [HTEOA]I 1.88 2 110 6 91 99 [38]
19 [HMEOA]I 1.88 2 110 6 65 99 [38]
20 [HDEOA]I 1.88 2 110 6 90 99 [38]
21 PANI-HI 1.88 2 110 6 99 not specified [38]
22 [HHMTA]Cl 1.88 2 110 6 33 48 [38]
23 [Hbet]I 1.88 2 110 6 98 not specified [38]
24 [HMIM]I 1.88 2 110 6 91 99 [38]

Abbreviations: [HMIM]Cl—1-methylimidazolium chloride; CAFH.X—caffeinium halide; [Hbet]I—
Me3NCH2COO.HI; PANI-HI—Polyaniline hydrogen iodide; [HHMTA]Cl—urotropin hydrogen chloride.
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Sun et al. reported very effective carbonation using triethanolamine hydroiodide,
including the simple recyclability of this catalyst without loss of activity even after four
recycling steps [38].

The published results indicate that the synergetic effect of hydroxyl groups from
protonated aminoalcohol in the role of HBD, together with naked bromide or iodide,
significantly influences the cycloaddition of CO2 to the studied epoxides and makes possible
the application of this reaction even at ambient conditions (Table 3, Entry 17–18).

Catalytically active ammonium halide activates not only the epoxide ring for opening
through the H-bond with hydroxyl groups of triethanolammonium cation and the subse-
quent addition of intermediate 2-halogenoalkoxide to CO2, but even the next ring closure
caused by the facile withdrawal of halide from the produced 2-halogenocarbonate [38]
(Schemes 3 and 4).

Apart from the above-mentioned, in the case of caffeine hydrobromide, potassium
halides added to the reaction mixture as an additional source of nucleophiles were success-
fully tested. With the same reaction conditions, the enhanced efficiency of cyclic carbonate
formation was observed utilizing equimolar quantities of KX and caffeine.HBr or even
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2: 1 KX: caffeine.HBr using DMSO as the reaction solvent at 70 ◦C and 0.7 MPa CO2 pres-
sure [29,37]. The yield of cyclic carbonate increased following the trend KF < KCl < KBr < KI,
which was in good agreement with nucleophilicity and nucleofugacity of the corresponding
halide anions (Table 4, Entries 17–25).

Table 4. Catalyst screening for the cycloaddition of EPIC.
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10 HBr 7 0.7 70 16 78 [37]
11 HI 7 0.7 70 16 42 [37]
12 HCl 7 0.7 70 16 26 [37]
13 1-MIM.HBr 7 0.7 70 16 99 [37]
14 1,2-MMIM.Br 7 0.7 70 16 93 [37]
15 1-MIM.HBr 7 0.7 70 16 77 [37]
16 1,2-MMIM.HBr 7 0.7 70 16 67 [37]
17 CaFH.Br 7 0.7 70 6 14 [37]
18 CaFH.Br/KI (1:1) 7 0.7 70 6 94 [37]
19 CaFH.Br/KI (1:2) 7 0.7 70 6 >99 [37]
20 CaFH.Br/KBr (1:1) 7 0.7 70 6 87 [37]
21 CaFH.Br/KBr (1:2) 7 0.7 70 6 95 [37]
22 CaFH.Br/KCl (1:1) 7 0.7 70 6 70 [37]
23 CaFH.Br/KCl (1:2) 7 0.7 70 6 81 [37]
24 CaFH.Br/KF (1:1) 7 0.7 70 6 38 [37]
25 CaFH.Br/KF (1:2) 7 0.7 70 6 51 [37]
26 TEA.HI 10 0.1 40 24 87 [41]

In Table 5, the increase in carbonate yields using CAFH.Br/KI in the case of carbonation
of terminal epoxides is documented. In the case of internal epoxide (limonene oxide),
however, no carbonation was observed using caffeine hydrobromide or even its mixture
with KI (Table 5, Entry 5).

Roshan et al. came to the conclusion that even the addition of a low quantity (a
catalytic amount) of H2O significantly enhances CO2-based formation of PC over tertiary
heterocyclic amines such as IM, PY and DMAP, giving over 98% selectivity of PC formation
(at 120 ◦C, 1.2 MPa, 3 h). The observed results were evaluated by a DFT study comparing
energy profiles for free amine in comparison with corresponding amine hydrogencarbonate-
mediated cycloadditions of CO2 to propylene oxide. Ammonium hydrogencarbonates
produced in situ from heterocyclic amine, H2O and CO2 works similarly to the above-
mentioned amine salts as activators of the epoxide ring. As was argued, the HCO3

− anion
generated in the water-CO2-base reaction was the key active species that gave the higher
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activity of the base-water systems rather than the carbamate salt (produced by a reaction of
R3N with CO2) [32].

Table 5. Reaction of various epoxides with CO2 [37].

Entry Abbreviation
of Used Epoxide Cyclic Carbonate

Conversion (%)

CAFH.Br CAFH.Br/KI

1 EPIC CMEC
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Reaction conditions: 7 mol% catalyst at 70 ◦C and 0.7 MPa; reaction time, CAFH.Br = 16 h and CAFHBr/KI = 6 h.

It should be mentioned that low-melting salts (melting point below 100 ◦C) obtained
by the neutralization of organic bases with organic or inorganic acids embodies are called
protic ionic liquids (PILs). The melting of PILs could enhance the miscibility of catalytically
active PILs with reacting epoxide and CO2 compared with solid catalysts, as was published
by Zhang et al. in the case of DMAP hydroiodide [42] or by Kumatabara et al. using
triethylamine hydroiodide [41] at ambient pressure (Table 3, Entry 10 and Table 4 Entry 26).

Zhang et al. published results obtained even by means of the capture and utilization
of CO2 for the cycloaddition into SO using PIL (DMAP hydrobromide) at ambient pressure
and 120 ◦C [42]. This PIL has superior catalytic effect compared with other hydrogenhalides
of tertiary bases such as DBU, MIM, DABCO or tetramethylguanidine (Table 6). DMAP.HBr
is well reusable with no drop in activity after five recycling steps. DMAP.HBr is able to
carbonate even internal epoxides such as ChO, although this cycloaddition is quite sluggish.
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3.2. Two Components Catalysts Based on a Combination of Organic Base and Hydrogen Bond Donor

As was mentioned in Section 3.1, the combined action of protonated amine with
nucleophilic anion positively influences the efficiency of cycloaddition. This synergic
action between the Lewis base, such as the amine, and hydrogen bond donors (HBDs) was
reported in the literature [2,4,6,32,36,43].

The possible synergic effects of alcohols (glycerol, glycidol, 1,2-propylene glycol (PG),
poly(ethylene glycol)-600 (PEG600), poly(ethylene glycol)-400 (PEG400), cellulose, chitosan
and β-cyclodextrin (β-CD)) known as HBDs was explored in CO2-based cyclic carbonates
synthesis catalyzed by amines, as mentioned in Section 3.1 [36]. For this purpose, the most
catalytically active DBU and DMAP were tested in relation to the co-action of the chosen
HBDs (Table 7).

Out of the set of experiments, cellulose was recognized as the most effective HBD in
the addition of CO2 to propylene oxide [36].

The effective quantity of cellulose used as HBD in the case of the DBU catalysis of the
chemical fixation of CO2 into propylene carbonate is very low with respect to the optimal
quantity of DBU (15 mg of cellulose + 300 mg of DBU per mL of PO). The effect of the DBU
excess on the yield of PC in the DBU-cellulose reaction system was studied. Generally, the
yield rises with the increasing of the DBU: cellulose ratio with the maximum conversion
and selectivity reached at a mass ratio of 25–30:1 [36]. The high catalytical activity of
cellulose was, in all probability, explained by Khiari et al. and Gunnarson et al. [44,45].
Cellulose reacts in co-action with a significant excess of non-nucleophilic DBU, with CO2
producing carbonate by means of a reaction similar to that of cellulose xanthate formation
during the production of viscose utilizing a sulfur analogue of CO2, carbon disulfide. The
produced carbonate should be a nucleophilic agent that attacks and opens the epoxide ring
rather than the known non-nucleophilic DBU.
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Table 7. Catalyst screening for the base catalyzed cycloaddition reaction of PO; effects of different
HBDs [36].

Entry Catalyst HBD
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temperature
(◦C)

Reaction
Time (h)

Conversion
(%)

Selectivity
(%)

1 DBU none 9.5 2 120 2 80 99
2 DBU H2O 9.5 2 120 2 51 89
3 DBU PG 9.5 2 120 2 89 98
4 DBU Chitosan 9.5 2 120 2 88 99
5 DBU β-CD 9.5 2 120 2 83 99
6 DMAP none 11.1 2 120 2 76 96
7 DMAP PG 11.1 2 120 2 86 97
8 DMAP Chitosan 11.1 2 120 2 83 98
9 DMAP β-CD 11.1 2 120 2 80 98

10 DBU Cellulose 9.5 2 120 2 93 99
11 DBU PEG600 9.5 2 120 2 83 99
12 DBU PEG400 9.5 2 120 2 86 99
13 DBU Glycerine 9.5 2 120 2 87 98
14 DBU a Cellulose 9.5 2 120 2 92 99
15 DBU b Cellulose 9.5 2 120 2 89 99
16 DBU c Cellulose 9.5 2 120 2 85 99

a 2nd reuse; b 3rd reuse; c 4th reuse.

Aoyragi et al. described the markedly increased formation of cyclic carbonates in
isopropylalcohol using triphenylphosphine hydroiodide as a catalyst. 1H NMR spectra
documented the formation of H-bonds between the used isopropylalcohol and the starting
epoxide [46]. The high activity of the above-mentioned hydroiodide (compared with other
HXs) was explained by both the high nucleophilicity and even the high leaving ability
(nucleofugality) of iodide ion.

Section 3.1 mentioned the significant catalytic activity of triethanolamine [36], which
could be explained by the synergy of HBDs (bound alcoholic OH groups) and the Lewis
basicity of the tertiary amine.

More advanced catalysts such as 2-hydroxymethylpyridine (2-PY-CH2OH) and
2,6-bis(hydroxymethyl)pyridine (2,6-PY-CH2OH)2 were developed for the high-efficiency
cycloaddition of CO2 with epichlorohydrin (EPIC) under a slightly elevated temperature
and ambient pressure (T = 25–60 ◦C, 0.1 MPa of CO2; see Table 4, Entry 4) [40]. The high
catalytic effect was demonstrated by 1H NMR spectroscope observing the formation of
a stable H-bond between the PY-CH2OH and oxygen of epichlorohydrin. The authors
demonstrated that the tested compounds with either heterocyclic nitrogen (benzylalco-
hol PhCH2OH) or hydroxymethyl (CH2OH) groups (PY) catalyzed EC formation only
sparingly (PY) or not at all (PhCH2OH) (Table 4, Entries 1–5).

The catalytic activity of nitrogen-doped charcoal for CO2 cycloaddition reactions
could be explained by the co-operation of OH groups working as HBDs and tertiary amines
bound in the graphitic structure of specially prepared N-doped carbons together with the
ability of active carbon to adsorb CO2 [47].

3.3. Aminoacids (AAs) as Catalysts

AAs contain amino and carboxylic groups in their structures. Amino groups can react
with CO2 to form N-COO− (carbamate) products with low binding energy, which can
catalyze the transfer of CO2 to the 2-halogenoalcoholate produced by the halide-based
opening of the epoxide ring. The carboxylate group (–COOH) can catalyze the oxirane ring
opening as effective HBD analogously to the amino group (–NHR) and hydroxyl (–OH).
Some AA salts have been successfully tested in the capture of CO2 from flue gas. In addition,
the amino groups can also be utilized in quaternization with the aim of introducing halide
as a nucleophile into the engineered catalytically active molecules (Table 8).
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Table 8. PO catalyzed by AAs.

Entry Catalyst Cocatalyst Cat./Cocat.
(mol%)

CO2 Pressure
(MPa) Temperature (◦C) Reaction

Time (h) Yield (%) Ref.

1 L-His - 0.8/- 8 130 48 100 [48]
2 L-His H2O 0.44/12.82 1.2 120 3 82 [49]
3 QGly - 2.15/- 1.2 120 2 84 [50]
4 L-His KI 0.2/0.2 1 120 3 98 [51]
5 L-His DBU 2/10 2 120 2 96 [52]
6 - DBU -/10 2 120 2 95 [52]

Abbreviations: L-His—L-Histidine; QGly—glycine quaternized using MeI under 10 min of microwave irradiation.

The yield of PO is dependent on the AA structure; basic AAs such as L-histidine
(L-His) and proline (Pro) containing basic additional groups (imidazolium and amino,
respectively) provided higher yields than acidic aspartic or glutamic acids (Figure 4).
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In addition, the combination of an amino acid with an HBD results in a higher catalytic
activity under milder reaction conditions than in the absence of an HBD. The binary
catalytic systems formed with the amino acid and H2O produced, for example, more active
systems for the synthesis of PO than in the absence of H2O [53]. In the case of L-His, the
time taken for the nearly total conversion was reduced from 48 h to 3 h by adding H2O as
an HBD (L-His:H2O ratio = 1:29) under similar conditions (Table 8, Entries 1 and 2). The
low H2O concentration was used to avoid the hydrolysis of the produced PC [49,53].

Roshan et al. showed that the combination of halide ions as nucleophiles (added in
the form of KI, for example) with L-histidine produced highly active catalytic systems for
the cycloaddition of CO2 to epoxides [51] (Table 8, Entry 4).

The most effective binary catalytic systems contained KI with basic AAs such as
His/KI (Table 8, Entry 4). In a related work, Yang et al. proved the high stability of AA/KI
catalytic systems, namely L-Trp/KI, for the cycloaddition of CO2 to PO to form propylene
carbonate. After carbonate separation conducted by means of distillation, the catalytic
system was reused five times without loss of activity [54].

The catalytic activity of the different KX salts followed the order Cl < Br < I corre-
sponding to the increasing nucleophilicity and leaving group ability [54]. This confirmed
the role of these anions in the opening of the epoxide ring [54].

3.4. Onium Salts as Catalysts

Quaternary ammonium (most often tetrabutylammonium bromide, TBAB, and iodide
(TBAI), phosphonium and sometimes even sulfonium salts [55]) are common catalysts for
the formation of cyclic carbonates from epoxides and CO2 [5,6,12] (Figure 5).
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The low-melting (below 100 ◦C) quaternary ammonium salts are called ionic liquids
(ILs). In addition, ILs show good solvating ability including CO2, variable polarity and
negligible vapor pressure [56]. ILs are considered to be sustainable (“green”) solvents
because of their properties such as relatively high thermal stability and negligible vapor
pressure, high chemical stability and simple separability, and the modularity of their
properties changing the structure of anions and cations.

The first published article that mentioned the formation of cyclic carbonates via
the cycloaddition of CO2 in epoxides catalyzed solely by ILs was published by Deng
and Peng [57]. The authors studied different 1-butyl-3-methylimidazolium (BMIM) and
N-butylpyridinium (BPY) salts varying in anions (chloride and tetrafluoroborate (BF4

−,
hexafluorophosphate (PF6

−)) and observed the highest activity in the case of BMIMBF4 salt. The
catalytic activity increase was in the order: BMIMPF6 < BPYBF4 < BMIMCl < BMIMBF4. This
observation is in agreement with the solubility of CO2 in these Ils; the highest solubility of
CO2 was determined in BMIMBF4 [58].

Dyson et al. and Wang et al. studied the abilities of different ILs that differed in
terms of the cations (alkylated imidazolium and tetraalkylammonium) and anions (halides)
used [59,60]. Interestingly, cheap Bu4NCl was found to be a very active catalyst compared
with the much more expensive alkylated imidazolium halides. Based on the experimental
results obtained at ambient pressure and 50 ◦C, they hypothesized that the balance between
the nucleophilicity of anions and the acidity of hydrogens bound in the imidazolium ring
of used IL is most important.

Yang et al. published an even higher catalytic activity of corresponding bromides
when comparing them with tetrafluoroborates (Table 9, Entries 10 and 11) [29].

An increase in catalytical activity was observed with the increasing of the lipophilic
alkyl chain length in RMIMXs when comparing 1-butyl-3-methylimidazolium and 1-octyl-
3-methylimidazolium bromide [29].

Based on this idea, Akhdar et al. successfully tested the carbonation of internal epoxide
produced via the epoxidation of methyl oleate [61–63]. The catalysts were prepared by
means of the alkylation of N-alkylimidazoles with oligoethylene iodide and modified
by ion-exchange to the corresponding bromide. N′-Oligoethylene-N-butylimidazolium
bromide was recognized as the most active catalyst enabling the carbonation of epoxidized
methyl oleate in 96% yield even at 100 ◦C and 2 MPa of CO2.

Table 9. Effect of the ionic liquid structure on the cycloaddition reaction of PO.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temperature
(◦C)

Reaction
Time (h)

Conversion
(%) Selectivity (%) Ref.

1 [BMIm]PF6 1.5 2 110 6 11.3 100 [57]
2 [BPy]BF4 1.5 2 110 6 25.3 100 [57]
3 [BMIm]Cl 1 2 110 6 63.8 100 [57]
4 [BMIm]BF4 0.75 2 110 6 67.4 100 [57]
5 [BMIm]BF4 1.5 2 110 6 80.2 100 [57]
6 [BMIm]BF4 2 2 110 6 90.3 100 [57]
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Table 9. Cont.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temperature
(◦C)

Reaction
Time (h)

Conversion
(%) Selectivity (%) Ref.

7 [BMIm]BF4 2.5 2 110 6 100 100 [57]

8 [BMIm]BF4 +
[BMIm]Cl 1.5 + 0.2 2 110 6 90.5 100 [57]

9 [BMIm]PF6 +
[BMIm]Cl 1.5 + 0.2 2 110 6 45.3 100 [57]

10 [BMIm]Br 1 1 140 2 54 70 [29]
11 [OMIm]Br 1 1 140 2 85 91 [29]
12 [BMIm]BF4 1 1 140 2 7 29 [29]
13 [OMIm]BF4 1 1 140 2 1 5 [29]
14 [p-ClBzMIM]Cl 0.25 2 130 4 86.34 not specified [60]
15 [o-MeBzMIM]PF6 0.25 2 130 4 31.82 not specified [60]
16 [o-MeBzMIM]BF4 0.25 2 130 4 33.03 not specified [60]
17 [BMIm]Br 9 4 70 22 85 >99 [64]
18 [OMIm]Br 9 4 70 22 88 >99 [64]
19 [BBzIm]Br 9 4 70 22 77 >99 [64]
20 [OBzIm]Br 9 4 70 22 73 >99 [64]

The catalytic activity of ILs cannot be known based on a comparison of the anion
effects using one type of cation. In the case of N-benzyl-N′-methylimidazolium salts, the
most active one is N-(o-methyl)benzyl)-N′-methylimidazolium chloride o-MeBzMIMCl;
the catalytic activity of the corresponding o-MeBzMIMBF4

− and o-MeBzMIMPF6
− salts is

lower (Table 9, Entries 14–16) [60].
Anthofer et al. studied the relationship between the structure, affinity to CO2 and

catalytic activity of different low-melting N,N′-dialkylimidazoles in detail [64] (Figure 6).
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R2 = H; R3 = Oct = 1-(2,3,4,5,6-pentafluoro)benzyl-3-octylimidazolium bromide [OBzF5Im]Br.

As could be seen, the most active ILs were those that contained bulk lipophilic sub-
stituents (N-octyl-N′-pentafluorophenyl-, N-butyl-N′-pentafluorophenyl- or N-methyl-N′-
octyl-imidazole). The observed catalytic activity correlates well with the measured sorption
of CO2 in the studied ILs under the reaction conditions of this study. The substitution of
the 2-position also significantly reduced the activity of the tested ILs [64].

The authors detected an interaction (hydrogen bond formation) between the acidic
hydrogen of the used imidazole bromides (bound in position 2) and the oxygen atom of
PO using FT-IR spectroscopy [64]. The mentioned catalyst was very effective even for the
carbonation of internal epoxides such as cyclohexene oxide (ChO).
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As could be seen, the most active ILs were those that contained bulk lipophilic sub-
stituents (N-octyl-N′-pentafluorophenyl-, N-butyl-N′-pentafluorophenyl- or N-methyl-N′-
octyl-imidazole). The observed catalytic activity correlates well with the measured sorption
of CO2 in the studied ILs under the reaction conditions of this study. The substitution of
the 2-position also significantly reduced the activity of the tested ILs [64] (Table 10).

Table 10. Synthesis of PC from CO2 and PO using IL catalysts [64].

Entry Catalyst
Catalyst
Amount
(mol%)

Mole Fraction CO2 to
IL

CO2
Pressure

(MPa)

Temperature
(◦C)

Reaction
Time (h)

Conversion
(%)

Selectivity
(%)

0 - 0 - 0.4 70 22 0 -
1 [BMIm]Br 9.1 - 0.4 70 22 85 >99
2 [BM2Im]Br 9.1 - 0.4 70 22 64 >99
3 [BEMIm]Br 9.1 - 0.4 70 22 69 >99
4 [OMIm]Br 9.1 0.058 ± 0.002 0.4 70 22 88 >99
5 [OM2Im]Br 9.1 0.077 ± 0.003 0.4 70 22 80 >99
6 [OEMIm]Br 9.1 0.109 ± 0.001 0.4 70 22 71 >99
7 [BBzIm]Br 9.1 - 0.4 70 22 77 >99
8 [OBzIm]Br 9.1 0.096 ± 0.004 0.4 70 22 73 >99
9 [BBzF5Im]Br 9.1 - 0.4 70 22 86 >99

10 [OBzF5Im]Br 9.1 0.102 ± 0.011 0.4 70 22 71 >99

The authors detected an interaction (hydrogen bond formation) between the acidic
hydrogen of the used imidazole bromides (bound in position 2) and the oxygen atom of
PO using FT-IR spectroscopy [64]. The mentioned catalyst was very effective even for the
carbonation of internal epoxides such as ChO (Table 11).

Table 11. Cycloaddition of different epoxides catalyzed by [OBzF5Im]Br; effect of epoxide structure [64].

Entry Substrate Substrate
Abbreviation Conversion (%)

1
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As was published by Yang et al., in the case of butylated DABCO (BuDABCO), the
corresponding bromides, chlorides and hydroxides were recognized as the most effective
cycloaddition catalysts [29] (Table 12, Entries 1–4). In contrast, non-nucleophilic anions
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such as NTf2
−, PF6

− or BF4
− caused the loss of the catalytical activity of the studied

BuDABCO salts.

Table 12. PC synthesis catalyzed by DABCO-based Lewis basic ionic liquids [29].
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Interestingly, some of the attempts to boost the catalytic activity of onium salts 
constructing di- or tricationic ILs (Scheme 7) often fall flat (Figure 7) [66–68]. 
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1 [BuDABCO]OH 1 1 140 2 88 97
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4 [BuDABCO]Br 1 1 140 2 78 98
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7 [BuDABCO]BF4 1 1 140 2 2 6

Surprisingly, when ILs containing activated CO2 in their structures in
N,N′-di(alkyl)imidazolium-2-carboxylates were tested as CO2 cycloaddition catalysts by
Kayaki et al. [65], the observed activity was quite low and a high CO2 pressure was required
to obtain satisfactory conversion (Table 13). The hydrogen in position 2 on the imidazolium
ring is, in all probability, important as an HBD for epoxide ring activation and substitution
with -COO− causes a decrease in catalytic activity (Table 13).
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5 4.5 100 24 89
2 C6H5OCH2 5 2.5 100 15 81
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Interestingly, some of the attempts to boost the catalytic activity of onium salts con-
structing di- or tricationic ILs (Scheme 7) often fall flat (Figure 7) [66–68].
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Isothiouronium salts (Scheme 8) were also chosen for the testing of catalytic activity
for CO2 addition, providing encouraging results (over 90% yield with selectivity over 99%)
at 2 MPa pressure of CO2 and 140 ◦C after 2 h of action using 1 molar % of catalyst. The
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Catalysts 2022, 12, 298 23 of 45 
 

 

 

Scheme 7. Preparation of tested ILs (substituted BzMIMs) described by Yang et al. [60]. R = H = 
[BzMIM]Cl; R = 4-CH3 = [p-MBzMIM]Cl; R = 2-CH3 = [o-MeBzMIM]Cl; R = 4-NO2 = [p-NBzMIM]Cl; 
R = 2-Cl = [o-ClBzMIM]Cl; R = 4-Cl = [p-ClBzMIM]Cl; X = PF6 = o-MeBzMIMBF4-; X = BF4 = o-
MeBzMIMPF6. 

 

 
 

 
 

 
 

Figure 7. Structures of studied task-specific dicationic ILs (amino-pyridinium-pyrrolidinium 
bromide [66], Quaternized nicotine based ammonium ILs [67] and CH2-bridged tertiary amines [68]. 

Isothiouronium salts (Scheme 8) were also chosen for the testing of catalytic activity 
for CO2 addition, providing encouraging results (over 90% yield with selectivity over 99%) 
at 2 MPa pressure of CO2 and 140 °C after 2 h of action using 1 molar % of catalyst. The 
corresponding thiourea was practically nonactive [55]. 

 
Scheme 8. Preparation of catalytically active S-alkylisothiouronium salt [55]. Scheme 8. Preparation of catalytically active S-alkylisothiouronium salt [55].



Catalysts 2022, 12, 298 22 of 41

Apart from ammonium and sulfonium salts, the methyl-trioctylphosphonium-based
ILs with organic anions were studied as cycloaddition catalysts. Their catalytic activity was
remarkable even for cycloaddition reaction of less reactive styrene oxide (SO) with CO2 at
ambient pressure [46].

Wilhelm et al. compared the action of different aromatic or heterocyclic alcoho-
lates (phenolates or anions of hydroxypyridine regioisomers, Figure 8) used as anions in
combination with tetrabutylphosphonium, tetrabutylammonium and N-ethyl-DBU-based
cations [69] (Table 14). The authors discovered the cooperative effect of the alcoholate anion
of 2-hydroxypyridine with the tetrabutylphosphonium cation in the case of a reaction of
CO2 with epichlorohydrin. The catalytic activity, however, of other ILs containing Bu4N+

or Et-DBU+ cations was slender (Table 14).
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Table 14. Cycloaddition of CO2 with EPIC catalyzed ILs [69].

Entry Catalyst
Catalyst
Amount
(mol%)

CO2 Pressure
(MPa)

Temperature
(◦C)

Reaction Time
(h)

Conversion
(%)

1 - - 0.1 30 20 0
2 [Bu4P] 2-OPY 10 0.1 30 20 90
3 [Bu4P] 3-OPY 10 0.1 30 20 77
4 [Bu4P] 4-OPY 10 0.1 30 20 70
5 [Bu4P] PhO 10 0.1 30 20 55
6 [Bu4P] NO3 10 0.1 30 20 10
7 [Bu4N] 2-OPY 10 0.1 30 20 61
8 [Et-DBU] 2-OPY 10 0.1 30 20 42
9 [Bu4P] 2-OPY 10 0.1 30 20 25

10 [Bu4P] 2- OPY 10 0.1 80 4 24
11 [Bu4P] 2-OPY 10 2 80 4 98

The authors suggested the mechanism of this reaction based on activation of the epox-
ide ring with the tetrabutylphosphonium cation as the Lewis acid with the simultaneous
activation of CO2 and phenolate [69]. The most active [Bu4P] 2-OPY was tested at ambient
pressure for the carbonation of different terminal epoxides with satisfactory results, using
50 molar % quantity of [Bu4P] 2-OPY to an appropriate epoxide (Table 15).
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Table 15. Carbonation of different epoxides catalyzed by Bu4P.2-OPY at 0.1 MPa of CO2 and at 30 ◦C [69].

Entry Substrate Product Conversion (%)

1 a EPIC
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Wang et al. prepared ammonium salts in situ by alkylating tertiary amides (N,N-
dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-formylmorpholine, N-
methylpyrrolidone, tetramethylurea and N-formylpiperidine) with benzyl halogenides.
The prepared ammonium salts enabled the formation of cyclic carbonates even at an
ambient pressure, especially those prepared from DMF using benzylbromide [70] (Table 16).

Table 16. The effect of organic bases on cycloaddition (compared with DBU in co-action with alkyl
halides) [71].

Entry Catalyst
Catalyst
Amount
(mol%)

CO2 Pressure
(MPa)

Temperature
(◦C)

Reaction Time
(h)

Conversion
(%)

1 PhCH2Br/DBU 5 0.1 65 22 95
2 PhCH2Br/DBN 5 0.1 65 22 91
3 PhCH2Br/DMAP 5 0.1 65 22 83
4 PhCH2Br/DABCO 5 0.1 65 22 54
5 PhCH2Br/Py 5 0.1 65 22 85
6 PhCH2Br/TEA 5 0.1 65 22 84
7 PhCH2Br/MIm 5 0.1 65 22 81
8 PhCH2Br/Im 5 0.1 65 22 75
9 PhCH2Cl/DBU 5 0.1 65 22 71

10 p-BuPhCH2Br/DBU 5 0.1 65 22 92

11 4-Nitrobenzyl
bromide/DBU 5 0.1 65 22 83
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Table 16. Cont.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2 Pressure
(MPa)

Temperature
(◦C)

Reaction Time
(h)

Conversion
(%)

12 α-Bromodiphenyl-
methane/DBU 5 0.1 65 22 86

13 CH3CH2CH2CH2Br/DBU 5 0.1 65 22 68
14 CH3CH2CH2CH2I/DBU 5 0.1 65 22 27
15 [nBu4N]Br 5 0.1 65 22 72

Wang et al. attributed the high activity of the DMF + BnBr mixture in particular to
the activation of the oxirane ring by benzyl cations and the contemporary nucleophilic
activation of CO2 by DMF [70] (Scheme 9).
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mide/DMF [71].

Similarly, the effectiveness tertiary amines described earlier as active catalysts (see
Section 3.1) was satisfactorily proven for the reaction of epoxides with CO2 at an ambient
pressure after in situ quaternization via benzylation [71] (Table 16).

For a comparison of the action with the ammonium salts formed using arylmethylbro-
mide derivatives, Bu4NBr was employed as the bromide source using the same reaction
conditions as the model reaction (Table 16, Entry 15).

As could be seen, the yield was lower than that using benzyl bromide as the bromide
anion source, which was presumably due to the electrostatic interaction between the
bromide anion and the ammonium center decreasing with the bulkiness of the cation. The
authors stated, based on above-mentioned results, that the nucleophilicity of the bromide
anion is weaker for Bu4NBr than for the salts (Bn-DBU+.Br−).

The successful utilization of tetrabutylammonium halides, especially bromide and
iodide, in CO2 cycloaddition reactions was reported by Calo [72] (Table 17). The higher
reactivity of Bu4NBr/Bu4NI in comparison with RMIMBr or RPYBr salts was explained
by less coordination of halide with the bulkier Bu4N+ cation [72]. In addition, the catalytic
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activity of cheap and commercially available Bu4NXs is high and quite comparable with
much more expensive PPNXs salts (Figure 9).

Table 17. Cycloaddition of CO2 to glycidol producing hydroxymethyl ethylene carbonate (HMEC) [74].
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Entry Catalyst
Catalyst
Amount
(mol%)

CO2 Pressure
(MPa) Temperature (◦C) Reaction Time (h) Conversion (%)

1 [PPN]Cl 1 0.1 80 1 70
2 [Bu4N]Cl 1 0.1 80 1 80
3 [Bu4N]I 1 0.1 80 1 82
4 [Bu4N]Br 1 0.1 80 1 85
5 [Bu4N]Br 1 0.1 60 1 51
6 [Bu4N]Br 1 0.1 40 1 12
7 [Bu4N]Br 1 0.1 20 1 2
8 [Bu4N]Br 3 0.1 40 1 30
9 [Bu4N]Br 5 0.1 40 1 40
10 [Bu4N]Br 5 0.1 40 3 87
11 [Bu4N]Br 5 0.1 60 3 >99
12 [Bu4N]Br 5 0.1 40 24 52

13 a [Bu4N]Br 5 0.1 60 1 12
14 b [Bu4N]Br 5 0.1 60 1 4

a Methyl glycidyl ether as substrate; b PO as substrate; [PPN]Cl—bis(-triphenylphosphine)iminium chloride.
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3.5. Two Component Catalysts Containing HDBs and Onium Salts

The cheap and easily available quaternary ammonium halides TBAB and TBAI are
often combined with different HDBs with the aim of boosting catalytic activity for the
insertion of CO2 in the oxirane ring.

It was observed that even the addition of glycidol to the Bu4NX significantly increased
the yield of PO compared with Bu4NX used alone [74] (Table 18, Entries 4, 7–9).

Some mixtures of onium salts with HBDs produce low-melting eutectic solvents
(DESs) that readily dissolve both CO2 and epoxide, enabling cycloaddition even at ambient
pressure and low temperature [75]. DES is defined as a mixture of two or more compounds
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that are typically solid at room temperature, but when combined at a particular molar ratio,
changes into liquid at room temperature [76].

Table 18. Comparison of the catalytic activity of various PILs and DESs for the carbonation of SO.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temp.
(◦C)

Reaction
Time (h) Yield (%) Sel. (%) Ref.

1 Glycidol/[Bu4N]Br 1/1 1 50 24 15 n.d. [74]
2 Glycidol/[Bu4N]Br 1/1 1 60 24 40 n.d. [74]
3 Glycidol/[Bu4N]Br 1/1 1 70 24 66 n.d. [74]
4 Glycidol/[Bu4N]Br 1/1 1 80 24 83 n.d. [74]
5 Glycidol/[Bu4N]Br -/1 1 80 24 30 n.d. [74]
6 Glycidol/[Bu4N]Br 3/3 1 60 24 63 n.d. [74]
7 Glycidol/[Bu4N]Br 5/5 1 60 24 84 n.d. [74]
8 Glycidol/[Bu4N]Br -/5 1 60 24 16 n.d. [74]
9 Glycidol/[Bu4N]Br 5/5 1 60 24 85 n.d. [74]
10 [DBUH]Br/EDA (2:1) 20 0.1 25 48 94 99 [75]
11 [DBUH]Br/DEA (2:1) 20 0.1 25 48 97 >99 [75]
12 DEA 20 0.1 25 48 0 0 [75]
13 [DBUH]Br 20 0.1 25 48 79 >99 [75]
14 [TMGH]Br/DEA (2:1) 20 0.1 25 48 97 >99 [75]
15 [DMAPH]Br/DEA (2:1) 20 0.1 25 48 92 >99 [75]
16 [Et3NH]Br/DEA (2:1) 20 0.1 25 48 92 >99 [75]
17 [DBUH]Br/DEA (2:1) 20 0.1 25 48 81 >99 [75]
18 [DBUH]Br/DEA (1:1) 20 0.1 25 48 92 >99 [75]
19 [DBUH]Br/DEA (2:1) 20 0.1 60 5 >99 >99 [75]

20 a [DBUH]Br/DEA (2:1) 20 0.1 25 48 10 >99 [75]
21 [DBUH]Br/DEA (2:1) 20 0.1 60 48 43 n.d. [75]
22 [HMIM]Br 1 1.5 120 2 77.1 n.d. [75,77]
23 [Et3NH]Br 10 0.1 35 24 20 n.d. [41,75]
24 [DBUH]I 10 0.1 70 4 85 n.d. [30,75]
25 [DMAPH]Br 1 0.1 120 4 95 n.d. [42,75]
26 ChCl/PEG 400 (1:2) 2 1.2 130 5 89.4 n.d. [75,78]
27 ChCl/PEG 200 (1:2) 2 0.8 150 5 99.1 n.d. [75,78]

28 [Bu4P]Br/2-Aminophenol
(1:2) 4.5 0.1 80 1 96 n.d. [75,79]

29 ChI/NHS (1:2) 6 1 30 10 96 n.d. [75,80]
30 [DBUH]Br/DEA (2:1) 20 0.1 25 48 97 n.d. [75]
31 [DBUH]Br/DEA (2:1) 20 0.1 60 5 99 n.d. [75]

a 15% of CO2 and 85% N2. Abbreviations: TMGH—N,N,N′,N′-tetramethylguanidinium; DEA—diethanolamine;
Ch—choline.

They not only possessed comparable physicochemical properties to traditional ILs
(designability, non-volatility and high thermal stability), but also had advantages such
as low cost and a simple preparation process (mixing and melting) without the need for
purification.

DESs prepared via the mixing of tertiary amines hydrogen halides (R3N.HX) and
ethylene diamine or different aminoethanols were compared in the carbonation of SO at an
ambient pressure, obtaining intriguing yields and selectivities of SC even in the case of DES
prepared from hydrobromide of cheap triethyl amine and diethanolamine [75] (Table 18,
Entries 10–13). DBU hydrobromide mixed with diethanolamine at a molar ratio of 2:1 was
recognized as the most catalytically active. Testing this most effective DES, high yields of
different carbonates were determined by GC-MS even at an ambient pressure and room
temperature of CO2 after 48 h using 20 molar % of this DES. Testing the carbonation of
internal ChO, the yield of CC was 43%. Applying a mixture of 15% CO2 with nitrogen
(simulated flue gas) drops, however, the yield decreased from 92% (100% CO2 at an ambient
pressure after 48 h at room temperature) to 10% (using 15%CO2 in nitrogen under the same
reaction conditions, Table 18, Entries 14–21).



Catalysts 2022, 12, 298 27 of 41

Comparing the catalytic activity of different DESs with various protic ILs, the DES
(2 DBU.HBr + 1 DEA) is much more active than PIL DBU hydroiodide (DBU.HI) alone. The
observed high catalytic activity was explained by the synergistic action of DEA (as HBD)
and DBU.HBr as a source of highly nucleophilic naked bromide [75] (Table 18, Entries 16–21
and 24).

Similarly, high activity was observed using DES prepared from Bu4PBr with
2-aminophenol for the carbonating of terminal epoxides. The carbonation of internal
epoxide CO to CC was, however, very slow [79] (Table 18, Entry 28).

Pentaerythritol as an aliphatic polyol-based HDB was recognized as effective for the
carbonation of PO at elevated pressure [80]. Although completely inactive used alone or
with KI, in a mixture with Bu4N+ bromide or iodide, it is very active, obtaining a 97% yield
of PC at 70 ◦C after 22 h of CO2 (0.4 MPa) action (Table 19).

Table 19. Comparison of catalytic activities of DESs based on pentaerythritol (PETT) and Bu4NXs for
the preparation of PC [80].

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)

Temp.
(◦C)

Reaction
Time (h) Sel. (%) Yield of PC

(%)

1 PETT 5 0.4 70 22 >99 0
2 [Bu4N]I 5 0.4 70 22 >99 10
3 PETT/[Bu4N]I 5 0.4 70 22 >99 96
4 PETT/[Bu4N]Br 5 0.4 70 22 >99 97

5
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.

Choline iodide together with N-hydroxysuccinimide forms DES, enabling the high-
yield carbonation of PO to SC at 30–80 ◦C and 1 MPa pressure of CO2. Instead of choline
iodide, Bu4NX in a mixture with N-hydroxysuccinimide is applicable [81]. Using a 2 MPa
pressure of CO2, a high yield of CC from internal ChO was obtained at 70 ◦C after 10 h of
reaction (Table 18, Entry 29).

A broad set of aliphatic and aromatic alcohols in terms of their role as potential
HDBs was studied by Alves et al. [82] in the co-action of Bu4NBr using pressurized CO2
(2 MPa) for PO carbonation. The authors observed that the most active HDBs were low-
polar polyfluorinated secondary alcohols such as tertiary alcohols HFTI or 1,3-bis-HFAB
(Figure 10).

Aromatic polyols such as pyrocatechol, pyrogallol and gallic acid were less catalytically
active. Aliphatic alcohols exhibited low cooperative activity in the case of the tested Bu4NBr,
which was practically comparable with the catalytic effect of sole Bu4NBr. Interestingly,
some of tested alcohols even exhibited inhibition effects.
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PO [81].

The high catalytical activity of RMIMs/phenols-based DESs was published by Liu
et al. even at an ambient pressure of CO2 and at room temperature for SO [83]. Especially
N-ethyl-N′-methylimidazolium iodide (EMIMI) was recognized as a very suitable part of
DES in co-action with phenols substituted with electron-donating groups such as –NH2,
–C(CH3)3 and –Cl, –OH. The most effective DES contained EMIMI (2 mol) and resorcinol
(1 mol). The authors explained its high catalytic activity as multifunctional HBD-based
activation by acidic hydrogen bound in position 2 of EMIM salt together with hydrogen
from the –OH group of resorcinol (Figure 11) and the subsequent action of iodide as a
nucleophile. Interestingly, comparing the activity of (2 EMIMI + 1 resorcinol) DES with
the much cheaper (2 Bu4NI + 1 resorcinol) binary system for SO carbonation, the obtained
yields of PEC were very similar [83]. SO was the single epoxide studied, however, in this
article. Another catalytically very effective DESs containing mixture of choline chloride
and malic acid or choline iodide and glycerol published Vagnoni et al. [84].
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Additional very effective DESs were obtained as catalysts by mixing
2-hydroxymethylpyridine or 2,6-hydroxymethylpyridine with Bu4NI [40]. These DESs
were able to catalyze the carbonation of EPIC to chloromethyl-ethylenecarbonate (CMEC)
even at room temperature and ambient CO2 pressure. The carbonation of internal epoxide
ChO was very slow, however, under ambient conditions even after 20 h using 8 molar % of
catalyst [40].

Gallic acid (Figure 11), as a green, biobased and biodegradable HDB, was discovered
by Sopena et al. as a more effective alternative of resorcinol in a binary Bu4NI + gallic acid
catalytic system dissolved in 2-butanone [85]. Even internal epoxide was carbonated with
a high yield at 80 ◦C and 1 MPa pressure of CO2 after 18 h [85].

Polycarboxylic acids such as citric acid were effectively applied as the HDB part of
DES together with choline iodide [86]. The other tested carboxylic acids were less active
HDBs compared with citric acid. Additionally, it was observed that the molar ratio of the
used HBA and HDB is crucial. For DES obtained by the melting of choline iodide, citric acid
at a molar ratio of 2:1 (excess of iodide source) is highly active. Changing the molar ratios
significantly decreased the reaction yield (but not selectivity). ChO tested as an internal
epoxide at 70 ◦C and 0.5 MPa of CO2 produced only 36% CC after 6 h [86].

The attempts to substitute ILs-based iodides or bromides as key parts of DESs were
described by Wang et al. [87]. Applying boric and glutaric acids, together with BMIMCl,
the authors described significant catalytic activity even without the presence of bromide or
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iodide ions for the carbonation of terminal epoxides at 0.8 MPa of CO2 and 70 ◦C. [87]. The
carbonation of internal ChO was below 40% after 7 h of CO2 action.

The most active HDB described until this time for the catalysis of epoxides’ carbonation
is ascorbic acid in co-action with Bu4NI [15] (Table 20). This mixture was effective even for
the carbonation of internal epoxides, even at an elevated temperature (100 ◦C) and 2 MPa
CO2 pressure [15] (Table 21).

Table 20. Comparison of various HBD/Bu4NI catalytic systems for the carbonation of EPIC.

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)
Temp. (◦C) Reaction

Time (h)
Conv.
(%) Ref.

1 L-Ascorbic acid 2 0.1 25 23 70 [15]
2 L-Ascorbic acid 2 0.1 40 23 94 [15]
3 APAA b 2 0.1 25 23 58 [15]
4 Lactic acid 2 0.1 25 23 59 [15]
5 D-Glucose 2 0.1 25 23 45 [15]
6 Erythritol 2 0.1 25 23 54 [15]
7 Pentaerythritol 2 0.1 25 23 41 [15]
8 2-Pyridinemethanol 2 0.1 25 23 78 [15,84]
9 Dinaphtyl Si-diol 2 0.1 25 23 93 [15,88]

10 a DBU/PhCH2Br 2 0.1 25 23 93 [15,70]
11 Tetraethylene glycol/KI 2 0.1 40 23 92 [15,89]
12 P-ylide-CO2-adduct 2 0.1 25 23 90 [15,90]
13 [Bu4N]I 4 0.1 25 23 31 [15]

a using SO as a substrate. b APAA—acetal protected ascorbic acid.

Table 21. Carbonation of methyl oleate using ascorbic acid (HBD) and different sources of nucleophile
(Bu4NX) [91].

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)
Temp. (◦C) Reaction

Time (h)
Conversion

(%)
Selectivity

(%)

1 [Bu4N]I 5 0.5 100 24 70 59
2 [Bu4N]Br 5 0.5 100 24 83 87
3 [Bu4N]Cl 5 0.5 100 24 44 >99
4 L-ascorbic acid/[Bu4N]I 0.5/5 0.5 100 24 >99 20
5 L-ascorbic acid/[Bu4N]Br 0.5/5 0.5 100 24 91 83
6 L-ascorbic acid/[Bu4N]Cl 0.5/5 0.5 100 24 61 >99
7 L-ascorbic acid/[Bu4N]Cl 1/5 0.5 100 24 62 >99
8 L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 24 69 >99
9 L-ascorbic acid/[Bu4N]I 1.5/5 0.5 100 24 >99 74
10 L-ascorbic acid/[Bu4N]Br 1.5/5 0.5 100 24 98 >99
11 L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 24 69 >99
12 L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 24 59 >99
13 L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 24 57 >99
14 L-ascorbic acid/[Bu4N]Cl 2/5 0.5 100 24 49 >99
15 L-ascorbic acid/[Bu4N]Cl 5/5 0.5 100 24 15 >99
16 L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 48 >99 >99

17 a L-ascorbic acid/[Bu4N]Cl 1.5/5 0.5 100 24 38 >99
18 L-ascorbic acid/[Bu4N]Cl 1.5/5 1 100 24 92 >99

a Using recovered catalysts.

Encouraged by the robustness of this catalytic system, Elia et al. tested the Bu4NI/ascorbic
acid system for the cycloaddition of CO2 in epoxidized fatty acid esters [91]. Cyclic
carbonates based on fatty acid esters seemed to be potential plasticizers for polyvinyl
chloride instead of harmful phtalates, for example [92].

As can be seen in Table 21, the most effective catalytic mixture found contains
Bu4NCl/ascorbic acid. Bu4NCl is superior because overly nucleophilic Bu4NI causes
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undesirable Meinwald rearrangement producing ketones instead of cyclic carbonates, prob-
ably due to the sterical hindrance in the case of epoxidized oleic acid methyl ester [91]. In
the case of epoxidized polyunsaturated fatty acid esters, allylic alcohols are produced as
by-products using Bu4NI [91].

3.6. Application of Bifunctional (or Multifunctional) Onium Salts

The functionalization of ILs involves an increase in catalytic activity owing the syner-
gistic effect between the bound functional groups (nucleophilic iodide or bromide anions
together with –NH2, –COOH or –OH groups in the role of HBDs). The reached synergism
enables a decrease in the quantity of the multifunctional catalyst and simpler separation in
an optimal case [93] (Table 22, Figure 12). On the other hand, multifunctional ILs are more
difficult to prepare and more expensive due to this reason.

Table 22. Carbonation of butylene oxide (BO) using bifunctional phosphonium salts and onium salts [93].
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Figure 12. Structure of the most active bifunctional phosphonium salt tri-n-butyl-(2-hydroxyethyl)
phosphonium iodide [93].

Bifunctional catalysis based on aromatic OH-functionalized onium salt was described
by Tsutsumi et al. [94]. This research work demonstrates that it still possible to discover a
very active and quite cost-effective bifunctional catalyst such as m-trimethylammonium
phenolate, which is much more effective than more structurally complicated ones [94].
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This catalyst was only tested, however, for the carbonation of terminal epoxides and still
requires higher pressure of CO2 at an elevated temperature [94] (Scheme 10, Table 23).
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Scheme 10. CO2 activation by ammonium betaine organocatalyst 3-trimethylammonium pheno-
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Table 23. Comparison of catalytic action of different substituted phenols on carbonation of hexylene
oxide [94].

Entry Catalyst
Catalyst
Amount
(mol%)
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(h) Yield (%)
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Meng et al. published very promising results obtained by testing a series of OH-
functionalized DBU-based ILs (Figure 13) [95]. They discovered not only a recyclable
organocatalyst with excellent activity for carbonation of EPIC at 30 ◦C and an ambient
pressure of CO2, but also a compound suitable for the utilization of CO2 from a simulated
flue gas (Scheme 11). Its high activity is explained by the cooperative activation of the
epoxide ring by protonated DBU in the role of HDB and the activation of CO2 via carbonate
formation utilizing alcoholate on a bridge-functionalized bis-DBU anion.
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Scheme 11. Carbonation of EPIC using simulated flue gas (15% CO2 in nitrogen) catalyzed by
OH-functionalized DBU-based IL at ambient pressure and at 30 ◦C [95].

Another described group of catalytically active bifunctional catalysts consists of 1-
alkyl-2-hydroxyalkyl pyrazolium salts [96]. The most active one from the broad group of
tested derivatives was 1-ethyl-2-(2-hydroxy)ethylpyrazolium bromide (Figure 14). It was
demonstrated that using 1 MPa pressure of CO2 at 110 ◦C, even internal epoxide ChO was
carbonated to CC with a considerable yield of over 60% after 4 h of action [96].
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Figure 14. Structure of 1-ethyl-2-(2-hydroxy)ethylpyrazolium bromide, the most effective carbonation
catalyst based on 1-alkyl-2-hydroxyalkyl pyrazolium salts [96].

Zhou et al. compared the catalytic activity of quaternized aminoacid glycine (betaine)
and quaternized aminoethanol salts (choline salts, Scheme 12) [97].
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The main difference in the structures of these onium salts is the presence of a more
acidic carboxylic group (a stronger HBD) in the betaine structure compared with the
choline hydroxyl group. In addition, the effects of different anions in the case of protonated
betaine were compared, and it was observed that the most active was the corresponding
iodide salt. The catalytic activity of different betaine and choline salts decreased in the
range: betaine.HI > betaine.HCl > choline.HCl > betaine.HBr > betaine.BF4

−. The authors
interpret the low betaine.HBr activity as the effect of its low solubility in the reaction
mixture. The tested choline.HCl possesses an activity comparable with Bu4NBr, which
supports the positive effect of the hydroxyl group in the activation of the oxirane ring of
PO. This positive effect could be both based on HBD action and/or the activation of CO2
on account of carbonate formation. The considerable HDB effect of the carboxylic group
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of protonated betaines exceeds, however, the effect of the hydroxyl group in choline. The
reaction conditions for effective carbonation even of terminal epoxides are, however, harsh
(8 MPa CO2, 140 ◦C) [97]. Due to the above-mentioned reasons, the research that focused
on ILs functionalized with the carboxylic group(s) provided fruitful results.

Xiao et al. suggested that the influence of suitable acidity, even with the flexibility
of the bound -(CH2)n-COOH chain in the IL structure, is crucial for the carbonation of
epoxides due to the cooperation function of the ring-opening of oxiranes [98]. When 1-(2-
carboxyethyl)-3-methylimidazolium bromide was used as bifunctional IL, the PC from PO
was obtained with ca. 96% yield using pressurized CO2 (1.5 MPa) at 110 ◦C after 2 h. The
IL showed high thermal stability and could be recycled with a slight loss in activity, while
the selectivity of the cyclic carbonates remained at over 98%. The catalytic activity of the
described functionalized IL-based carboxylic acids is still not unique enough, however, and
these types of catalysts still require elevated pressure of CO2 to maintain a high conversion
of epoxides to cyclic carbonates. In addition, the carbonation of internal epoxide is still
quite slow even at the above-mentioned high pressure and elevated temperature [98].

The construction of bridge-functionalized bisimidazolium-based ILs improves the
catalytic activity of acidic ILs, as was discovered by Kuhn et al. [99]. The most active
catalyst is the most branched one, bis(imidazoyl)isobutyric acid derivative, N-arylated with
hydrophobic mesitylene (Figure 15). It is well recyclable and active even using 0.4 MPa
CO2 at 70 ◦C. It is ineffective, however, in the case of internal epoxides’ carbonation [99].
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An additional direction of research related to the significant increasing of catalytic
activity was discovered by Han et al. [100] and Wang et al. [101]. The Han and Wang
research groups recognized the crucial role of ion pairs produced by a combination of
acidic ILs with guanidinium cations. Using the same acidic ILs, neutralized by alkylated
guanidines, enables an increase in activity, probably due to the distinctive activation of
reacting CO2. This catalytic system is active at 0.1 MPa CO2 and 30 ◦C for the carbonation
of EPIC, but fails even in the case of PO (Table 24). Additionally, the used ion pairs are
simply separable from the produced cyclic carbonates by means of extraction with ethyl
acetate, enabling simple recycling without a significant drop in conversion.
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Table 24. Catalytic activity of multifunctional IM-based ILs on the synthesis of CPC by carbonation
of EPIC [100,101].

Entry Catalyst Catalyst Amount
(mol%)

CO2 Pressure
(MPa) Temp. (◦C) Reaction Time

(h) Yield (%)

1 C[CMIm]2 5 0.1 50 6 48.4
2 [−O2MMIm+]2[Br−]2[TMGH+] 5 0.1 50 6 92.1
3 [−O2MMIm+]2[Br−]2[TMGH+] 5 0.1 50 6 91.4
4 [TMGH+][−O2MMIm+][Br−] 25 0.1 30 12 84

Bridged methylene(bis)imidazolium salts substituted on both N′-nitrogens by car-
boxymethyl groups are more active after neutralization with tetramethylguanidine [101]
(Figure 16, Table 24). Even this catalytic system is active at 0.1 MPa CO2 and 50 ◦C but
the carbonation of internal ChO seems to be sluggish using the above-mentioned reaction
conditions. Additionally, the used catalyst is simply separable from the produced cyclic
carbonates and enables simple recycling without a significant drop in conversion.

Catalysts 2022, 12, 298 38 of 45 
 

 

 
Figure 16. Structures of multifunctional IM-based ILs tested for the carbonation of EPIC [100,101]. 

The reverse activation of dual amino-functionalized ILs neutralized with acidic 
aminoacids, such as glutamic or aspartic acids, is possible, as was documented by Yue et 
al. [102]. This ion-pair-based catalytic system produces, however, high yields at 0.5 MPa 
and a temperature of 105 °C after 13 h of CO2 action. It is recyclable without loss of activity 
and works well in the case of terminal epoxides [102] (Figure 17). 

 
Figure 17. Structures of dual amino-functionalized IM-based ILs [102]. 

A very attractive alternative approach was published by Kumar et al. [103]. Their 
research was focused on the utilization of CO2 from model flue gas (5–15% CO2 in N2 

Figure 16. Structures of multifunctional IM-based ILs tested for the carbonation of EPIC [100,101].

The reverse activation of dual amino-functionalized ILs neutralized with acidic aminoacids,
such as glutamic or aspartic acids, is possible, as was documented by Yue et al. [102].
This ion-pair-based catalytic system produces, however, high yields at 0.5 MPa and a
temperature of 105 ◦C after 13 h of CO2 action. It is recyclable without loss of activity and
works well in the case of terminal epoxides [102] (Figure 17).
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A very attractive alternative approach was published by Kumar et al. [103]. Their
research was focused on the utilization of CO2 from model flue gas (5–15% CO2 in N2
stream at atmospheric pressure) at 80 ◦C using task specific AA-based ILs (Scheme 13).
The authors verified that tetrabutylammonium salt with histidine dissolved in dialkyl
carbonate enables the capture and usage of CO2 for the carbonation of terminal epoxides
at the above-mentioned reaction conditions, with a high yield. This research work is one
of the very infrequent examples of the direct capture and subsequent utilization of CO2
from (model) flue gas. The authors documented that this catalyst is recyclable with no drop
in efficiency after six recycling steps. This catalytic system was proved, however, only on
terminal epoxides [103].
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A different approach was used for the preparation of highly catalytically active bifunctional
ILs using allylation by Hui et al. [104] (Figure 18). They discovered tetramethylguanidine-
based allylated IL with superior activity for the capture and utilization of CO2 from
simulated flue gas at 120 ◦C, ambient pressure and solventless conditions (Table 25). This
catalyst is effective even for carbonation of ChO and reusable with low loss of activity after
five recycling steps [104]. This type of catalyst seems to be very attractive even for the
carbonation of other internal epoxides including eventually epoxidized fatty acid esters.
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Table 25. Effect of different PILs and ILs on the carbonation of SO [71].

Entry Catalyst
Catalyst
Amount
(mol%)

CO2
Pressure

(MPa)
Temp. (◦C) Reaction

Time (h) Yield (%) Sel. (%)

1 [DBUH]Br 1.5 0.1 100 8 76 99
2 [AlDBU]Br 1.5 0.1 100 8 59 99
3 [DBUH]Cl 1.5 0.1 100 8 71 99
4 [MimH]Br 1.5 0.1 100 8 66 99
5 [DABCOH]Br 1.5 0.1 100 8 59 99
6 [TMGH]Br 1.5 0.1 100 8 80 99
7 [AlTMG]Br 1.5 0.1 100 8 99 99
8 [VBTMG]Cl 1.5 0.1 100 8 57 99
9 DBU 1.5 0.1 100 8 n.d. n.d.
10 Mim 1.5 0.1 100 8 n.d. n.d.
11 TMG 1.5 0.1 100 8 n.d. n.d.
12 TMG + [Bu4N]Br 1.5 0.1 100 8 32 99
13 [Bu4N]Br 1.5 0.1 100 8 17 99
14 [AlTMG]Cl 1.5 0.1 100 8 79 99
15 [VBTMG]Br 1.5 0.1 100 8 62 99
16 none 1.5 0.1 100 8 n.d. n.d.

4. Conclusions

The carboxylation of epoxides is a sustainable pathway for the fixation of CO2 into
valuable chemicals, considering the industrial utilization of cyclic and polymeric carbonates.
The effect of homogeneous organocatalysts published in recent literature is presented. We
hope that this review affords insights into the recent research and development of efficient
metal-free homogeneous catalysts.

Hopefully, the next development of homogeneous catalysts, including organocatalysts
(e.g., organic salt, ILs and DESs), will facilitate the expanding of the spectrum of available
metal-free organocatalysts applicable for the reaction of CO2 with terminal epoxides even
at CO2 pressures of 1 bar and reaction temperatures of less than around 50 ◦C. Except
high catalytic activity, the simple catalyst separability should be profitable because of the
necessity of high catalytic loading for the effective course of cycloaddition reaction. The
bulky tetrabutylammonium or tetrabutylphosphonium cations in Bu4NX or Bu4PX enable
the high nucleophilic activity of the appropriate naked anions of X−, such as bromide
or iodide, in most cases. Onium salts are widely applied as part of multicomponent
catalytic systems in the research and development of epoxides’ carbonation processes.
Most of all, deep eutectic solvents constitute an important group of multicomponent low-
cost homogeneous organocatalysts. In particular, DESs containing choline chloride and
urea exhibit high catalytic activity [84,85]. Besides the above-mentioned onium halides,
some ion pairs produced by the mixing of DBU with amidine-based alcohols are highly
active [95]. The most effective halide free IL-based homogeneous catalyst was recognized
to be the Bu4N salt of histidine [103]. Several ion pairs based on N′-carboxymethylated
MIM bromides neutralized with tetraalkylguanidines enable CO2 cycloaddition at ambient
pressure [100–102]. Searching for simple and cheap catalytic systems that are active at mild
reaction conditions is attractive not only due to the environmental point of view (lower
energy consumption) but even due to the thermodynamic reasons. As the formation the
cyclic carbonate is exothermic, the lower reaction temperature affects the shifting of the
reaction equilibrium in the products.

As we illustrate in this review, many simple molecules are known to act as effective
mediators and/or catalysts, including Lewis and Bronsted acids such as water, ascorbic
acid, cellulose, etc. Based on generally accepted mechanisms of carboxylation of epoxides,
research focused on utilization of other HBDs such as bidentate nucleophiles could be
profitable. The promising groups of simply available catalytically active compounds such
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as polyalkyl guanidines [100,101,104], enaminones [105], N-hydroxylamines [106] and
amidoximes [107] should, in our opinion, be investigated in more detail.

The utilization of tandem reactions such as the one-pot production of cyclic carbonates
starting directly from biobased unsaturated fatty acids esters [8], the one-pot production of
ethylene carbonate from ethylene produced by low-energy-demanding methods [2,108]
or the production of HMEC from chlorinated bio-based glycerol [109] seems to be very
promising for effective CO2 fixation.

It is evident from the recently published results that both the possible utilization of
CO2 from flue gas and the carbonation of internal bio-based epoxides such as epoxidized
fatty acid esters are the main developing areas of research focused on CO2 capture and
utilization. However, the mild reaction conditions and lower catalytic loading are still
challenging for both the carboxylation of internal epoxide substrates such as epoxidized
fatty acid esters as well as for the direct utilization of waste CO2 from power plant flue gas.
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