
Citation: Zhang, Y.; Lv, Y.; Mo, Y.; Li,

H.; Tang, P.; Li, D.; Feng, Y. Facile

Preparation and Promising

Hydrothermal Stability of Spherical

γ-Alumina Support with High

Specific Surface Area. Catalysts 2022,

12, 1416. https://doi.org/10.3390/

catal12111416

Academic Editor: Leonarda Liotta

Received: 23 October 2022

Accepted: 8 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Facile Preparation and Promising Hydrothermal Stability of
Spherical γ-Alumina Support with High Specific Surface Area
Yi Zhang, Yimin Lv, Yufan Mo, Huiyu Li, Pinggui Tang, Dianqing Li * and Yongjun Feng *

State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts,
Beijing University of Chemical Technology, Beijing 100029, China
* Correspondence: lidq@mail.buct.edu.cn (D.L.); yjfeng@mail.buct.edu.cn (Y.F.)

Abstract: It is of great importance to develop a spherical γ-alumina support with high hydrothermal
stability to be used in platinum reforming catalyst processes. The porous pseudo-boehmite powder
with a high surface area was first synthesized via a simple separate nucleation and aging steps method,
and was then used as a precursor to produce a spherical γ-Al2O3 support via an oil–ammonia column
method. The as-synthesized pseudo-boehmite has a substantially greater specific surface area of
336.0 m2·g−1 in comparison with the commercial Sasol boehmite powder (293.0 m2·g−1) from Sasol
Chemicals. In addition, the as-prepared spherical γ-Al2O3 support derived from the as-synthesized
pseudo-boehmite also possesses a higher specific surface area of 280.0 m2·g−1 compared to the
corresponding Sasol sample. Moreover, the as-prepared spherical γ-Al2O3 balls demonstrate a much
higher specific surface area of 185.0 m2·g−1 compared with the Sasol sample of 142.0 m2·g−1 after
hydrothermal tests at 600 ◦C, suggesting its promising application in the chemical industry.

Keywords: pseudo-boehmite; spherical γ-alumina; hydrothermal stability; high specific surface area;
separate nucleation and aging steps method; oil–ammonia column method

1. Introduction

Petroleum-based fossil fuels are still the most widely used energy source, and het-
erogeneous catalysts are indispensable in the petrochemical industry, particularly in the
platinum reforming catalyst process [1,2]. Because of its high specific surface area and
distinctive pore structure, γ-Al2O3 is by far the most commonly utilized inorganic material
as a catalyst or catalytic support for heterogeneous catalysis [3–6]. Spherical γ-Al2O3 balls
have attracted significant attention due to their uniform morphology, large specific surface
area, small bulk density, and excellent fluidity [7,8].

Unfortunately, γ-Al2O3 can easily adsorb water molecules and can be transformed
into hydrated alumina in water steam at high temperatures, giving rise to the reduc-
tion in the specific surface area and destruction of the pore structure [9]. Many methods,
such as element doping [10–12], and optimization of the synthesis process [13–16], have
been adopted to improve the hydrothermal stability of γ-Al2O3. For example, López
Pérez et al. [17] developed a condensation-enhanced self-assembly and pyrolysis crys-
tallization method to produce transition alumina with enhanced hydrothermal stability.
Moreover, Fujisaki et al. [18] employed a sol-gel method to prepare La2O3- and/or Ga2O3-
doped γ-Al2O3, and revealed that La2O3 on the grain surface of Ga2O3-Al2O3 solid solution
improved the hydrothermal stability of γ-Al2O3. Additionally, Gu et al. [19] adopted a
chemical vapor deposition method to fabricate silica-doped alumina with high hydrother-
mal stability at 873 K. However, most of the reported methods involve complicated prepa-
ration processes or some impurities, which may cause a negative effect on the catalytic
performance. Therefore, it is desirable to develop a simple method to prepare spherical
γ-Al2O3 balls with high hydrothermal stability.

Herein, a simple process composed of the preparation of pseudo-boehmite (PB) with
a high specific surface area and subsequent modeling of pseudo-boehmite into spherical

Catalysts 2022, 12, 1416. https://doi.org/10.3390/catal12111416 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12111416
https://doi.org/10.3390/catal12111416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-9254-6219
https://doi.org/10.3390/catal12111416
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12111416?type=check_update&version=1


Catalysts 2022, 12, 1416 2 of 8

γ-Al2O3 balls was proposed. At first, pseudo-boehmite powder with a specific surface
area of 336.0 m2·g−1 was synthesized via a simple separate nucleation and aging steps
method developed in our laboratory [20–22], which can be used to prepare nanomaterials
on a large scale, e.g., 3500 t/a layered double hydroxides. In this method, all the nuclei
were formed in a few seconds, and then the nuclei were crystallized and grown at the same
time. Subsequently, pseudo-boehmite sol was prepared and dropped into an oil-ammonia
column to form pseudo-boehmite gel balls, which were then dried and calcined at 600 ◦C
to produce spherical γ-Al2O3 balls. Promisingly, the obtained spherical γ-Al2O3 balls
possess the advantages of a high specific surface area, and excellent hydrothermal stability,
indicating their hopeful application in the platinum reforming catalyst process.

2. Results and Discussion
2.1. Morphologies and Structure of PB Powder

Figure 1 shows SEM and TEM images of PB and Sasol boehmite (SB) samples. PB
powder (Figure 1a,c) consists of loosely stacked nanoparticles and an abundant pore
structure, and some small particles assemble into nanofibers. In contrast, SB powder is
composed of tightly integrated nanoparticles with less pores (Figure 1b,d).
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Figure 1. SEM and TEM images of PB (a,c) and SB (b,d) samples.

Powder X-ray diffraction (XRD) pattern measurements were performed to investigate
the crystal structure of PB and SB powder, and Figure 2a displays the powder XRD patterns
of both samples. Here, there are six diffraction peaks that appear at 14.39, 28.13, 38.27,
48.93, 54.94 and 63.69◦/2θ in the XRD pattern of SB powder, which are consistent with the
(020), (201), (130), (002), (151) and (200) diffraction peaks of pseudo-boehmite [23]. One
can observe that the XRD patterns of PB are similar to those of SB, suggesting that the
as-synthesized PB has the same crystal structure as the SB powder. Fourier transform
infrared spectroscopy (FT-IR) characterization was conducted to further investigate the
composition of PB. As depicted in Figure 2b, the spectrum of PB is also similar to that
of SB powder, indicating that PB and SB have the same characteristic functional groups.
Specifically, the two broad bands at 3400 and 3093 cm−1 can be assigned to the stretch
vibration of the hydroxyl groups. The absorption band at 1078 cm−1 is attributed to the
symmetrical bending vibration of the Al-O-H group, and the two adsorption bands at 626
and 485 cm−1 could be ascribed to the vibration of the Al-O bond.
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Figure 2. Powder XRD patterns (a) and FT−IR spectra (b) of PB and SB powder.

2.2. Pore Structure of PB Powder

The pore structure of PB and SB was evaluated by the low-temperature N2 adsorption–
desorption method. Figure 3a demonstrates that the PB sample has similar adsorption and
desorption isotherms and a similar type H3 hysteresis loop to the SB sample, suggesting the
presence of abundant mesopores in both PB and SB. The calculated Brunauer–Emmett Teller
(BET) specific surface area is ca. 336.0 m2·g−1 for the as-synthesized PB, which is larger
than that of SB powder (293.0 m2·g−1). Figure 3b shows the pore size distribution curves of
PB and SB obtained according to the Barret–Joyner–Halenda (BJH) method. In comparison,
the as-prepared PB sample has narrower pore size distribution, ranging from 3 to 8 nm,
in comparison to the SB sample’s distribution from 2 to 10 nm, possibly resulting from
its small and homogeneous particle size. The results suggest that the separate nucleation
and aging steps method is useful to produce porous pseudo-boehmite with a large specific
surface area and narrow pores.
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2.3. Morphologies and Structure of Spherical γ-Al2O3 Balls

Spherical γ-Al2O3 balls, marked as Al2O3-I, were modeled using an oil–ammonia
column method with the PB powder as the precursor, and calcined at 600 ◦C under air
atmosphere for 4 h. Figure 4a,b show the photographs of Al2O3-I from the as-prepared PB
sample and commercial γ-Al2O3-S balls from Sosal Chemicals, respectively. TheAl2O3-I
balls possess uniform sizes with diameters of 2.0 + 0.1 mm, and smooth surfaces. SEM
characterization was further carried out to investigate the microstructures of the obtained γ-
Al2O3 balls. Figure 4c,d display the scanning electron microscope (SEM) images of Al2O3-S
with smooth outside surfaces and porous inside structures, which are different from those
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of Al2O3-I, as shown in Figure 4e,f. One can observe that Al2O3-I consists of many particles,
and its porous structure may be a result of the space among neighboring particles.
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Figure 5 depicts the XRD patterns of the powder ground from both of the Al2O3-I and
Al2O3-S samples, respectively. Evidently, the diffraction peaks of PB and SB disappear,
while a series of new diffraction peaks ascribed to γ-Al2O3 appear, and the corresponding
hkl values are marked on the graph, suggesting the successful transformation from pseudo-
boehmite precursors into γ-Al2O3 after calcination at 600 ◦C.
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2.4. Hydrothermal Stability of γ-Al2O3

The hydrothermal stability of γ-Al2O3 as a catalyst support is crucial for its application
in the platinum reforming catalyst process [24,25]. During this catalytic process, the catalysts
have worse catalytic activity and selectivity when the surface area is below 140 m2·g−1.
Figure 6 shows the low-temperature nitrogen adsorption–desorption isotherms (a, b), and
the corresponding pore size distribution curves (c, d) for spherical Al2O3-I (a, c) and Al2O3-
S (b, d) before and after hydrothermal treatment at 600 ◦C, under water vapor. One can
observe that the adsorption isotherms of Al2O3-I and Al2O3-S after hydrothermal treatment
are similar to those of Al2O3-I and Al2O3-S before hydrothermal treatment. However, the
desorption isotherms are somewhat different. The beginning desorption relative pressures
of the samples after hydrothermal tests are slightly higher than the corresponding initial
samples, which implies that the pore size becomes larger after hydrothermal treatment.
The pore size distribution curves in Figure 6c,d further confirm this result. The pore
size of Al2O3-I increases from 7.2 nm to 10.80 nm after hydrothermal treatment for 48 h.
Meanwhile, the pore size of Al2O3-S increases from 7.2 nm to 8.70 nm. Moreover, the pore
size distribution curves of both compounds show minimal changes after the first cycle,
indicating that the pore structures remain stable after 48 h of hydrothermal treatment.
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Figure 6. Adsorption–desorption isotherms and pore size distribution curves of Al2O3-I (a,c) and
Al2O3-S (b,d) after hydrothermal treatment under water vapor at 600 ◦C for 48 h (one cycle). Here,
the 0, 1st, 2nd, and 3rd samples correspond to the samples that were calcined at 600 ◦C for 4 h after
the 0 to 3rd hydrothermal treatment cycles, respectively.

In addition, Figure 7 further demonstrates the BET specific surface areas of Al2O3-I
and Al2O3-S after hydrothermal treatment. After hydrothermal treatment (one cycle is48 h),
the treated Al2O3 balls were calcinated at 600 ◦C for 4 h again for repeated hydrothermal
treatment. The specific surface areas of Al2O3-I and Al2O3-S decrease from 280.0 m2·g−1

to 206.0 m2·g−1 and from 209.5 m2·g−1 to 180.0 m2·g−1, respectively, after the first cycle.
One can observe that the specific surface areas of Al2O3-I and Al2O3-S decrease much more
slowly in the second cycle in comparison with the first one, and then become more stable.
Finally, the specific surface area of Al2O3-I remained at 185.0 m2·g−1 after 4 cycles for 192 h,
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which is much higher than that of Al2O3-S for 142.0 m2·g−1, indicating that Al2O3-I derived
from the pseudo-boehmite prepared by the separate nucleation and aging steps method
can retain a much larger specific surface area in comparison with the commercial powder
from Sasol Chemicals. The larger specific surface area improves the catalytic performance
of catalysts based on γ-Al2O3 supports, suggesting the promising application of Al2O3-I in
the chemical industry.
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3. Materials and Methods
3.1. Chemicals

Analytical grade aluminum sulfate (Al2(SO4)3·18H2O), sodium metaaluminate (NaAlO2),
ammonia, nitric acid and alcohol were used without further purification. The commercial SB
powder and Al2O3-S balls were supplied by Sasol Chemicals.

3.2. Synthesis of Pseudo-Boehmite

Pseudo-boehmite (PB) was synthesized via a simple separate nucleation and ag-
ing steps method by using Al2(SO4)3·18H2O and NaAlO2 as the reagents. First, 6.665 g
(0.01 mol) of Al2(SO4)3·18H2O and 4.918 g (0.06 mol) of NaAlO2 were dissolved in 100 mL
of deionized water to form homogenous solutions, respectively. A heating mantle was used
to heat Al2(SO4)3 solution to 85 ◦C, and then the Al2(SO4)3 and NaAlO2 solutions were
pumped into a rotating liquid membrane reactor at the same rate. The obtained mixture
was transferred into a three-necked flask and stirred for 6 h at 100 ◦C. The PB precipitates
were dried at 60 ◦C for 24 h after washing and centrifugating repeatedly with deionized
water and alcohol.

3.3. Preparation of Spherical γ-Al2O3 Balls

Spherical γ-Al2O3 balls were prepared via an oil–ammonia column modeling method.
Specifically, 12.0 g of the as-synthesized PB was dispersed in 28.0 mL of deionized water
by magnetic stirring for 0.5 h, and the suspension was heated to 100 ◦C. After this, 21.0 g
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of dilute nitric acid solution (3 wt%) was added dropwise into the suspension under
vigorous stirring to achieve a H+: Al3+ ratio of 0.05: 1. To obtain pseudo-boehmite sol, the
resultant slurry was continuously stirred for 4 h at 100 ◦C. After cooling down to ambient
temperature, the as-prepared sol was dropped into an oil–ammonia column by an injector,
and the formed gel spheres were aged for 4 h to produce spherical pseudo-boehmite gel
balls. The formed gel balls were washed with deionized water 8 times, followed by drying
overnight at 90 ◦C. Finally, the as-prepared spherical pseudo-boehmite gel balls were
calcined at 600 ◦C for 4 h to form spherical γ-Al2O3 balls, which were denoted as Al2O3-I.

3.4. Hydrothermal Stability Evaluation

The hydrothermal stability of spherical γ-Al2O3 balls was tested at 600 ◦C under a
continuous water vapor steam in a tube furnace, and a portion of the balls were taken
out for characterization every 8 h. After testing for 48 h, the spherical γ-Al2O3 balls were
removed and then calcined at 600 ◦C for 4 h. The testing and calcination cycle was repeated
three times.

3.5. Characterizations

Powder X-ray diffraction (XRD) patterns of the samples were recorded using an Ni-
filtered Cu-Kα radiation (Rigaku D/max-Ultima III) X-ray diffractometer with a scan speed of
10◦ min−1. Morphologies of the samples were investigated by a scanning electron microscope
(SEM, Zeiss Supra 55) and high-resolution transmission electron microscopy (TME, JEOL JEM-
2010 with an accelerating voltage of 200 kV). Fourier transform infrared spectroscopy (FT-IR)
spectra of the samples were recorded on a FT-IR spectrometer (VECTOR 22, 4000–400 cm−1).
Pore structures were analyzed using the low-temperature nitrogen adsorption–desorption
method and a Micromeritics ASAP 2390 volumetric adsorption analyzer.

4. Conclusions

In summary, pseudo-boehmite powder with a high specific surface area was success-
fully synthesized using the separate nucleation and aging steps method and spherical
γ-Al2O3 balls with a high specific surface area were then obtained by an oil–ammonia
column modeling method, using the obtained pseudo-boehmite as the precursor. The
as-synthesized pseudo-boehmite has a high BET specific surface area of 336.0 m2·g−1 and a
pore size of 3.72 nm, giving rise to the high specific surface area of γ-Al2O3 (280.0 m2·g−1).
Meanwhile, the prepared γ-Al2O3 balls retain a specific surface area of 185.0 m2·g−1 after
four hydrothermal treatment cycles (192 h), which is much larger than that of the com-
mercial powder from Sasol Chemicals (140.0 m2·g−1). These results show the promising
applications of Al2O3 as a catalyst support in the chemical industry.
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