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Abstract: Syngas has been utilized in the production of chemicals and fuels, as well as in the creation
of electricity. Feedstock impurities, such as nitrogen, sulfur, chlorine, and ash, in syngas have a
negative impact on downstream processes. Fischer–Tropsch synthesis is a process that relies heavily
on temperature to increase the production of liquid fuels (FTS). In this study, waste biomass converted
into activated carbon and then a carbon-supported iron-based catalyst was prepared. The catalyst at
200 ◦C and 350 ◦C was used to investigate the influence of temperature on the subsequent application
of syngas to liquid fuels. Potassium (K) was used as a structural promoter in the Fe-C catalyst to boost
catalyst activity and structural stability (Fe-C-K). Low temperatures (200 ◦C) cause 60% and 80% of
diesel generation, respectively, without and with potassium promoter. At high temperatures (350 ◦C),
the amount of gasoline produced is 36% without potassium promoter, and 72% with promoter. Iron
carbon-supported catalysts with potassium promoter increase gasoline conversion from 36.4% (Fe-C)
to 72.5% (Fe-C-K), and diesel conversion from 60.8% (Fe-C) to 80.0% (Fe-C-K). As seen by SEM
pictures, iron particles with potassium promoter were found to be equally distributed on the surface
of activated carbon.

Keywords: biomass; Fischer–Tropsch synthesis; carbon-supported iron catalyst; gasoline; diesel

1. Introduction

Researchers throughout the world are striving to develop alternate technologies for
manufacturing chemicals and hydrocarbons from coal as crude oil sources becomede-
pleted [1,2]. Fischer–Tropsch Synthesis was invented by a German chemist (FTS). Syngas, a
mixture of hydrogen and carbon monoxide produced from coal, natural gas, or biomass,
is used in the FTS process [3]. There are two stages to the FT reaction. The catalyst is
employed in the first stage to produce straight-chain hydrocarbons, as well as water and/or
carbon dioxide [4]. Hydrocracking is employed in the second stage to create the products
and split them into liquid fuel. To boost production, various catalysts (Fe, Co, Ru, and
Ni) have been utilized [3]. Due to their better conversion and selectivity, as well as their
ease of CO dissociation, metal catalysts are favored in the FTS process [5]. Due to their
inexpensive cost, favorable reactional conditions, and high catalytic activity, iron (Fe) and
cobalt catalysts are frequently selected and utilized in commercial FTS reactors [6].

Fe catalysts are less expensive than other catalysts, and provide more product distri-
bution flexibility than other catalysts. The Fe-based catalyst is more appealing, since it
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has a better water gas shift reaction with a lower H2/CO ratio [3]. For iron-based cata-
lysts, there are two forms: supported and bulk, both of which are manufactured using the
wet impregnation method. To prevent particle agglomeration, a supported iron catalyst
requires the inclusion of metal support. In comparison to bulk iron catalysts, they can also
have a higher mechanical strength [7]. Some support materials, such as SiO2, Al2O3, TiO2,
and carbon, have been widely used in recent research to influence catalyst performance in
the FTS process [8,9]. The FTS activity and selectivity are influenced by the physical and
chemical features of the support. They have been used for a long time to help with the
FTS process. Carbon compounds, such as carbon black and activated carbon, have been
used for this purpose [10]. Supported iron FT catalysts provide a larger iron dispersion;
therefore, research has shifted away from bulk iron FT catalysts in recent years. Supported
iron catalysts improve the performance of iron species by optimizing the interaction of iron
species with support catalysts [11].

An iron metal catalyst’s support serves as a macromolecular ligand that either directly
or indirectly increases the reactivity of the active site [7]. Carbon materials’ catalytic
performance is influenced by their electrical characteristics, surface chemistry, and porous
structure [12]. Because activated carbons have a porous morphology, they havebeen used as
a support material. In this study, activated carbon derived from “Lantana Camara” is used
as a support. Selecting the right carbon support could affect the overall FTS process [13,14].

Lower activity is one of the key problems of iron-based catalysts, which can be im-
proved by using the correct promoters, such as potassium, sodium, and copper, which are
regarded as advantageous for Fe-catalysts. To improve selectivity and optimize the spatial
organization of active iron species, a variety of promotors are utilized [3]. Researchers
have recently focused their attention on promoters such as potassium, copper, sodium,
and manganese [6]. Potassium (K) promoter has been widely used in carbon-supported
iron catalysts to improve the selectivity of hydrocarbons. Potassium promoter reduces
methane formation, and enhances the production of short olefins. The use of potassium
promoter with carbon support showed a marginal effect on the reactivates of CO and CO2.
The addition of potassium as a promoter creates effects on an optimized iron-carbide by
donating electrons to an active surface of iron. That is why potassium is used as a promoter
in this study. For this purpose, the incipient wetness impregnation method was used to
produce the carbon-supported iron catalyst with potassium promoter for Fischer–Tropsch
synthesis [14].

FTS reactions are classified into two types: low-temperature FTS reactions (200–280 ◦C)
and high-temperature FTS reactions (300–350 ◦C). The low temperature FTS reactions have
been used to make specific C5+ hydrocarbons. For the coproduction of liquid hydrocarbons,
however, high temperature FTS reactions have been used. At a temperature of 270 ◦C,
the synergistic effect of active co-sites and acidic sites has been deemed the best reaction
temperature for gasoline synthesis [15]. Given the foregoing, the goal of this research was
to look at FTS reactions at low temperatures (LT-FTS) of 200 ◦C and high temperatures
(HT-FTS) of 350 ◦C to see how reaction temperature and catalyst type affected direct
syngas conversion via Fischer–Tropsch synthesis. Potassium (K) was used as a “structural
promoter” (Fe-C-K) to make the Fe-C catalyst more active and stable, and its effect on the
next process will be looked into as well.

To the best of our knowledge, no study on the development of a carbon-supported
iron catalyst by using Lantana Camara has been conducted. The oil nature of Lantana Camara
enhanced the production of gasoline and diesel. Therefore, this article could be beneficial
for researchers and industrialists for the preparation of a carbon-supported catalyst by
using Lantana Camara as a carbon support.

2. Results and Discussions
2.1. X-ray Diffraction

Figure 1 depicts changes in the crystal structure of various catalysts (Figure 1A–C). A
carbonaceous structure peak at angle 23 can be observed in the XRD pattern of activated
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carbon derived from “Lantana Camara” in Figure 1A [16]. Three processes are involved in
the chemical activation using H3PO4: dehydration, degradation, and coagulation. Research
revealed that the phosphoric acid forms pores with raw precursor during the carbonization
phase [17,18].
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Figure 1B shows the XRD patterns of the carbon-supported iron catalyst, Fe-C. Because
activated carbon was utilized as a support, the large peak at 23◦ can be attributed to the
amorphous structure of the carbon. The reflection at a value of 26.5◦ becomes more
discernible during FTS reactions, and is attributed to the graphite carbon [19]. The peak at
angles of 24◦ and 32◦ in both low- and high-temperature catalysts (Fe-C (LT-FTS) and Fe-C
(HT-FTS)) demonstrates the creation of Fe2O3 [7].

Figure 1C shows the XRD patterns of the carbon-supported iron catalyst with potas-
sium promoter (Fe-C-K). Iron carbide (Fe3C) synthesis in the Fe-C-K catalyst at an angle
of 37◦ at low and high temperatures is responsible for the formation of gasoline [20]. Dur-
ing the activation procedure, Fe2O3 were converted to Fe3O4and Fe5C2 [21]. Researchers
suggested that the creation of Fe5C2 at all times boosts diesel formation [22,23]. The Fe5C2
is considered as an active phase, and is critical for obtaining simultaneous improved
selectivity and activity in iron-based Fisher–Tropsch synthesis. Thermal reduction and
carburization methods have been frequently used for this purpose. The creation of Fe5C2
occurs during the FTS reaction, as shown by the post Fe-C catalyst, and this is observed at
an angle of 44◦ [24]. It was thought that iron carbide (Fe3C) to Fe5C2, which has a better
ability to pick out C5+, was the most active iron phase for making the FTs [25]. The results
show that changing the catalyst qualities by changing the chemical and physical properties
of carbon improves metal oxide reduction [7].

2.2. Scanning Electron Microscopy

Scanning electron microscopy (SEM) images of activated carbon are shown in Figure 2a,b,
demonstrating that its interior surface is riddled with voids. These chambers are upright to
allow for the development and provision of iron particles, resulting in long-lasting contact
between carbon and iron particles.

Figure 3a shows the precise development of iron particles on the surface of activated
carbon. On the surface of activated carbon, the production of needle formations is uniformly
distributed. The Fe-C (Figure 3b) iron particles are absorbed and agglomerated during the
low-temperature (LT-FTS) reaction due to an increase in the Fe crystallite size. The Fe-C
(Figure 3c) marginally alters the activation of iron oxides in a high-temperature (HT-FTS)
reaction. This demonstrates that temperature has a significant impact on the structure and
properties of the catalyst.
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In Figure 4a, the potassium particles are dispersed into the carbon surface to create
the circular structure. This is because only 3% of the promoter was used. The needle
and spherical Fe-C-K particles (Figure 4b) react inside the FT reactor to generate carbide
particles when a low-temperature (LT-HTS) reaction is carried out. Figure 4c shows that
Fe-C-K particles bonded each other to form active carbide phase at high temperatures
(HT-FTS).
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2.3. Energy-Dispersive X-ray Analysis

The EDS results of the catalyst show that the increase in the carbon percentage in the
catalysts are responsible for the development of the active carbide phase. Additionally, the
presence of oxygen is responsible for the development of Fe2O3 and Fe3O4[26]. Table 1
shows the EDS analysis of the prepared catalysts.

Table 1. EDS elemental composition of FTS catalyst and activated carbon.

Compound Name EDS Analysis (Wt %)

Phosphorus (%) Carbon (%) Oxygen (%) Iron(%) Potassium (%)

Activated Carbon 17.9 77.5 4.6 0.0 0.0
Fe-C 10.5 15.0 55.5 17.0 0.0

Fe-C (LT-FTS) 6.7 28.1 42.5 22.6 0.0
Fe-C (HT-FTS) 4.5 51.3 40.0 4.0 0.0

Fe-C-K 12.2 13.3 48.9 21.3 3.8
Fe-C-K (LT-FTS) 9.1 10.3 46.9 24.9 4.1
Fe-C-K (HT-FTS) 1.0 69.8 17.0 8.4 3.5

2.4. Thermogravimetric Analysis

Figure 5 shows the thermal stability of activated carbon (a), as well as the catalysts,
Fe-C (b) and Fe-C-K (e). At a temperature of 110–250 ◦C, the water molecules are evapo-
rated [17]. In Figure 5, the evaporation of water molecules occurred between 110–250 ◦C, as
shown by Equations (1)–(4). At roughly 450 ◦C, partial thermal degradation of the carbon-
supported iron-based catalyst with and without potassium promoters occurs at low and
high temperatures, as illustrated in Figure 5b–d,f,g, and shown by Equations (5) and (6).
Above 550 ◦C, however, full thermal damage occurs, as shown by Equations (7)–(10). The
following steps describe the overall process of thermal degradation of the Fe-C catalyst
with and without potassium promoter (Equations (1)–(10)). First, goethite decomposes
(Equation (1)) between 200 and 250 degrees Celsius [27,28]. The shape of Fe2O3 (hematite)
is then reduced to FeO. In addition, the reaction of iron oxide with CO at 250–300 ◦C pro-
duces Fe2O3(magnetite) (Equations (2)–(6)). In the XRD peaks, the production of magnetite
was also plainly visible. The creation of CO2 is linked to the reduction of iron oxides to
generate the iron carbide carbonaceous material at temperatures above 350 ◦C, as shown
by Equations (7)–(10) [29].

2FeO(OH)→ Fe3O3 + H2O (1)

3FeCO3 → Fe3O4 + 2CO2 + CO (2)

FeCO3 → FeO + CO2 (3)

FeC2O4·2H2O→ FeC2O4 + 2H2O (4)

3FeC2O4 → Fe3O4 + 4CO + 2CO2 (5)

3Fe2O3 + CO→ 2Fe3O4 + CO2 (6)

6FeO(OH) + CO→ 2Fe3O4 + CO2 + 3H2O (7)

FeC03 → FeO + CO2 (8)

xFe3O4 + xCO→ 3FexC + xCO2 (9)

xFeO + xCO→ FexC + xCO2 (10)
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2.5. Brunauer–Emmett–Teller Analysis

The BET surface area of activated carbon and the produced catalyst is shown in Table 2.
The results reveal that the surface area of activated carbon is 167.4 m2/g, and the surface
area of the Fe-C catalyst is 78.7 m2/g. The surface area of the potassium-based promoter
catalyst was reduced by 11.1 m2/g because its particles occluded tiny holes of the active
sites with their own particles. The high surface area of activated carbon, as compared to
the iron catalyst in the iron phase, is greatly disseminated over the surface, forming minute
particles of iron oxides. When Fe2O3 is calcined, it can transform into Fe3O4. Surface carbon
species may be able to aid this process by acting as an active support [30].

Table 2. BET surface area of activated carbon, Fe-C, and Fe-C-K catalyst.

Sample ID BET Surface Area (m2/g)

Activated Carbon 167.4
Fe-C 78.7

Fe-C-K 11.1

2.6. Effect of Temperature and Promoter on Downstream Syngas Applications
2.6.1. Effect of Promoter and Carbon Support

Table 3 shows that adding potassium promoter in an iron carbon-supported cata-
lyst has a substantial impact on the conversion of gasoline, from 36.4 percent (Fe-C) to
72.5 percent (Fe-C-K). A low potassium concentration is thought to be beneficial for pro-
moting the FTS reaction and converting iron carbides to the inactive iron oxide phase.
Potassium offers a number of benefits, including increasing the quantity of alkenes in
hydrocarbon synthesis, and inhibiting the creation of methane [31]. In general, using a
potassium promoter in conjunction with an Fe/Ac-based catalyst reduces the quantity of
n-paraffins in FTS products while significantly increasing branching paraffin [32]. When
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promoters are added to an iron-based catalyst, the catalyst’s physical and chemical proper-
ties change, as well as the conversion and selectivity of CO2 and C5+ [33]. The support of
carbon helps for the formation of the iron-carbide phase. Due to the iron-carbide phase, the
conversion rate of gasoline and diesel was increased. The Figure 6 shows the mechanism of
a carbon-supported iron catalyst containing potassium as a promoter.

Table 3. Distribution of carbon chain with oxygenates and non-oxygenates.

Sample ID

Distribution of Carbon Chain (%)

Oxygenates (%) Non-Oxygenates (%)C2–C4 C5–C11 C12–C22 >C23 C8+
Light

Hydrocarbons Gasoline Diesel Lubricating
Oil

Fe-C
(LT-FTS) 9.67 26.41 60.84 3.08 81.34 46.40 53.60

Fe-C-K
(LT-FTS) 0.78 16.99 80.05 2.18 96.59 18.30 81.70

Fe-C
(HT-FTS) 9.60 36.49 47.75 6.16 80.23 33.50 66.50

Fe-C-K
(HT-FTS) 0.03 72.51 27.28 0.18 91.43 17.20 82.80
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Potassium was found to be a good promoter that enhanced the water–gas shift reac-
tion, enhancing the selectivity toward olefins, and suppressing the formation of methane.
Potassium promoter improves the performance of an iron catalyst by affecting the catalyst
phase. In a catalyst, potassium acts as an electron donor when absorbed on the surface of an
iron carbide-oxide phase. It inhibits the reduction from α-Fe2O3 to α-Fe3O4, and promotes
CO dissociation. In general, a small amount of potassium as a promoter is sufficient to
stimulate FTS activity [31–34]. In this study, the results revealed that the use of potassium
as a promoter suppressed the formation of methane, and enhanced the C5+ formation.

2.6.2. Effect of Temperature

The active phase of iron-based catalysts is affected by the operating temperature of
FTS. The iron oxide FeO becomes hematite Fe2O3, and then magnetite Fe3O4 when the
temperature of the reactor rises [35].The iron particles of the promoted catalyst stabilize
on the surface of the carbon matrix during the FTS reaction, preventing aggregation [36].
When using a carbon-supported iron catalyst without a promoter at higher temperatures,
the number of non-oxygenates increased from 53% to 66%. (Fe-C). In a carbon-supported
iron catalyst system with the promoter, the number of non-oxygenates increased from
81.7 percent to 82.8 percent at a higher temperature (Fe-C-K). Diesel generation increased
from 60% to 80% at low temperatures (200 ◦C), with and without the potassium promoter.
In the absence of a potassium promoter, however, the synthesis of gasoline increased from
36% to 72% at high temperatures (350 ◦C). The results of carbon chain distribution with
and without oxygenates are shown in Table 3.
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2.6.3. Carbon Chain Distribution

The FTS method may create C5–C11(gasoline) and C12–C22(diesel) hydrocarbon chains,
making it a desirable transportation fuel. Various characteristics, such as the active phase
and the quality of the support utilized, were used to evaluate the performance of FTS
catalysts [37]. The FTS test was carried out with and without potassium promoters on a
carbon-supported iron catalyst. After a reduction reaction at 450 degrees Celsius, water
molecules were formed as a result of pre-adsorbed water molecules on the catalyst surface.
When hydrogen and oxygen that have been adhered to the catalyst mix and begin to break
down, they can produce water.

As a result, there were two main sources of adsorbed oxygen: first, polluted molec-
ular oxygen from the gas phase, and second, the CO dissociation product. Fe5C2 was
formed during the reduction reaction, which is considered the most active phase of the
process [38,39]. Furthermore, the use of activated carbon increased the catalytically active
phase’s anchoring. The samples from the separators were collected in glass vials and sealed
to prevent evaporation after the reaction. The lower white layer in Figure 7, which is
oxygenated, and the higher brown layer, which contains C5+ hydrocarbons, were separated
in the collected samples. Figure 8 depicts the results, which show various peaks and all po-
tential chemicals included in the product. The overall percentage of different hydrocarbons
in the mixture is shown in Table 3.
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2.6.4. P’s Influence

Because phosphorus causes choking during the reaction in a fixed bed reactor, and
affects reactor performance, it is not considered as good for the FTS process. The GCMS
data revealed the creation of phosphorus derived during the FTS reaction (C7H18NO3P,
C8H18NO3P, and C18H15OP). The yield of the FT product will increase if other chemical
activation agents are utilized in the synthesis of activated carbon. For making activated
carbon in the future, activation agents that are KOH, K2CO3, or FeCl3 will be good. These
activation agents will nothave an effect on the performance of a fixed bed reactor.

2.6.5. Distribution of Oxygen

FTS produces a significant amount of oxygenate. The amount of oxygenated com-
pounds produced is determined by the catalyst utilized and the process parameters. The
aqueous phase typically contains oxygenates in the range of 3–25 wt% [40]. According
to researchers [15], increased metal loading on the activated carbon-supported Fe/K cat-
alyst resulted in greater selectivity for oxygenates. Because Lantana Camara has a lot
of sesquiterpene hydrocarbon essential oil components, the amount of oxygenates, such
as C3H4O2, C4H8O4, C6H6O, C7H14O, C10H20O, C16H34O, and many more found in this
study, was the highest (46%) out of all the plants.

According to Anderson–Schulz–Flory (ASF) Distribution, diesel is produced as the
major component, with a value of roughly 0.9 using LTFT. Gasoline requires slightly lower
values of 0.7–0.8 under HTFT circumstances [41].

∝=
(

0.2332·
(

yCo
yCo + yH2

)
+ 0.633

)
·(1− 0.0039·((T(◦C) + 273)− 573)) (11)

The ASF model is illustrated in Equation (11) to determine the “α”. The “α” is
determined using the gradient of the linearized expression in the log Mn/n against the n
plot, which is given as Equations (12) and (13) [42]. Figure 6 shows the computed value “α”
using the ASF model.

Mn
n

= (1− α)2·α(n−1) (12)

ln α = n ln α + ln[
(1− α)2

α
] (13)

Some of the recent studies about the Fe/AC catalyst demonstrate that the use of
activated carbon (3–5 wt%) provides the majority of the C1–C6 hydrocarbon composition.
In this study, as the weight percentage of activated carbons (10–15%) was increased, the
formation of C1–C20 hydrocarbons was the main product of FTs. Furthermore, the role of
activated carbon in Fe/Ac-based catalysts has to improve the anchoring of the catalytically
active phase.

The addition of carbon as a support provides a great advantage in terms of high
surface area and thermal and chemical stability. The carbon support made from biomass
would result in an additional advantage from an economic perspective. The carbon support
has a remarkable feature which allows the bonding of extra heteroatoms on its surface. The
carbon support in the FTS process seems to be beneficial for the formation of iron-carbide
species [5]. Lantana Camara is composed of isocaryophyllene (16.7%), germacrene D
(12.3%), bicyclogermacrene (19.4%), andvalecene (12.9%), and caryophyllene isomers were
detected in Lantana Camara’s essential oil composition [43]. Table 4 shows the carbon-
supported iron-based catalyst results. Recently, some research revealed that the addition of
carbon as support enhanced the C5+. In this research work, the addition of carbon support
made from Lantana Camara enhanced the formation of C5+ hydrocarbons by upto 90%.
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Table 4. Hydrocarbon selectivity of different Fe-carbon-supported catalysts.

Sample Name Temperature (◦C)
Pressure

(MPa)
H2/CO
Ratio

Hydrocarbon Selectivity
Ref

C1–4 C5+

Fe (carbon-based iron catalyst) 220 2 2:1 67.16 31.20 [28]
Fe/15C (carbon support) 340 2 1:1 61.0 39.0 [44]

Fe-AC (AC=activated carbon) 300 2 2:1 46.3 53.7 [8]
Fe/N-CNT-h (CNT=carbon nanotube) 275 0.8 2:1 39.1 60.9 [9]

Fe/AC (AC=activated carbon) 340 1 1:1 37.7 62.3 [23]
FeOx(carbon-supported) 260 1 1:1 35.6 64.4 [5]

Fe-1200(carbon-encapsulated) 300 2 1:1 31.2 68.8 [10]
Fe(4700)(MOF-based Fe-catalyst) 300 2 1:1 24.3 75.7 [39]

Fe/AC (activated carbon) 200 2 1:1 9.67 90.33 This work
Fe/AC (activated carbon) 350 2 1:1 9.60 90.40 This work

3. Materials and Method
3.1. Preparation of Activated Carbon

The leftover leaves of “Lantana camara” (24 g) were collected from SMME Department,
NUST Islamabad, (latitude, 33.6360821; longitude, 72.9897282) Pakistan. The surfaces of the
leaves were cleaned three times with distilled water to remove dust. Before being crushed,
the leaves were dried out in the open atmosphere for 3 to 4 days. The dried leaves were
crushed and sieved. After that, an H3PO4 (wt 50%) solution was used to activate the fine
biomass powder. The initial concentration of the H3PO4 solution was 85%. The required
H3PO4 volumes per (17.38 g) dry raw biomass material were 12.13 mL [45]. The slurry-
based material was calcined in a box resistance furnace for two hours at 500–600 degrees
Celsius. Then, the obtained char was rinsed with distilled water to remove extra H3PO4
from the char [46]. After that, it was dried for an hour at 110◦C to yield 4 g of activated
carbon [45–47].

3.2. Catalyst Preparation

By incorporating 10% iron nitrate (3.2 g Fe (NO3)3.9H2O) and 4 g of “Lantana Camara”-
activated carbon, the Fe-C sample was prepared. The sample was then calcined for three h
at 350 ◦C in a box resistance furnace [48]. The prepared Fe-C catalyst was mixed with 3 wt%
potassium carbonate (0.2675 g K2CO3) by adding 10 mL of deionized water dropwise and
letting it sit at room temperature for a day to allow the potassium particles to properly soak
into the Fe-C catalyst. In a box resistance furnace, the sample was calcined for three h at
400 ◦C [31]. The sample was maintained in an airtight sample bottle after cooling to room
temperature. The procedures for making carbon-supported iron catalysts with and without
potassium promoters are shown in Figure 9.

3.3. Catalyst Characterization

Various techniques were used to characterize the Fe-C and Fe-C-K catalysts. The
surface area was examined using the Brunauer–Emmett–Teller method (SBET) (Micromerit-
ics Gemini VII 2390t VI.03, Norcross, GA, USA). Energy dispersive X-ray analysis and a
scanning electron microscope were used to assess changes in surface morphology (JEOL
JSM 6490 LA, Akishima, Japan). The crystal structure was determined using the X-ray
diffraction method (XRD-D8 advanced by Bruker, Bermen, Germany). The thermal deterio-
ration was revealed by the TGA investigation (Model: DTG-60 H, TGA 5500 TA Instrument,
New Castle, DE, USA).
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3.4. Catalyst Performance Test

A Fischer–Tropsch synthesis (FTS) system with a fixed-bed reactor was used to assess
the catalytic performance. In the reactor, one gram of the prepared catalyst (Fe-C or Fe-C-K)
was loaded. The catalyst was reduced for 5 h in a fixed bed reactor at 450 ◦C with a
hydrogen gas flow of 30 sccm and a nitrogen gas flow of 10 sccm. The reactor was cooled to
350 ◦C to promote the reaction at 20 bar in the presence of a H2/CO (1:1 ratio). The pressure
was controlled using a back-pressure regulator. A liquid product sample was taken from
the two separators. Gas chromatography was used to evaluate the tail gases in real time
(Shimadzu GC-2010 Plus, Kyoto, Japan). Gas chromatography–mass spectrometry was
used to assess the liquid sample taken from the separator (GCMS-QP2020, Shimadzu Japan).
The product selectivity was calculated using the peak area from the GCMS results. Figure 10
depicts the schematic diagram of the FTS plant that was employed in this experiment.
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4. Conclusions

In this study, the effects of temperature and catalyst promoters on the formation of
liquid hydrocarbons were studied. The Fe-C-K-supported catalyst with potassium promoter
had 72 percent gasoline (C5–C11) selectivity at high temperatures. The GCMS results show
the presence of C8+ hydrocarbons with selectivities of 96 percent and 91 percent when
using a Fe-C-K catalyst at low and high temperatures. As a result, this research concludes
that these catalysts may have a significant impact on the generation of gasoline and diesel
in the future. Lantana Camara is composed of isocaryophyllene (16.7%), germacrene D
(12.3%), bicyclogermacrene (19.4%), and valecene (12.9%), and caryophyllene isomers
were detected in Lantana Camara’s essential oil composition. Because of the oily nature of
“Lantana Camara,” the activated carbon utilized in the catalyst preparation had a significant
impact on the increased hydrocarbon production. This research concludes that the use of
activated carbon as a support made from Lantana Camara in FTS catalysts has a significant
influence in improving hydrocarbon selectivity.
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