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Abstract: The photocatalytic efficiency of an innovative UV-light catalyst consisting of a mesoporous
TiO2 coating on glass fibers was investigated for the degradation of pharmaceuticals (PhACs) in
wastewater effluents. Photocatalytic activity of the synthesized material was tested, for the first time,
on a secondary wastewater effluent spiked with nine PhACs and the results were compared with the
photolysis used as a benchmark treatment. Replicate experiments were performed in a flow reactor
equipped with a UV radiation source emitting at 254 nm. Interestingly, the novel photocatalyst led
to the increase of the degradation of carbamazepine and trimethoprim (about 2.2 times faster than
the photolysis). Several transformation products (TPs) resulting from both the spiked PhACs and
the compounds naturally occurring in the secondary wastewater effluent were identified through
UPLC-QTOF/MS/MS. Some of them, produced mainly from carbamazepine and trimethoprim, were
still present at the end of the photolytic treatment, while they were completely or partially removed
by the photocatalytic treatment.

Keywords: mesoporous titania; glass fiber; photocatalysis; contaminants of emerging concern; high
resolution mass spectrometry; transformation products

1. Introduction

The presence of compounds of emerging concern (CECs) such as pharmaceuticals,
pesticides, personal care products, and surfactants in secondary wastewater effluents poses
a threat to the receiving water bodies and, consequently, to wildlife and human health. This
risk has led to the publication of guidelines by the World Health Organization (WHO), Food
and Agriculture Organization of the United Nations (FAO), and Environmental Protection
Agency (EPA), in which chemical and microbiological parameters of the wastewaters are
considered [1]. The guidelines have been periodically updated since 1973. CECs and some
of their transformation products (TPs) are poorly removed by the activated sludge process
in conventional wastewater treatment plants (WWTPs) and the long-term exposure to them
could cause reproductive and hormonal disorders as potential health problems [2] and the
increase of bacterial antibiotic resistance [3].

Chlorination and UV-C light-assisted disinfection methods are the most commonly
used treatment technologies in WWTPs and they also affect the removal of different classes
of micropollutants [4–9]. However, transportation, handling, and chemical hazards are
the main disadvantages of the chlorination process, whereas wastewater turbidity and
adverse photoreactivation limit the use of UV treatment technology. In this regard, ad-
vanced oxidation processes (AOPs) represent a more efficient alternative due to their
versatility toward degrading organic and inorganic contaminants in water and on solid
phases [5,10–13].
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Among the AOPs, heterogeneous photocatalysis is promising for water treatment
due to its versatility and it is also eco-friendly since no chemicals are directly required
during the process [14–16]. The working principle of photocatalytic oxidation relies on
the generation of strong oxidant and highly reactive species like hydroxyl radicals (OH•),
irradiating the surface of a semiconductor with a light source having energy greater than
its bandgap [17,18]. In a controlled reaction, the OH• radicals can completely mineralize
the organic contaminants in water matrices. The advantages of using titanium dioxide
(TiO2) as a photocatalyst for the removal of CECs in water treatment are widely reported
in the literature [17–19], concerning its high photo-stability and inertness in the chemical
environment, wide availability, low cost and non-toxicity.

One of the most interesting challenges in water treatment is the synthesis of novel
and efficient catalysts based on TiO2 nanoparticles for the degradation of CECs in real
secondary wastewater effluents. Although the activity of TiO2 is higher in its powder form
while performing photocatalysis in suspension, the recovery of the catalyst at the end of
the oxidation process is very complex and cost-effective especially in a scaled-up system
limiting its applicability [20]. In this perspective, the immobilization of TiO2 catalyst on
inert materials such as glass, silica, activated carbon, polymeric materials is preferable to
the suspended TiO2 as it facilitates the recovery of the catalyst at the end of the treatment
and minimizes the traces of photocatalyst nanoparticles in the final treated waters [21–23].
Achievement of highly available active surfaces, the selection of the best support in terms
of thermal and mechanical stability, or chemical inertness towards the catalyst, as well as
the choice of the synthesis procedure are factors of primary importance in the developed
immobilization technique. Porous substrates, such as activated carbon, diatomaceous earth,
nanoclays, hollow glass spheres, and polymeric materials, are often used as supported
catalysts due to their higher adsorption capacity [24]. In this context, the application of
mesoporous TiO2 in water remediation has been also investigated [25,26] However, there is
a serious issue of using these kinds of materials since a sintering process is necessary to fix
nanostructured TiO2 coating to the substrate, which causes deformation and sometimes
the loss of the porous structure [27]. In this context, glass fiber mats could be a good
alternative due to their high flexibility, lightweight, high aspect ratio of the fibers, thermal
stability, low cost and ability to remain stable under oxidation atmosphere and UV light
irradiation [17,28,29].

In this work, a sol–gel dip coating technique was employed to obtain nanostructured
TiO2 coating on glass fiber mats. A pore generating agent was introduced in the sol
preparation stage to achieve a mesoporous structure since TiO2 coating often suffers low
photocatalytic activity due to its lower surface area, especially when a highly crystalline
phase is obtained by sintering the coating at high temperature. The mesoporous structure
with a higher surface area increases the number of active sites on the catalyst surface that
enhances the rate of photo-oxidation reaction thus improving the overall efficiency [30].

The present study aims to evaluate the effectiveness of photocatalysis employing a
novel nanostructured and mesoporous TiO2 coating on glass fiber mats for the removal of
nine PhACs (carbamazepine, cetirizine, clarithromycin, climbazole, diclofenac, irbesartan,
lidocaine, torsemide, and trimethoprim) spiked in a real secondary wastewater effluent,
beside the removal of the naturally occurring CECs, as an integrated technology for water
remediation. In addition, the identification of the transformation products (TPs), formed
during both photolytic and photocatalytic treatments was also performed.

2. Results and Discussion
2.1. Mesoporous TiO2/Glass Fibers: Synthesis and Characterization

Figure 1 shows the XRD pattern of the mesoporous nanocrystalline TiO2 film deposited
on the glass fiber mat, which shows several well-resolved diffraction peaks corresponding
to various reflection planes of the crystalline anatase phase of TiO2 (JCPDS no. 84-1286)
as indicated in the figure. The absence of any rutile peak indicates the formation of pure
anatase nanocrystalline phase. The average particle size estimated from the (101) plane
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of the XRD spectra using the Scherrer’s equation (D = kλ/βCosθ, where D is the average
crystallite size, k is the Scherrer constant (0.9), λ is the wavelength of the radiation source,
β is the full line width at half-maxima of the (101) diffraction peak and θ is the angle of the
corresponding diffraction peak) was found to be about 15 nm.
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Figure 1. XRD pattern of the mesoporous TiO2 coating on glass fibers.

The amount of TiO2 loading on the glass fiber mats was estimated from the XRF
spectra shown in Figure 2. As a comparison, the spectra of bare glass fiber is also shown.
The appearance of a strong Ti peak indicates the presence of TiO2 in the composite mat.
The elemental distribution (Figure 2b) shows an almost homogeneous distribution of TiO2
over the substrate. The average TiO2 loading was estimated to be about 16% by weight.
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Figure 2. (a) XRF spectra of the TiO2 coating on glass fiber. The inset shows real image of the TiO2

coated glass fiber with the indicated area from where the spectrum was recorded; (b) elemental
mapping of the major elements present; (c) estimation of TiO2 loading on glass fiber.

The mesoporosity of the nanostructured film was analyzed by the BET surface area
measurements. The specific surface area was calculated to be 61.2 m2/g. Figure 3a shows
the N2 adsorption–desorption isotherm plot that corresponds to the typical type IV isotherm
pattern with type H1 hysteresis. The adsorption branch shows a lower slope in the low
relative pressure range (multilayer adsorption) followed by a sharp rise at a higher relative
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pressure (pore condensation in mesopore), whereas the desorption branch follows a narrow
hysteresis loop where the desorption branch is parallel to the adsorption branch, indicating
the formation of a narrow distribution of uniform mesopores. This is reflected in Figure 3b,
which shows the BJH pore size distribution plot calculated from the desorption branch
of the isotherm, where a narrow pore size distribution with an average pore diameter of
5.57 nm is observed. This data confirms the formation of mesoporous structure in the
coating material [31].
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TiO2 coating. Specific surface area was calculated from the multilayer BET plot of the adsorption
branch in the relative pressure of 0.05–0.30 range.

Morphological analysis was carried out to realize how TiO2 nanoparticles are attached
to the glass fiber surface. Figure 4a–d shows the FESEM micrographs of the mesoporous
TiO2 coating on the fibers at different magnifications. Every single fiber coated with TiO2
nanoparticles is observed in Figure 4a, which is strongly supported by the presence of Ti
in XRF spectra (Figure 2). More enlarged images are shown in Figure 4b–d, where the
coating is clearly visible consisting of spherical TiO2 nanoparticles. The broken part shows
agglomerated nanoparticles, whereas the top smooth part shows a uniform coating with
mesoporous nature, particularly in Figure 4d. This data confirms the strong attachment
of the TiO2 nanoparticles to the fiber surface. Moreover, due to the mesoporous structure,
the coated surface became superhydrophilic showing water contact angle between 5 to 8◦

(data not shown) that would enhance the photocatalytic activity.
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2.2. Photocatalytic Degradation of Spiked PhACs

An up-flow reactor (0.5 L) equipped with a low-pressure mercury UV lamp emitting
monochromatic UV radiation at a wavelength of 254 nm (40 W) was employed in recircula-
tion mode for photolytic and photocatalytic experiments [32]. The volume of the treated
solution was 1.2 L and each test was performed twice at a controlled temperature (30 ◦C).
For the photocatalytic experiments, the catalyst fabric was wrapped around the quartz tube,
which protects the UV lamp (Figure 5). Before starting the photocatalytic treatments, the
catalyst fabric was exposed to a water up-flow of 6 L h−1 for 30 min in order to verify the
adsorption of CECs on the supported catalyst. Photolysis experiments with only UV light
irradiation were performed as benchmark treatments. The secondary wastewater effluent
used for the investigation was spiked with the target compounds (at a concentration of
about 200 µg L−1). The structures of the drugs studied are shown in Figure 6.

After exposure to the UV light, some compounds such as diclofenac and cetirizine
were completely degraded, after 20 and 60 min of reaction time, respectively (data not
shown). The phototransformation rate is strictly dependent on the nature of the compound,
in particular, the presence in the structures of groups absorbing UV energy as for example
conjugated double bonds and hetero-atoms. Diclofenac is well-known to be susceptible to
direct photolysis [33,34] and cetirizine, showing a very complex structure, is more suscepti-
ble to fast UV degradation due to the several routes of fragmentation. The photochemical
behavior of the other investigated PhACs that exhibited slower removal kinetics, mainly
CBZ, IBS and TMP, is different. In Table 1 the kinetic constants (k, min−1) obtained for each
contaminant during both photolytic and photocatalytic treatments (performed in duplicate)
are listed. As far as diclofenac, it was quickly removed during the photolysis and therefore
it was not possible to investigate the performance of the catalyst.
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These results demonstrated that the compounds CBZ and TMP are the most recalci-
trant to the photolytic treatment being the values of rate constants as the smallest ones
(0.029 min−1 and 0.028 min−1, respectively). CBZ and TMP are known for their slow
photo-transformation rates [35] and consequently, their removal as well as the removal of
formed TPs is important to increase water quality. In a recent paper, Paredes and colleagues
investigated a novel catalyst based on immobilized TiO2 on PVDF dual-layer hollow fiber
membranes for the photo-transformation of eight target pharmaceuticals and they found
that CBZ, TMP and metoprolol were more rapidly removed by photocatalysis compared to
photolysis [36].
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Table 1. First-order kinetic constants (k, min−1) for spiked PhACs obtained during photolytic and
photocatalytic treatments, treating secondary wastewater effluent.

Spiked
PhACs

Elemental
Composition m/z (Da)

k (min−1)

Photolysis
(Average ± SD)

Photocatalysis
Mesoporous TiO2 on Glass

Fibers (Average ± SD)

CBZ C15H12N2O 237.1014 0.029 ± 0.001 0.068 ± 0.023

CTZ C21H25N2O3Cl 389.1610 0.402 ± 0.066 0.289 ± 0.022

CLR C38H69NO13 748.4762 0.051 ± 0.004 0.061 ± 0.007

CLI C15H17N2O2Cl 293.1050 0.233 ± 0.020 0.183 ± 0.011

DCF C14H11NO2Cl2 296.0241 - -

IBS C25H28N6O 429.2362 0.050 ± 0.001 0.059 ± 0.002

LDC C14H22N2O 235.1794 0.061 ± 0.002 0.065 ± 0.010

TOR C16H20N4O3S 349.1306 0.081 ± 0.003 0.088 ± 0.011

TMP C14H18N4O3 291.1439 0.028 ± 0.001 0.062 ± 0.014

According to Lian et al. [37], in wastewaters effluents, the photolabile species can
be classified into five groups. IBS being included in the IV group (photochemically pro-
duced reactive intermediates combination-dominated group), was characterized by a slow
degradation reaction with respect to the compounds belonging to the first three groups.
CLI is considered moderately photo-susceptible while in the study of Kim et al. [38], clar-
ithromycin is classified as a slow degrading pharmaceutical. It seems that the presence of
dissolved organic matters promotes photodegradation of lidocaine and torsemide

The application of the mesoporous titanium dioxide supported on glass fibers allowed
for increasing the photo-transformation rate of CBZ and TMP compared to the photolytic
treatment of about 2.2 times. For the other tested PhACs the kinetic constants were slightly
higher in presence of the novel photocatalyst except for CTZ and CLI for which a decrease
in removal was observed during the photocatalytic process (Table 1).

2.3. Photocatalytic Degradation of Naturally Occurring PhACs

The performance of the novel catalyst was investigated for the removal of CECs
naturally present in the secondary wastewater effluent. In this perspective, a targeted
screening was performed employing the AB SCIEX software for both compound iden-
tification and trend detection. A group of eight additional PhACs was detected in the
secondary wastewater effluent including candesartan, flecainide, gabapentin, irbesartan
446, lamotrigine, niflumic acid, telmisartan, and venlafaxine. The concentration of such
CECs was measured between 0.5 and 5 µg/L. For five of these compounds (flecainide,
gabapentin, irbesartan 446, lamotrigine and telmisartan), it was possible to measure the
pseudo first-order kinetic constant during the UV-based treatments (with and without the
photocatalyst) while candesartan, niflumic acid, and venlafaxine were quickly removed
during the treatment by UV light alone (Table 2).

Average k values for all the detected substances (Table 2) were higher for photo-
catalysis, so the presence of the mesoporous TiO2-based photocatalyst increased their
photodegradation. In Figure 7, the main results relative to photolysis and photocatalysis for
both the spiked and the naturally occurring contaminants, in terms of k (min−1) values, are
summarized. For each CEC, the average k value and the standard deviation are reported.
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Table 2. First-order kinetic constants (k, min−1) for naturally occurring PhACs obtained during
photolytic and photocatalytic treatments, treating secondary wastewater effluent.

PhACs
Elemental

Composition m/z (Da)

k (min−1)

Photolysis
(Avarage ± SD)

Photocatalysis
Mesoporous TiO2 on Glass

Fibers (Avarage ± SD)

Flecainide C17H20N2O3F6 415.1440 0.032 ± 0.001 0.061 ± 0.016

Gabapentin C9H17NO2 172.1331 0.021 ± 0.001 0.052 ± 0.019

Irbesartan
446 C25H30N6O2 447.2486 0.049 ± 0.001 0.073 ± 0.011

Lamotrigine C9H7N5Cl2 256.0150 0.028 ± 0.001 0.046 ± 0.014

Telmisartan C33H30N4O2 515.2428 0.058 ± 0.002 0.081 ± 0.013
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The software MetabolitePilot allowed for the identification of 26 transformation
products formed from the spiked PhACs (Table S1). In the attempt to propose a chemi-
cal structure for the detected TPs, the data deriving from a deep bibliography research
were combined with the accurate MS and MS/MS information achieved with the UPLC-
QTOF/MS/MS analyses. Several detected TPs are already known in literature and the
relative references (mentioned in Table S1) were used as a suggestion for structure elucida-
tion [39,40]. The main difficulty in the attribution of the correct structure is the presence of
numerous isomers for some TPs (for example CBZ-5 and CBZ-6). These isomers having
the same accurate mass, show different retention times because they only differ for the
position of a specific group, for example an OH group. If the analyte intensity is too low
and MS/MS spectra are of poor quality, it is not possible to obtain a confident attribution.
Among the six TPs of carbamazepine ([M+H]+ 237.1014), five of them were discussed in
detail by Calza et al., Franz et al. and Martinez-Piernas et al. [39–41]. Only CBZ-3, at
m/z value of 241.0601, was considered as a new TP because, at present, its formation was
not revealed in other scientific works. As far as clarithromycin ([M+H]+ 748.4762) all the
detected TPs were described by Calza et al. [39] and Buchicchio et al. [42]

Interestingly, for climbazole ([M+H]+ 293.1050) the TP with m/z 167.1175 showed
a MS/MS spectrum identical to that acquired by Castro et al. [43] and it results from
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the cleavage of the ether bond. According to the identification confidence levels of
Schymanski et al. [44] the molecular structure of TP CLI-1 can be assigned as a proba-
ble structure (Level 2a). Two additional CLI-TPs were revealed for the first time in this
work, the first one at m/z of 247.1448 (CLI-2) and the second one, at m/z 338.0887 (CLI-3, a
nitro-derivative of climbazole).

The MS/MS spectrum of CLI-3 revealed a fragment at m/z 69.0456 that is present only
in the MS/MS spectrum of climbazole and that corresponds to the protonated imidazole
(C3H5N2

+). The mass shift between the TP (m/z 338.0887) and the parent compound (m/z
293.1050) was 44.98 Da corresponding to nitration, so the empirical formula C15H16N3O4Cl
was attributed to this product, identified as nitro-climbazole. The observation of the proto-
nated imidazole in the MS/MS spectrum could be proof of the nitration of the phenyl ring.
This kind of modification was discussed by Nelieu et al. [45] during the photodegradation
of monuron in an aqueous solution. In addition to IBS-1 and IBS-2 [46,47] another TP of
irbesartan at m/z 445.2338 obtaining from the addition of one -OH group to the parent
compound ([M+H]+ 429.2362) was detected and its probable structure is illustrated in the
Table S1.

For lidocaine ([M+H]+ 235.1794) three new TPs were identified LDC-1, LDC-2, and
LDC-3 at 233.1647 m/z, 283.1656 m/z, and 299.1603 m/z, respectively, and their chemical
structures were attributed with a high confidence level. The proposed structures were
suggested by the detailed study of Rayaroth et al. [48] about the degradation mechanism of
lidocaine by photocatalysis that involves the hydroxyl radicals as major reactive species.

The transformation products of torsemide ([M+H]+ 349.1306) in the aquatic environ-
ment were investigated in the recent work of Lege et al. [49]. The article focuses on the
degradation products derived from various treatments included photo-transformation; 4
photolysis TPs (TP 364b, TP 362, TP 258 and TP 393) were identified by Lege and coworkers,
the first three TPs with a confidence level 2 and the last one with a confidence level 4. For
TP 364 three isomers (TP 364 a, b, c) with molecular formula C16H20N4O4S were detected
after the different degradation studies. Only TP 364b (exact monoisotopic mass of [M+H]+:
365.1278 m/z) was present after each kind of treatment, thus revealing the importance of this
TP in the degradation pathway of this drug. The three isomers represent the hydroxylation
products of torsemide and they differ in the hydroxylation site [49].

In the present work, the molecular ion at 365.1264 m/z was detected after photodegra-
dation experiments (TOR-2) and the MS/MS spectrum matches that of TP 364b. The
molecular ion at 363.1112 m/z (TOR-1) was the same as TP 362, deriving from ketone
formation. The formation of TP 258 after photolysis was of minor significance compared
to the other TPs in the investigation of Lege et al. [49]; this type of by-product was not
detected in the present study. Finally, the TP 393 (exact monoisotopic mass of [M+H]+:
394.1180 m/z), attributed as nitro-torsemide, was also recognized in our reaction samples.
Unlike Lege et al., we succeeded in identifying the TP with a confidence level of 2 (TOR-3)
because of the good quality of the acquired MS/MS spectrum and the high intensity of
the fragments.

For trimethoprim ([M+H]+ 291.1439) the detected TPs were already identified by
Paredes et al. [36]. No degradation products of cetirizine and diclofenac having a significant
removal trend were detected in the present investigation. In Figure 8, the time profiles of the
most representative transformation product for three (CBZ, CLR, TMP) spiked compounds
were reported. Most of the detected TPs showed a bell-shape trend (a more comprehensive
view of TPs time profiles is present in Figures S1–S7) and four different trends were noted:
(i) the photolytic treatment generates a TP with higher intensity respect to photocatalytic
treatment, with a delay in the removal of the compound (CBZ-5 and CLR-1, Figure 8);
(ii) the TP increases during photolytic treatment and it seems to accumulate along reaction
time while negligible formation is observed during photocatalysis (TMP-1, Figure 8); (iii) no
differences are observed between photolysis and photocatalysis (IBS-3, Figure S4); (iv) at
first, a higher amount of the TP is observed during the photocatalytic treatment but, then,
the decrease is similar for both the treatments (CLR-3, Figure S2).
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Among the previously described trends, it is worth noting the second one, in fact, in
other works such as that of Paredes et al. [36], a similar behaviour was not highlighted.
Considering the first trend typology, different TPs are still present in the reaction sample
after the end of the photolysis while they were fast removed during photocatalysis: i.e.,
CBZ-5 and CBZ-6, CLR-1, CLR-4, CLI-2, TOR-1 and, interestingly, all the detected TPs
of trimethoprim.
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3. Materials and Methods
3.1. Selection of Pharmaceutical Compounds

Nine pharmaceutical compounds not completely removed in conventional wastewater
treatment and usually detected in secondary wastewater effluents at trace concentrations
(i.e., µg/L–ng/L) were selected as target contaminants to investigate the efficiency of
the novel photocatalyst: carbamazepine (CBZ), cetirizine (CTZ), clarithromycin (CLR),
climbazole (CLI), diclofenac (DCF), irbesartan (IBS), lidocaine (LDC), torsemide (TOR), and
trimethoprim (TMP). All the listed compounds were spiked in a real secondary wastewater
effluent at a final concentration ranging between 100 and 200 µg/L. The effluent was
taken from a self-forming dynamic membrane bioreactor treating municipal wastewater
and characterized according to standard methods. All chemicals were purchased from
Sigma–Aldrich as well as the solvents used for chromatographic analyses and for preparing
standard solutions, e.g., acetonitrile, methanol and formic acid (UPLC grade).

3.2. Synthesis and Characterization of the Mesoporous TiO2 Coating on Glass Fiber

Mesoporous TiO2 coating was deposited on the glass fiber mats by sol–gel method
using the dip technique. The TiO2 sol (containing 5% of TiO2 by weight in ethanol) was pre-
pared by hydrolysis-condensation of titanium isopropoxide (TTIP, Sigma–Aldrich, St. Louis,
MO, USA, 97%) in presence of hydrochloric acid (HCl, Alfa-Aesar 37%) and deionized wa-
ter (Millipore Milli Q). The triblock copolymer, Pluronic P123 (PEO20PPO70PEO20, average
Mav~5800, Sigma–Aldrich) was used as a mesopore generating template. The molar ratios
of the reagents were TTIP:HCl:H2O:P123 = 1:0.5:4:0.0125. At first, P123 was dissolved in
the appropriate amount of ethanol followed by the addition of TTIP drop-wise to the above
solution. After homogeneous mixing of the solution, the required amount of HCl was
diluted with water and drop-wise added. The sol was left under stirring for several hours to
complete the hydrolysis-condensation reaction. The as prepared sol aged for one day before
the coating application. Commercially available glass fiber mats (approx. composition
52% SiO2, 30% CaO, 14% Al2O3, 2% MgO) were used as the substrate to deposit the TiO2
coating. The glass fiber mats were cut into 30 × 20 cm size and preliminary treated at
500 ◦C in the air for 1 h to decompose any organic binder present. The organic-free glass
fiber mats were coated with the TiO2 sol by dip-coating method at a withdrawal speed
of 20 cm/min. After the coating deposition, the mats were kept in an oven at 65 ◦C for
one night to gently dry the coated film and avoid any unwanted cracks. Sintering and
template removal took place at 500 ◦C for 2 h in the air at the heating rate of 1 ◦C/min
and maintaining a similar cooling rate as well, after which the mesoporous nanocrystalline
TiO2 coating was formed on the glass fiber mat.

3.3. Microstructural Characterization

Nanocrystalline phase formation of TiO2 in the coated film was investigated by X-ray
diffraction (XRD) analysis that performed with a Rigaku Ultima X-ray diffractometer using
Cu Kα radiation (λ = 1.5406 Å) operating at 40 kV/30 mA with the step size of 0.02◦.
Morphological characterization of the coating was carried out on a Zeiss Sigma VP field
emission scanning electron microscope (FESEM). The amount of TiO2 loading on the glass
fiber mat was determined by X-ray fluorescence spectroscopy (XRF). It was performed with
a Bruker M4 Tornado (Bruker Nano Germany) X-ray fluorescence spectrometer operating at
50 kV/600 µA (30 W) equipped with X-Flash silicon drift detector. The measurements were
performed in area mode (approx. 35 mm2) and the elemental quantification was estimated
from the average of five measurements.

3.4. PhACs Concentration Measurements

The concentration of the selected PhACs during photolytic and photocatalytic treat-
ments was determined using a high-resolution mass spectrometer, TripleTOF 5600+ system
(AB Sciex), coupled to a liquid chromatographic system, Ultimate 3000 (Thermo Fisher
Scientific, Waltham, MA, USA), by means of a duo-spray ion source operated in positive
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electrospray (ESI) mode. All MS analyses were acquired with an acquisition method based
on double experiments, i.e., full-scan survey TOF-MS and IDA (information dependent
acquisition) experiment. 50 µL samples were injected and eluted with a binary gradient
consisting of 0.1% formic acid in water (solvent A) and 0.1% formic acid in MeCN (solvent
B), employing a Waters BEH C18 column (2.1 × 150 mm, 1.7 µm) operating at a flow of
0.200 mL/min. Before LC/MS analysis, carbamazepine D10 was added as an internal
standard to each sample at a final concentration of 10 µg/L. AB Sciex software was used for
data processing, i.e., SciexOS 1.2, LibraryView 1.0.2 and MetabolitePilot 1.5. ChemBioDraw
Ultra 13.0 was used for TPs structure elucidation.

4. Conclusions

A novel photocatalytic system consisting of mesoporous titanium dioxide supported
on glass fibers as the catalyst substrate in a UV reactor arrangement has been developed to
remove the pharmaceutical contaminants. Highly crystalline and nanostructured meso-
porous TiO2 coatings with a high surface area were successfully fixed to the fiber surfaces
after the sintering process. The microstructural analysis confirmed the formation of meso-
porosity in the coating matrix. The large exposed area of the glass fiber mat allowed the
fast photo-oxidation rate compared to the photolysis. The degradation study carried out
with the new catalyst support showed that it was effective not only in the removal of most
of the PhACs investigated, with particular reference to carbamazepine and trimethoprim,
but also in the abatement of their TPs. The strong attachment of the TiO2 coating to the
fiber surfaces showed the reusability of the supported catalyst without spending the effort
to recover it after the photocatalytic reaction. This simple coating strategy can be extended
to either other suitable catalyst support or to modify the starting solution to make it visible
light active (e.g., by doping with Ag, Cu, Au, Fe2O3, etc.).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal12010041/s1, Figure S1. Time profiles of CBZ TPs during photolysis and photocatal-
ysis with mesoporous TiO2 coated on glass fibers, using secondary wastewater effluent, Figure S2.
Time profiles of CLR TPs during photolysis and photocatalysis with mesoporous TiO2 coated
on glass fibers, using secondary wastewater effluent, Figure S3. Time profiles of CLI TPs during
photolysis and photocatalysis with mesoporous TiO2 coated on glass fibers, using secondary
wastewater effluent, Figure S4. Time profiles of IBS TPs during photolysis and photocatalysis
with mesoporous TiO2 coated on glass fibers, using secondary wastewater effluent, Figure S5.
Time profiles of LDC TPs during photolysis and photocatalysis with mesoporous TiO2 coated on
glass fibers, using secondary wastewater effluent, Figure S6. Time profiles of TOR TPs during
photolysis and photocatalysis with mesoporous TiO2 coated on glass fibers, using secondary
wastewater effluent, Figure S7. Time profiles of TMP TPs during photolysis and photocatalysis
with mesoporous TiO2 coated on glass fibers, using secondary wastewater effluent, Table S1. List
of transformation products of the spiked compounds detected by suspect screening in photolytic
and photocatalytic experiments (mesoporous TiO2 supported on glass fibers), treating secondary
wastewater effluent.
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