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Abstract: Oxidation is an important organic transformation, and several catalysts have been reported
for this conversion. In this study, we report the synthesis of mixed metal oxide CuxZnyO, which
is prepared by a coprecipitation method by varying the molar ratio of Cu and Zn in the catalytic
system. The prepared mixed metal oxide CuxZnyO was evaluated for catalytic performance for
toluene oxidation. Various parameters of the catalytic evaluation were studied in order to ascertain
the optimum condition for the best catalytic performance. The results indicate that aging time,
calcination temperature, reaction temperature, and feed rate influence catalytic performance. It was
found that the catalyst interfaces apparently enhanced catalytic activity for toluene oxidation. The
XRD diffractograms reveal the crystalline nature of the mixed metal oxide formed and also confirm
the coexistence of hexagonal and monoclinic crystalline phases. The catalyst prepared by aging for 4 h
and calcined at 450 ◦C was found to be the best for the conversion of toluene to benzaldehyde while
the reactor temperature was maintained at 250 ◦C with toluene fed into the reactor at 0.01 mL/min.
The catalyst was active for about 13 h.

Keywords: oxidation of toluene; mixed metal oxide; heterogeneous catalysis

1. Introduction

Toluene, an aromatic hydrocarbon, is a solvent that is an important industrial feed-
stock. Moreover, it is also an important starting material for the preparation of benzalde-
hyde and benzyl alcohol. However, this transformation has intrigued scientists for a long
time as this oxidation is difficult because of the over oxidation of benzaldehyde into ben-
zoic acid. Hence, the benzoic acid production is carried out by the oxidation of toluene,
while the chlorination of toluene is employed for the production of benzaldehyde and
benzyl alcohol, which raises serious ecological issues [1–3]. A variety of transition metal
catalysts have been reported for the synthesis of benzaldehyde using a variety of substrates
as starting materials such as benzyl chloride, benzyl alcohol, and toluene, as mentioned
earlier (Scheme 1) [4,5]. However, the preparation of benzaldehyde from toluene oxidation
is more efficient for industrial production, and hence it is widely studied.

Various noble-metal-based catalysts such as Au, Pd, Pt, Ru, and Ag, along with their
alloys, have been utilized for the oxidation of toluene by oxygen [6–10]. However, in most
cases, the selectivity towards benzaldehyde is compromised; moreover, these catalysts are
not cost-effective for use in large-scale production. Hence, it can be said that a cheap and
efficient catalytic system for high toluene conversion is yet to be identified.

In order to replace the noble metals, cheaper alternatives are being probed by replacing
these noble metals with cheaper transition metals for a variety of chemical reactions [11–14].
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One such transition metal is Zn, and zinc-based catalysts have been widely used for
various conversions such as decomposition of nitrous oxide [15], oxidation of water [16],
hydrocarbon oxidation [17], dye degradation [18], and preparation of alcohols [19–22].
On the other hand, copper-based catalysts have also been broadly employed for several
conversions, such as CO oxidation [23], benzene oxidation [24], and the hydroxylation of
benzene [25].
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Mixed metal oxides have also attracted attention for other catalytic reactions such
as oxidation, dehydrogenation, and various coupling reactions [26–29]. However, one
such mixed metal oxide, zinc–copper mixed oxide catalyst, has gained attention due
to its use in a plethora of catalytic processes, particularly for methanol synthesis [30],
CO oxidation [31,32], methanol oxidation [33], primary alcohols [34], and reduction of
4-nitrophenol [35]. However, to the best of our knowledge, it has not been employed for
the conversion of toluene to benzaldehyde.

Hence, based on the above literature reports and in continuation of our studies towards
preparation of various catalysts for different conversion reactions [36–42], in the present
work we report the synthesis of CuxZnyO mixed oxide by coprecipitation with varied
aging time and calcination temperature. The prepared catalysts were characterized by
various techniques such as XRD, XPS, FT-IR, TGA, SEM, and TEM. The catalysts obtained
were studied for the optimization of reaction conditions for the conversion of toluene
to benzaldehyde.

2. Results
2.1. XRD Analysis

The CuxZnyO mixed metal oxide nanoparticles were synthesized by the coprecipita-
tion method and subjected to calcination at different temperatures, namely 350, 450, and
550 ◦C. The XRD pattern of the samples calcined at different temperatures is presented in
Figure 1. No observable difference was found among the three XRD patterns observed.

A comparison of XRD patterns obtained for CuxZnyO mixed metal oxide nanoparticles
calcined at 450 ◦C with standard peaks is displayed in Figure 2. The high-intensity sharp
peak confirmed the highly crystalline nature of the material. The peaks observed completely
matched those reported in the database for CuO (JCPDS 48-1548) and ZnO (JCPDS 36-1451).
The XRD pattern obtained indicated the absence of any other molecules of Zn and Cu, since
there were no additional peaks observed in the XRD pattern. The pattern observed in the
ZnO diffractogram at 31.83(100), 34.45(002), 36.30(101), 47.57(012), 56.65(110), 62.90(013),
66.28(200), 68.03(112), 69.11(201), 72.47(004), and 76.97(202) confirmed the formation of
hexagonal structure like wurtzite (space group: P63mc, lattice parameters: a = 3.2533 Å
and c = 5.2073 Å) [22]. Similarly, the remaining signals at 32.64(110), 35.56(11-1), 38.75(111),
46.26(−112), 48.78(20-2), 53.49(020), 56.63(021), 58.38(202), 61.55(−113), 65.85(022),
66.28(31-1), 68.03(113), 72.45(311), and 75.20(22-2) were confirmed to be of CuO in tenorite
crystal with monoclinic crystal structure (space group: C1c1, lattice parameters: a = 4.6893 Å,
b = 3.4268 Å, c = 5.1321 Å, and β = 99.653◦) [22].



Catalysts 2021, 11, 354 3 of 14Catalysts 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. XRD patterns of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 

°C. 

A comparison of XRD patterns obtained for CuxZnyO mixed metal oxide nanoparti-

cles calcined at 450 °C with standard peaks is displayed in Figure 2. The high-intensity 

sharp peak confirmed the highly crystalline nature of the material. The peaks observed 

completely matched those reported in the database for CuO (JCPDS 48-1548) and ZnO 

(JCPDS 36-1451). The XRD pattern obtained indicated the absence of any other molecules 

of Zn and Cu, since there were no additional peaks observed in the XRD pattern. The 

pattern observed in the ZnO diffractogram at 31.83(100), 34.45(002), 36.30(101), 47.57(012), 

56.65(110), 62.90(013), 66.28(200), 68.03(112), 69.11(201), 72.47(004), and 76.97(202) con-

firmed the formation of hexagonal structure like wurtzite (space group: P63mc, lattice pa-

rameters: a = 3.2533 Å and c = 5.2073 Å) [22]. Similarly, the remaining signals at 32.64(110), 

35.56(11-1), 38.75(111), 46.26(−112), 48.78(20-2), 53.49(020), 56.63(021), 58.38(202), 61.55(-

113), 65.85(022), 66.28(31-1), 68.03(113), 72.45(311), and 75.20(22-2) were confirmed to be 

of CuO in tenorite crystal with monoclinic crystal structure (space group: C1c1, lattice pa-

rameters: a = 4.6893 Å, b = 3.4268 Å, c = 5.1321 Å, and β = 99.653°) [22]. 

Figure 1. XRD patterns of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 ◦C.
Catalysts 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. Comparison of XRD pattern of CuxZnyO mixed metal oxide (top) with standard database 

JCPDS 36-1451 (middle) and JCPDS 48-1548 (bottom). 

2.2. TGA Analysis 

The thermal stability of the synthesized materials was analyzed using thermogravi-

metric analysis. Figure 3 represents the TGA analysis pattern of CuxZnyO mixed metal 

oxide nanoparticles after being calcined at 350, 450, and 550 °C. All the samples were 

heated from room temperature to 800 °C and found to be highly stable under N2 flow 

atmosphere. CuxZnyO mixed metal oxide nanoparticles calcined at 350 and 450 °C exhib-

ited an almost similar pattern. A weight loss of ~3% was observed for both of the materials, 

with a continuous small weight reduction from beginning to end. However, a compara-

tively larger detriment was seen until 200 °C. This loss in weight might be attributed to 

the removal of absorbed moieties such as moisture and volatile impurities [19]. Another 

decay dip was observed in the temperature range between 550 and 700 °C. The decay was 

only ~0.4%, which might be due to the degradation of the hydroxides or carbonates of zinc 

and copper [11]. CuxZnyO mixed metal oxide nanoparticles calcined at 550 °C displayed a 

TGA pattern below 200 °C similar to those of nanoparticles calcined at 350 and 450 °C. 

Above 200 °C, a weight loss of only ~0.5% was observed in CuxZnyO mixed metal oxide 

nanoparticles calcined at 550 °C until the temperature of TGA analysis reached 800 °C. 

Figure 2. Comparison of XRD pattern of CuxZnyO mixed metal oxide (top) with standard database
JCPDS 36-1451 (middle) and JCPDS 48-1548 (bottom).



Catalysts 2021, 11, 354 4 of 14

2.2. TGA Analysis

The thermal stability of the synthesized materials was analyzed using thermogravi-
metric analysis. Figure 3 represents the TGA analysis pattern of CuxZnyO mixed metal
oxide nanoparticles after being calcined at 350, 450, and 550 ◦C. All the samples were
heated from room temperature to 800 ◦C and found to be highly stable under N2 flow atmo-
sphere. CuxZnyO mixed metal oxide nanoparticles calcined at 350 and 450 ◦C exhibited an
almost similar pattern. A weight loss of ~3% was observed for both of the materials, with
a continuous small weight reduction from beginning to end. However, a comparatively
larger detriment was seen until 200 ◦C. This loss in weight might be attributed to the
removal of absorbed moieties such as moisture and volatile impurities [19]. Another decay
dip was observed in the temperature range between 550 and 700 ◦C. The decay was only
~0.4%, which might be due to the degradation of the hydroxides or carbonates of zinc and
copper [11]. CuxZnyO mixed metal oxide nanoparticles calcined at 550 ◦C displayed a
TGA pattern below 200 ◦C similar to those of nanoparticles calcined at 350 and 450 ◦C.
Above 200 ◦C, a weight loss of only ~0.5% was observed in CuxZnyO mixed metal oxide
nanoparticles calcined at 550 ◦C until the temperature of TGA analysis reached 800 ◦C.

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. TGA analysis of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 

°C. 

2.3. SEM Analysis 

The surface morphology of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 

450, and 550 °C was investigated using an SEM analytical technique. Figure 4 exhibits the 

SEM images of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 °C. 

An agglomeration of nanoparticles was observed in the materials calcined at three differ-

ent temperatures. There was no significant structural difference found in the surface mor-

phology among the materials calcined at three different temperatures. It can be concluded 

from the images of three different calcined CuxZnyO materials that the calcination of the 

material at 350, 450, and 550 °C did not alter the surface morphology. An EDX analysis 

technique attached to SEM was used to estimate the composition of the materials synthe-

sized. The elemental composition of CuxZnyO mixed metal oxide nanoparticles calcined 

at 350, 450, and 550 °C is displayed in Table 1. The percentages of elements and CuO and 

ZnO in the mixed metal oxide revealed the composition expected given the concentrations 

of the starting materials used in the preparation. 

 

Figure 4. SEM images of CuxZnyO mixed metal oxide nanoparticles calcined at (a) 350 °C, (b) 450 

°C, and (c) 550 °C. 

  

Figure 3. TGA analysis of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 ◦C.

2.3. SEM Analysis

The surface morphology of CuxZnyO mixed metal oxide nanoparticles calcined at 350,
450, and 550 ◦C was investigated using an SEM analytical technique. Figure 4 exhibits
the SEM images of CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and
550 ◦C. An agglomeration of nanoparticles was observed in the materials calcined at
three different temperatures. There was no significant structural difference found in the
surface morphology among the materials calcined at three different temperatures. It can
be concluded from the images of three different calcined CuxZnyO materials that the
calcination of the material at 350, 450, and 550 ◦C did not alter the surface morphology.
An EDX analysis technique attached to SEM was used to estimate the composition of
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the materials synthesized. The elemental composition of CuxZnyO mixed metal oxide
nanoparticles calcined at 350, 450, and 550 ◦C is displayed in Table 1. The percentages of
elements and CuO and ZnO in the mixed metal oxide revealed the composition expected
given the concentrations of the starting materials used in the preparation.
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Figure 4. SEM images of CuxZnyO mixed metal oxide nanoparticles calcined at (a) 350 ◦C, (b) 450 ◦C, and (c) 550 ◦C.

Table 1. EDX analysis data obtained for CuxZnyO mixed metal oxide nanoparticles calcined at 350,
450, and 550 ◦C.

Calcination
Temperature (◦C)

Mass (%)

Elemental Compound

Cu Zn O CuO ZnO

350 49.08 30.98 19.94 61.43 38.57
450 51.50 28.54 19.95 64.47 35.53
550 50.28 29.78 19.95 62.93 37.07

2.4. TEM Analysis

To further investigate particle shape and size, TEM was utilized. Figure 5a–c rep-
resents the TEM images of CuxZnyO mixed metal oxide nanoparticles calcined at 350,
450, and 550 ◦C. A mixture of spherical and cylindrical nanoparticles was observed in the
nanoparticles formed. The particle size of the prepared nanomaterials was elucidated from
the TEM images in Figure 5a–c using ImageJ software. A particle size distribution graph of
CuxZnyO mixed metal oxide nanoparticles calcined at 350, 450, and 550 ◦C is represented
in Figure 5d–f. From the image, it can be concluded that as the calcination temperature
increased, the size of the nanoparticle also increased, and it was found to be 22.7, 28.1, and
37.2 nm for nanoparticles calcined at 350, 450, and 550 ◦C, respectively.

2.5. XPS Analysis

XPS analysis of the CuxZnyO catalyst prepared was carried out to further ascertain
the composition of the as-prepared catalyst and to understand the oxidation state of the Cu
and Zn in the mixed metal oxide. Figure 6 gives the survey scan of the catalyst confirming
the elemental composition of the as-prepared catalyst. The XPS spectra of the Zn 2p and
Cu 2p revealed that the binding energies of 1026 and 1048 eV correspond to Zn 2p3/2 and
Zn 2p1/2, respectively, and 938 and 945 eV correspond to Cu 2p3/2 and Cu 2p1/2 core levels,
respectively [43–45]. The binding energies indicate that both copper and zinc are in +2
oxidation state.
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3. Discussion
3.1. Catalytic Activity
3.1.1. Effect of Aging Time

The aging time in the preparation of a catalyst affects the catalytic performance of
the catalyst [46]; hence, these studies were carried out for the preparation of CuxZnyO
catalysts. In the present study, the catalyst was aged for various time periods, i.e., 2, 4, and
6 h, and then the catalytic performance was tested (Figure 7). Interestingly, it was observed
that the catalyst aged at 4 h gave the maximum conversion of toluene to benzaldehyde, i.e.,
63.5%. This reaction started with a 10% conversion within the first 10 min of the reaction
time. However, the catalysts aged at 2 and 6 h did not show any activity even after 250 min.
Therefore, the aging time of 4 h was selected as optimal for the entire study.
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Figure 7. Effect of aging time in the conversion of oxidation of toluene under molecular oxygen using
CuxZnyO mixed metal oxide nanoparticles calcined at 450 ◦C (conditions: catalyst amount: 0.3 g;
toluene flow: 0.01 mL/min; calcination temperature: 450 ◦C; reaction temperature: 250 ◦C).

3.1.2. Optimization of Calcination Temperature

The as-synthesized catalyst was calcined at different temperatures, i.e., 350, 450, and
550 ◦C, for a duration of 24 h and subjected to catalytic evaluation for the conversion of
toluene to benzaldehyde. Figure 8 represents the conversion obtained for toluene to ben-
zaldehyde during an oxidation reaction using CuxZnyO mixed metal oxide nanoparticles
calcined at three different temperatures. It can be observed that the catalyst calcined at
350 ◦C started with a less than 10% conversion product in the first 15 min, and it proceeded
to a ~30% conversion within 100 min. Moreover, this catalyst yielded a 54% conversion
product, and further continuation of the reaction after this time yielded a product of ~5%
conversion. Hence, the reaction was stopped. However, when the catalyst calcined at
450 ◦C was employed for the same conversion, a 10% conversion product was observed
in the first 15 min of the reaction, and then a peak in the conversion performance was
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observed in the first 100 min of the reaction, which yielded a 55% conversion product.
As the reaction proceeded, catalytic performance was further improved, and finally the
65% conversion product was observed in 250 min of reaction time. Moreover, the catalyst
calcined at 550 ◦C failed to show any conversion throughout the reaction. Hence, it can
be considered that the 450 ◦C calcination temperature was optimum for the best catalytic
performance of the prepared catalyst.
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3.1.3. Optimization of Flow Rate

For this study, the reaction was carried out at two different flow rates of toluene, i.e.,
0.01 and 0.02 mL/min (Figure 9). Interestingly, it was found that when the 0.01 mL/min
flow rate of toluene was used, the conversion began after 15 min of the reaction. The
catalytic performance improved with time, and after 250 min of reaction time, the result
was a 65% conversion product.

3.1.4. Extended Catalytic Activity Evaluation

A reactor run for an extended period was carried out in order to ascertain the activity
of the catalyst CuxZnyO; the percentage of toluene conversion obtained is illustrated in
Figure 10. It can be observed that the reaction yielded a successful conversion. It can
be observed that the reaction started with a 39% conversion of toluene to benzaldehyde,
which further increased. However, as the reaction proceeded, traces of benzyl alcohol
(<5%) were also formed along with benzaldehyde for a short duration, and the selectivity
of the catalyst returned to >99%. The catalyst displayed stable efficiency for up to 600 min
of reaction time with steady conversion in the range of 55–59% from 210 to 600 min of
reaction time. However, after 600 min of reaction time, there was a decline in catalytic
activity, yielding a 28% conversion product after 780 min of reaction time. Hence, the
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reaction was discontinued after this time. The decline in the catalytic performance of the
catalyst, i.e., CuxZnyO, may be due to the coking of the active sites, which shall be studied
in the future.

When the results obtained in this study are compared with results previously obtained
for the preparation of benzaldehyde by toluene oxidation, it can be noted (Table 2) that
various catalysts have given varying conversion products. For example, Okunaka et al.
used the catalyst BiVO4 loaded with Pd (0.1%) under blue-green light, and this method
led to an 85% conversion product [47]. In another study, Deng and coworkers employed
hexadecylphosphate acid (HDPA)-terminated mixed oxide nanoparticles for the selective
oxidation of toluene to benzaldehyde; an ∼83% yield of benzaldehyde was obtained, and
the catalyst HDPA-(Fe2O3-NiO)/Al2O3 possessed a >99% selectivity to benzaldehyde [48].
In another study reported by Shi et al., CoOx immobilized on SiO2 was prepared and
employed for a similar study. A 91% toluene conversion was observed, but the selectiv-
ity to benzaldehyde was found to be as low as 68%. Moreover, this reaction employed
N-hydroxyphthalimide and hexafluoropropan-2-ol as promoters, which have to be sepa-
rated from the product obtained at a later stage [49]. A complex hybrid polyoxometalate
photocatalyst, i.e., K6(H2O)8H24(C26H16N4O4)8[P6W48Fe6O180]·6H2O (FeW–DPNDI), was
employed by Li et al. [50], which led to a 62.5% benzaldehyde yield. V-Mo-Fe-O mixed
oxide yielded a maximum of 40.3% toluene conversion with an 84.5% selectivity towards
benzaldehyde. However, the catalytic performance depreciated after just 20 min of reaction
time [51].
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Figure 10. Graphical illustration of the conversion of toluene to benzaldehyde obtained during the
catalytic evaluation using CuxZnyO (conditions: catalyst amount: 0.3 g; toluene flow: 0.01 mL/min;
calcination temperature: 450 ◦C; reaction temperature: 250 ◦C).

Table 2. Comparison with previously reported catalysts for the oxidation of toluene.

Sl. No. Catalyst Temp
(◦C) Time Conversion

(%)
Selectivity

(%) Conversion/g/h Ref.

1 CuxZnyO 250 4 h 60 >99 60/0.3/4 herein

2 Pd(0.1%)/BiVO4 25 15 h 85 >90 85/0.01/15 [47]

3 HDPA-(Fe2O3-
NiO)/Al2O3

180 4 h 83 >99 83/0.06/4 [48]

4 CoOx/SiO2 25 4 h 91 68 91/0.005/4 [49]

5
K6(H2O)8H24(C26H16N4O4)8

[P6W48Fe6O180]·6H2O
(FeW–DPNDI)

25 24 h 62.5 >90 62.5/.016/24 [50]

6 V-Mo-Fe-O 80 0.5 h 40.3 >84 40.3/0.2/0.5 [51]

4. Materials and Methods
4.1. Synthesis of CuxZnyO Mixed Metal Oxide Nanoparticles

Stoichiometric quantities of 0.1 M copper nitrate (99.95%, Aldrich Chemicals, St. Louis,
MI, USA) solution (200 mL, aqueous) and 0.1 M zinc nitrate (99.95%, Aldrich Chemicals,
St. Louis, MI, USA) solution (100 mL, aqueous) were mixed in a round-bottom flask
attached with a mechanical stirrer, and the temperature of the reaction vessel was gradually
increased to 90 ◦C. Once the temperature was attained, 1 M sodium carbonate (Aldrich
Chemicals, St. Louis, MI, USA) solution (aqueous) was added dropwise until the pH
became 8. The reaction was later continued for 2, 4, and 6 h at the same temperature. The
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solution was kept stirring overnight at room temperature. Finally, the precipitate obtained
was washed using deionized (DI) water and dried in an oven at 60 ◦C overnight. The
resulting powder was then calcined in air at different temperatures, namely 350, 450, and
550 ◦C, with a heating rate of 10 ◦C/min for 24 h.

4.2. Characterization of Nanoparticles

The crystal structure of the synthesized nanomaterials was confirmed using powder
X-ray diffraction techniques on a Bruker D2 Phaser (Bruker, Karlsruhe, Germany) X-
ray diffractometer with Cu Kα radiation (λ = 1.5418 Å). Thermogravimetric analysis
(TGA) was performed by heating the samples in N2 flow using a NETZSCH STA 449F3
(Netzsch, Selb, Germany) with a heating rate of 10 ◦C/min The structural morphology
and the elemental composition of the synthesized nanomaterials were studied using
scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX) on a JEOL
SEM model JSM 6380 LA (Tokyo, Japan). The shape and size of the nanomaterials were
analyzed using a transmission electron microscope (TEM), JEOL TEM model JEM-1011
(Tokyo, Japan). XPS spectra were measured on a PHI 5600 Multi-Technique XPS (Physical
Electronics, Lake Drive East, Chanhassen, MN, USA) using monochromatized Al Ka at
1486.6 eV.

4.3. Catalytic Activity of CuxZnyO Mixed Metal Oxide Nanoparticles

The oxidation of toluene was carried out in O2 flow at a temperature of 250 ◦C under
atmospheric pressure in a down-flow stainless steel fixed-bed reactor (length 40 cm and
diameter 0.9 cm) with online gas chromatography (GC) analysis (Varian 3800 instrument
with a 30 m × 0.25 mm × 0.5 µm HP-INNOWAX capillary column and a flame ionization
detector). The temperature in the reactor was controlled by a Eurotherm controller using
a thermocouple placed at the top of the catalyst bed. Toluene was injected using an
HPLC pump fitted to the fixed-bed reactor. The reactor was packed with 0.3 g of the
synthesized material (powder) through which the toluene (98%, 0.01–0.02 mL/min) and
oxygen (20 mL/min) were allowed to flow. The downstream products were analyzed
through the GC connected online to continuously monitor the conversion of toluene.

5. Conclusions

Based on the findings of this research work and in comparison to the previously
reported catalysts for the same conversion, it can be concluded that the catalyst presented
herein, i.e., CuxZnyO, prepared by a simple co-precipitation method, is a suitable catalyst
for the facile conversion of toluene to benzaldehyde. The catalyst was found to be composed
of mixed phases of hexagonal and monoclinic crystal structures. The catalyst calcined
at different temperatures yielded nanoparticles of varying sizes. The catalyst calcined at
550 ◦C was found to possess a particle size of ~40 nm, whereas the catalysts calcined at
350 and 450 ◦C showed sizes of around 23 and 30 nm, respectively. The catalysts obtained
were found to be effective for the conversion of toluene to benzaldehyde with a ~65%
conversion product and >99% selectivity towards benzaldehyde. It appears that the most
effective catalysts are in this range, and a slightly higher particle size of around 40 nm
makes the material less effective. It can be concluded that the size of nanoparticles plays
the most significant role in the selective oxidation of toluene to benzaldehyde. The catalyst
was also found to be effective for ~14 h. Further studies towards improving the conversion
while maintaining the selectivity are being planned and shall be reported later.
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