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Abstract: Solar-driven photocatalysis has been known as one of the most potential technologies to
tackle the energy shortage and environmental pollution issues. Utilizing bio-pollutants to prepare
functional materials has been considered as a green option. Herein, we used Microcystis aerugi-
nosa as a bio-template to fabricate a Microcystis@TiO, photocatalyst using a calcination method.
The as-prepared Microcystis@TiO, showed prominent ability as well as favorable stability for pho-
tocatalytic reduction reactions including hydrogen evolution and nitrogen fixation. Under light
illumination, Microcystis@TiO, calcined at 550 °C exhibited optimal photo-reduced activity among all
samples, with the highest hydrogen evolution (1.36 mmol-g~!-h~!) and ammonia generation rates
(0.97 mmol-g~1-h~1). This work provides a feasible approach to prepare functional materials from
disposed pollutants.

Keywords: photocatalyst; TiO,; Microcystis; Hy production; N fixation

1. Introduction

Fast-growing industry worldwide is leading to environmental pollution and energy
shortage, which are global problems that urgently need to be addressed. Therefore, the
demand for green and clean sources has been increasing rapidly. As the primary sources
for meeting the ever-increasing demand, hydrogen, and ammonia have attracted extensive
attention [1-6]. However, traditional production processes not only consume a huge
amount energy but also cause a series of environmental problems [7-11]. For example, at
the current stage, the industrial synthesis of ammonia is accomplished by the Haber-Bosch
process [12,13]. The Haber-Bosch preparation process requires extreme reaction conditions,
i.e., high temperature (400-600 °C) and high pressure (20-40 MPa), and consumes vast fossil
fuels as well as releasing a huge amount of CO; gas (>1.6% of total global CO, emissions).
In recent decades, much effort has been expended in finding effective techniques to solve
the above problems.

Solar-driven photocatalysis, which is economical, sustainable, and environmentally
friendly, has captured extensive attention [14-18]. Photocatalytic reduction reactions
(such as hydrogen evolution, nitrogen fixation, and carbon dioxide reduction) can often
store the solar energy into chemical energy [19-25]. As one of the most widely studied
photosensitive materials, Titanium dioxide (TiO;) is of great concern in the research of
photocatalysis [26-34]. Several decades of research have proven the outstanding properties
of TiO, in photocatalysis, such as low cost, non-toxicity, and excellent stability. Moreover,
TiO; is a suitable semiconductor material for photocatalytic reduction reactions. Recently,
Yu et al. reported that the successful preparation of Z-scheme TiO,/Au/BiOI nanocom-
posite exhibited excellent photocatalytic performance for N, photo-fixation with a fixation
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rate of 543.53 pumol L™ h~! g*l [35]. Ding et al. showed that by using N-TiO; /Ti3Cy com-
posites, photocatalytic pollutant degradation and nitrogen fixation performance could be
promoted enormously [36]. Lan et al. introduced 2-ethylimidazole to synthesize a type of
ordered mesoporous TiO, which enhanced the generation rate of H [37]. Besides, Xu et al.
fabricated S-scheme TiO,/CsPbBr3 heterojunction photocatalysts through an electrostatic
assembly method to boost photocatalytic CO, reduction [38]. Although some progress has
been made in improving the photocatalytic ability of TiO,-based photocatalysts, compared
with the industrial process, the photocatalytic yield still needs to be promoted.

In recent years, the increasing energy demand has not only impelled us to use green
energies more reasonably but also to store clean renewable resources into chemical products
or fuels. Utilizing pollutants to prepare functional materials has been attracting consid-
erable attention. Microcystis aeruginosa is one of the predominant organisms responsible
for causing harmful algal blooms [39-41]. Microcystis aeruginosa is well known to produce
toxins [42]. The toxins released from Microcystis cells are commonly observed in surface
water and threatens the drinkability of reservoir water, as it is harmful to the environment
and humans [39]. The utilization of Microcystis cells can change the current situation of
high-cost treatment [36,38—40], and could maybe even create a platform with high potential
to produce cost-competitive products. In the past few years, many techniques have been
applied to solve the issue, such as physical treatments, chemical treatments, and biological
treatments [41,43,44]. However, it is difficult to completely control Microcystis and prevent
HABs in one treatment due to each treatment having its characteristic advantages and
disadvantages. For instance, physical and chemical measures can remove Microcystis effi-
ciently, but also result in resource waste and secondary pollution [43]. Biological treatment
seems to use natural processes to realize the decomposition of organic substances, but in
fact, it is a complex, long-term process, and will introduce a Resistanice Gene sometime [45].

Herein, as an attempt to utilize pollutants as resources, we used Microcystis cells as
one of the raw materials to fabricate TiO,-based functional materials (Microcystis@TiO;)
via a calcination technique at different temperatures. The preparation process not only
utilized pollutants-harmful algae as bio-template but also converted them to value-added
products. The structures and properties of Microcystis@TiO; were investigated by all sorts
of characterization methods such as X-ray powder diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). The photocat-
alytic reduction activities of the photocatalyst was tested by nitrogen fixation and hydrogen
generation. The possible reduction mechanism was also proposed.

2. Results and Discussion
2.1. Characterization of Photocatalysts

TiO; has three different polymorphic phases: the rutile phase, anatase phase, and
brookite phase. The rutile phase is the most thermodynamically stable phase among these
three natural phases of TiO,. The applications of the rutile phase is wide, because of its un-
usual properties, such as high optical, high chemical stability, high dielectric constant, and
good scattering efficiency. The schematic preparation process of the samples is displayed
in Figure 1. Microcystis solution was dispersed in 80 mL deionized water under ice bath
and the pH of the solution was adjusted to 4.0. After stirring for 30 min, 2 mL 1 mol/L
tetra butyl titanate (TiCl4) was added slowly under an ice bath and stirred for 24 h at room
temperature. Then, the mixture was heated at 70 °C and kept stirring for 2 h. The yellow-
white precipitate was collected and dried at 60 °C overnight. Finally, the obtained product
was calcined in a muffle furnace to remove Microcystis aeruginosa and make proper carbon
doping. The structure and morphology of the obtained samples were analyzed by using
X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM). Figure 2 shows the XRD patterns of the samples. The patterns of the
samples calcined under different temperatures matched well with the rutile phase (JCPDS
no. 21-1276). The peaks around 27.4°, 36.1°, 41.2°, 54.3°, 56.6°, and 69.0°corresponded
to the (110), (101), (111), (211), (220), and (301) crystal planes of rutile TiO,, respectively.
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The Microcystis@TiO,-400 exhibited weak XRD peaks, which related to its low crystallinity.
With the rise of calcination temperature, the diffraction intensity increased and the crys-
tal characteristics of rutile TiO, became more defined. Figures 3 and 4 are the SEM and
TEM images that were used to analyze the morphology of the samples. As depicted in
Supplementary Materials Figure S1, the sample without calcination was surrounded by
many spheroidal particles. After calcination, the morphology of the spheroidal particles
was greatly different, as the thin rutile rods were in-situ grown on the surface during the
calcination process. As shown in Figure 3a—d, the Microcystis@TiO,-550 possesses a sea
urchin-like morphology with a diameter of about 5 pum. When calcined at 800 °C, the end
of the nano rod became sharper, indicating that the crystalline increased.

) A Titanium - e .
Microcystis Tetrachloride Microcystis@TiO,
e *
€ e
3 5
< <
centrifugation
calcination
\ 4 \Nedehawa’

Figure 1. The synthetic process of Microcystis@TiO,.
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Figure 2. XRD spectra for Microcystis@TiO, under different calcination temperatures.
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Figure 4. The elements mapping data of Microcystis@TiO,-550.

This morphology can also be observed in TEM images. These results indicate that the
sea urchin structure was fabricated by the direct growth of the surface of the bio-templates,
which were removed at high temperatures. The Microcystis@TiO,-550 was selected as
the representative samples for TEM measurement, owing to its excellent photocatalytic
performance. The TEM images of Microcystis@TiO,-550 were displayed in Figure 5. The
nanorods were grown on the surface, which cohered with SEM investigation. As shown in
Supplementary Materials Figure S2, the Microcystis@TiO,-550 shows the clear lattice fringes
with the lattice distances of 0.14, 0.20, and 0.25 nm, matching well with the (221), (210), and
(101) facets of rutile TiO;,, respectively. The results agree with the XRD pattern depicted
in Figure 2. The results further indicate that the Microcystis successfully worked as a bio-
template. As presented in Figure 4, elements mapping data are uniformly distributed in the
Microcystis@TiO,-550 composites, which verify the elemental composition of the sample.
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Figure 5. The TEM image of (a—d) Microcystis@TiO,-550.

The porous structure and surface area of Microcystis@TiO,-550 composites were inves-
tigated by Ny-adsorption measurements, the nitrogen adsorption-desorption isotherms
of the prepared samples were presented in Supplementary Materials Figure S3. The N,
adsorption isotherms of the samples possess representative type-IIl with a hysteresis loop,
demonstrating the existence of a highly porous structure. The Brunauer—Emmett—Teller
(BET) surface area of the Microcystis@TiO,-400, Microcystis@TiO,-550, and Microcystis@TiO;-
800 were 42, 27, and 12 m?/g. It is seen that the surface area decreases with the increasing
calcination temperatures. Such phenomena are attributed to the removal of Microcystis and
high crystalline.

UV-Vis diffuse reflectance spectra (UV-Vis DRS) was conducted to investigate the
optical properties. As shown in Figure 6, all samples had an obvious absorption band in
the ultraviolet region. Microcystis@TiO,-550 processes an increased absorption capability in
the visible region compared with other samples, which is related to the carbon introduced
from Microcystis. The Microcystis@TiO,-550 and Microcystis@TiO,-800 were selected as the
representative samples for calculating the optical bandgap. According to the Kubelka-
Munk function vs. light energy shown in Supplementary Materials Figure 54 in supporting
information, the bandgap energy of Microcystis@TiO,-550 was calculated to be 2.91 eV,
which was smaller than that of Microcystis@Ti0O,-800 (3.0 eV). The smaller bandgap could
be attributed to the progress of calcination, which caused the different quantities of element
doping, especially carbon-doping.

—400 °C
—450 °C
—500 °C
—550 °C
—600 °C
——650 °C
—700 °C
—750 °C
— 800 °C

Absorption (a.u.)

200 300 400 500 600 700 800
Wavelength (nm)

Figure 6. UV-vis diffuse reflectance spectra (UV-vis DRS) of the prepared Microcystis@TiO;.
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The XPS survey spectra were carried out to test the binding energy of the element of
the Microcystis@TiO;. The survey spectra in Figure 7a demonstrated the existence of Ti,
C, and O elements. The high-resolution Ti 2p XPS spectrum was shown in Figure 7b, the
peaks at 459.20 eV and 464.95 eV in Ti 2p can be ascribed to the Ti** state [46]. Compared
with the sample without calcination, the peaks of Microcystis@TiO;-550 showed a shift
to higher binding energy and revealed the changes in the chemical environment of Ti
atoms (Supplementary Materials Figure S5). As shown in Figure 7c, the O 1s spectrum for
Microcystis@TiO, shows two peaks at 530.45 eV and 530.00 eV, which can be indexed to the
02~ in the lattice of TiO, as well as the surface adsorbed hydroxyl group, respectively [47].
The peak around 531.55 eV is assigned to the oxygen vacancy on the TiO; surface. The C
1s XPS spectrum for Microcystis@TiO,-550 shows three characteristic peaks. Typically, the
peaks located at 285.0 eV and 286. 5 eV can be ascribed to to C=C and C-O, respectively.
The peak at 288.8 eV is assigned to O-C=0 functional groups [48]. It is noted that the peak
around 285.0 eV for C=C bond is owed to the amorphous carbon from Microcystis left in
Microcystis@TiO,-550 [49].

(a) 2 (b) 1z
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Intensity (a.u.)

0 200 400 600 800 1000 1200 456 458 460 462 464 466 468
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o
~
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Figure 7. (a) XPS spectra of Microcystis@TiO,-550 and the corresponding high-resolution spectra of

(b) Ti 2p, (c) O 1s, (d) C 1s.

2.2. Photocatalytic Activity
2.2.1. Photocatalytic Nitrogen Fixation Performance of Microcystis@TiO, Composites

The photocatalytic nitrogen fixation performance of the composites under different
calcination temperatures was shown in Figure 8. To confirm that the NHj originated from
the photocatalytic nitrogen fixation (rather than some other nitrogen source), all samples
had been conducted by using Ar instead of N; to eliminate interference. The produced
ammonia was determined by spectrophotometrically measuring with the Nessler’s regent.
As displayed in Figure 8a, the activities for nitrogen fixation followed the order: Microcys-
tis@TiO,-550 > Microcystis@TiO,-400 > Microcystis@TiO,-450 > Microcystis@TiO,-500 > Mi-
crocystis@TiO,-600 > Microcystis@TiO,-650 > Microcystis@TiO,-700 > Microcystis@TiO,-750
> Microcystis@TiO,-800. The Microcystis@TiO,-550 sample exhibited the best photocatalytic
nitrogen fixation performance (0.97 mmol-g~!-h~!) compared with other samples. The
nitrogen fixation rate of Microcystis@TiO,-550 was 1.9 times higher than that of Microcys-
tis@TiO;-800. It is noted that the sample without calcination showed the lowest ability for
ammonia generation (0.001 mmol-g~!-h~!), which may be related to the lower catalysts
amount in the composite. Therefore, the NHj3 generation rate of the samples increased
a lot after calcination. As Figure S6 in Supplementary Materials showed, the blank test
indicated that there was no NHj3 produced in the absence of light and a photocatalyst.
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By the way, the Microcystis@TiO,-550 photocatalyst also exhibited excellent stability see
Figure 8b. After three cycles, no noticeable decrease of photocatalytic nitrogen fixation
was observed. In addition, we found that the samples exhibited higher photocatalytic
nitrogen fixation performance under weak acid conditions compared with other conditions
(Figure S7 in Supplementary Materials).
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Figure 8. (a) The rate of NHj evolution with 2 h of illumination over the prepared Microcystis@TiO,.
(b) The stability of photocatalytic NH3 production over Microcystis@TiO,-550.

2.2.2. Photocatalytic Hydrogen Generation Performance of Microcystis@TiO, Composites

The photocatalytic hydrogen generation performance was assessed by using a Xe
lamp in a Pyrex reactor for H, production as well as methanol as an electron donor. The
results are presented in Figure 9. With the prolongation of the irradiation time, a linear
increase of Hy amount can be observed in the Microcystis@TiO, samples (Figure S8 in the
Supplementary Materials). With the increase in calcination temperature from 400 to 500 °C,
the rate of hydrogen evolution decreased. When the calcination temperature continuously
increased to 550 °C, the hydrogen evolution rate reached a maximum. However, the
rate of hydrogen evolution continuously decreased, with a further rise in the calcination
temperature from 550 to 800 °C. The hydrogen generation rate is 1.36 mmol-g~!-h~!, which
was three times higher than that of Microcystis@TiO,-800 sample. The Microcystis@TiO,-550
showed the optimal photocatalytic activity, indicating that the carbon doping was the key
factor affecting the photocatalytic activities. The stability of the Microcystis@TiO,-550 for
hydrogen production was also evaluated and the results were displayed in Figure 9b. After
three-time cycling reaction operation, there was no noticeable decrease of photocatalytic Hp
evolution, which indicated good photocatalytic stability of Microcystis@TiO, composites. It
is attributed to Microcystis@TiO, photocatalysts with active exposed surfaces, voids, which
provide more catalytic active sites to promote photocatalytic hydrogen production by
accelerating the charge transfer. In summary, the reusable characteristic of Microcystis@TiO;
possessed potential value for photocatalytic reduction applications, such as Hy production
and nitrogen fixation.



Catalysts 2021, 11, 1443 8of 13

(@) (b)

650 °C

N N 9 N2

‘ 600 °C

| |450 °C 1 /'
0.0 0.5 1.0 15 0 2 4 6 8 10 12
The rate of H, production (mmol-g’l'h") Time (h)

‘ 550 °C

H, production (mmol-g l)
~ w
",
\.

[ e

Figure 9. (a) The rate of H; evolution with 4 h of illumination over the prepared Microcystis@TiO,.
(b) The stability of photocatalytic Hy evolution over Microcystis@TiO,-550.

2.3. Photoelectrochemical Properties

The photoelectrochemical (PEC) analysis was implemented to evaluate the charge
transfer and separation behaviors of the samples. In this work, we selected three samples,
Microcystis@TiO,-400, Microcystis@TiO,-550, and Microcystis@TiO,-800, as representa-
tives. The photocurrent-time curves consisted of three similar cycles during the repeated
chopped-light irradiation, and the rising curve corresponded to the light irradiation of each
cycle. When the light is turned on, the surface photocurrents of the samples reached a value.
When the light is turned off, the photocurrent no generation was observed in the photocur-
rent. Under illumination, the photogenerated charge carriers in a photocatalyst-coated
electrode migrated through a series of particle boundaries to reach the FTO substrate to
be reflected as the IT spectra. Thereby, the intensity of the photocurrent was mainly domi-
nated by the number of charge carriers that transferred to the FTO substrate, and the defect
and active sites could trap electrons as electron reservoirs during their transfer, reducing
the photocurrent [25]. As displayed in Figure 10a, the average photo-current density of
Microcystis@TiO,-400, Microcystis@TiO,-550, and Microcystis@TiO,-800 were calculated
to be ~0.006, ~0.012, and ~0.004 wA /cm?, respectively. It is indicated that Microcystis@TiO,-
550 is an effective photogenerated separation carrier in these three samples. Additionally,
the slow decreasing photocurrent of Microcystis@TiO,-550 under irradiation implies the
more defect and active sites in this sample. As a result, the modified photocatalyst may
provide excellent optical absorption of light and effective separation of the photogenerated
carriers. This also supports the previous statement that appropriate carbon doping is more
conducive to the separation and transfer of charge carriers. Electrochemical impedance
spectra (EIS) were also measured to explore the charge carrier transport behaviors. As dis-
played in Figure 10b, as compared to the Microcystis@TiO,-400 and Microcystis@TiO,-800,
the Microcystis@TiO,-550 exhibited a smaller impedance arc radius in the Nyquist plots.
This result demonstrated that the Microcystis@TiO,-550 possessed the slightest interfacial
resistance, which is beneficial for faster charge transfer, which was consistent with the test
results of the transient photocurrent response.
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Figure 10. (a) Transient photocurrent responses and (b) EIS Nyquist plots of Microcystis@TiO,-400,
Microcystis@TiO,-550 and Microcystis@TiO,-800.

2.4. Mechanism

Based on the above experiment results, a possible photocatalytic mechanism for Mi-
crocystis@TiO, photocatalyst was proposed in Figure 11, indicating the charge separation
and transfer pathway. Microcystis@TiO; calcined at 550 °C showed highly efficient photo-
catalytic reduction performances, which is related to the unique structures from Microcystis
cells and proper carbon doping. Under irradiation, the photogenerated electrons of the
Microcystis@TiO, in the valence band (VB) will be excited to the conduction band (CB) and
the holes are left in the VB. Then, the photogenerated electrons in the CB will be transferred
to the Pt surface and combined with H* to generate H, (N, fixation to NHj3). Meanwhile,
the carbon doping introduces a defect energy level, which could capture the photogener-
ated carriers and enhance the charge separation. In addition, the sea urchin-like structure
resulting from Microcystis aeruginosa enables a high surface area and the proper carbon
doping enables more defects and active sites, which are beneficial for the photocatalytic
reduction process.

Figure 11. Schematic illustration for the photocatalytic mechanism over Microcystis@TiO,.

3. Materials and Methods
3.1. Synthesis of Microcystis@TiO, Composites

Five mL 10 cells/mL Microcystis solution was washed by phosphate buffer saline
three times. The above solution was dispersed in 80 mL deionized water in an ice bath for
30 min and the pH of the solution was adjusted to 4.0. 2 mL tetrabutyl titanate (TiCl4) with
a concentration of 1 mol/L being added and slowly stirred for 24 h at room temperature.
The mixture was heated to 70 °C and stirring was maintained for 2 h. The yellow-white
precipitate was collected and dried at 60 °C overnight. Finally, the product was transferred
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into a muffle furnace and calcined at different temperatures (400 °C, 450 °C, 500 °C,
550 °C, 600 °C, 650 °C, 700 °C, 750 °C, and 800 °C) for 2 h to remove Microcystis cells
and make proper carbon doping. The obtained Microcystis@TiO, composites were named
Microcystis@TiO,-400, Microcystis@TiO,-450, Microcystis@TiO,-500, Microcystis@TiO,-550,
Microcystis@TiO,-600, Microcystis@TiO,-650, Microcystis@TiO,-700, Microcystis@TiO,-750,
and Microcystis@TiO,-800, respectively.

3.2. Characterization

X-ray powder diffraction (XRD) of the samples were carried out at an X-ray diffrac-
tometer (XRD, Rigaku, RINT 2000, Tokyo, Japan). Scanning electron microscopy (SEM,
FEI, Quanta 250 FEG, Boston, MA, USA) and transmission electron microscopy (TEM,
JEOL, JEM-2100FS, Tokyo, Japan) were performed to investigate the morphology and
microstructures of the samples. X-ray photoelectron spectroscopy (XPS, PHI 5000 Ver-
saProbe II, Tokyo, Japan) analyses were carried out on ESCALAB spectrometer with a
monochromatic Al-K« (1486.6 eV) as X-ray source. The UV-vis absorption spectra of the
samples were obtained from a UV —vis spectrophotometer (UV-2600, Shimadzu, Kyoto,
Japan) with BaSOy as the reference, and UV-vis spectra were recorded within a wavelength
range from 200 to 800 nm. Brunauer-Emmett-Teller (BET) experiments were collected on
an ASAP2460 Surface Area.

3.3. Photocatalytic Nitrogen Fixation

The photocatalytic nitrogen fixation activity tests were performed in a Pyrex irradia-
tion reactor (57 mL). In a typical test, 20 mg photocatalyst powder was dispersed into a
CH30OH aqueous solution (36 mL of deionized water + 4 mL of CH3OH). Then, moderate
H,PtClg was placed into the above solution. The light source used was a 300 W Xe lamp
(Perfect Light, PLS-SXE300, Beijing, China). Before switching on the light, N, was bubbled
through at a flow rate of 20 mL min~! and the reaction solution was stirred for 30 min
in the dark. After irradiation for 2 h, 5 mL of the reaction solution was collected, and
the photocatalyst was removed through syringe filters. The ammonia concentration was
detected by the Nesslerization method. All samples were performed by using Ar as a
nitrogen source instead of N to eliminate interference.

3.4. Photocatalytic Hydrogen Evolution

The photocatalytic H, evolution activity tests were conducted in a Pyrex irradiation
reactor (57 mL) with a closed cycle gas circulation system connected to a gas chromatog-
raphy instrument (Shimadzu; GC-8A, MS-5A column, TCD, argon carrier, Kyoto, Japan).
Typically, 20 mg photocatalyst powder was dispersed into a methanol (CH3OH) aqueous
solution (36 mL of deionized water + 4 mL of CH3OH) and the pH of the solution was
adjusted to 4.0. Then, moderate H,PtCls was placed into the above solution. Before irra-
diation, the air in the reactor was degassed and replaced with Ar gas. A 300 W Xe lamp
(Perfect Light, PLS-SXE300) was used as the incident light source. The gas produced in
the reaction was detected by using gas chromatography (GC, HP6890A) equipped with a
thermal conductivity detector (TCD) with Ar as carrier gases.

3.5. Photoelectrochemical Measurements

In the photoelectrochemical analysis of the prepared samples, including the electri-
cal impedance spectroscopy (EIS), transient photocurrent responses were tested using a
standard three-electrode cell on the CHI 660E electrochemical workstation, where the Pt
foil was the counter electrode, photocatalyst-coated FTO substrate (1 x 1 cm?) was the
working electrode, and Ag/AgCl was the reference electrode. A 300 W Xe lamp (Per-
fect Light, PLS-SXE300) was employed as the light source, which was the same as the
photocatalytic process.
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4. Conclusions

In general, single Microcystis cells were utilized as a bio-template to prepare Microcys-
tis@TiO, photocatalysts by a calcination method. The Microcystis@TiO, possessed excellent
photocatalytic reduction performance in hydrogen evolution and nitrogen fixation. Among
all the samples, Microcystis@TiO, calcined at 550 °C shows highly efficient photocatalytic
reduction performances, which is related to the unique structures from Microcystis and
proper carbon doping. Within 2 h of irradiation, the ammonia generation from nitrogen
fixation of Microcystis@TiO,-550 reached 0.97 mmol-g~!-h~!. The hydrogen generation rate
of Microcystis@TiO;-550 reached 1.36 mmol-g~!-h~!. The Microcystis@TiO,-550 exhibited
good stability in successive photocatalytic hydrogen generation and nitrogen fixation pro-
cess. This work provided an approach that not only utilizes pollutants but also transforms
them into functional materials. It is expected that these functional materials with excellent
photocatalytic performance could be widely used in solar energy conversion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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