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Abstract: The demand for ecofriendly green catalysts for biofuel synthesis is greatly increasing
with the effects of fossil fuel depletion. Fungal lipases are abundantly used as biocatalysts for the
synthesis of biofuel. The use of Botrytis cinerea lipase is an excellent approach for the conversion of
agroindustrial residues into biofuel. In this study, phylogenetic analyses were carried out and the
physicochemical properties of B. cinerea lipase were assessed. Furthermore, the protein structure of
B. cinerea lipase was predicted and refined. Putative energy-rich phytolipid compounds were explored
as a substrate for the synthesis of biofuel, owing to B. cinerea lipase catalysis. Approximately 161 plant-
based fatty acids were docked with B. cinerea lipase in order to evaluate their binding affinities and
interactions. Among the docked fatty acids, the top ten triglycerides having the lowest number of
binding affinities with B. cinerea lipase were selected, and their interactions were assessed. The top
three triglycerides having the greatest number of hydrogen bonds and hydrophobic interactions were
selected for simulations of 20 ns. The docking and simulations revealed that docosahexaenoic acid,
dicranin, and hexadeca-7,10,13-trienoic acid had stable bonding with the B. cinerea lipase. Therefore,
B. cinerea lipase has the potential to be used for the transesterification of fatty acids into biofuels,
whereas docosahexaenoic acid, dicranin, and hexadeca-7,10,13-trienoic acid can be used as substrates
of B. cinerea lipase for biofuel synthesis.

Keywords: Botritis cinerea lipase; plant fatty acids; biofuels; molecular docking; molecular dynamics
simulations; green catalysis

1. Introduction

Fossil fuels are unable to deal with the increasing demand for energy, as they are non-
renewable [1–3]. Biofuels are preferred over conventional fuels because of their nontoxic,
biodegradable, and renewable natures. Moreover, biofuels offer lower impact in terms
of global carbon footprints [3]. Biofuel synthesis is the best alternative for coping with
fossil fuel consumption. According to a report, biofuel global production was increased
by 10 billion liters in 2018, compared to 2017, to meet a record of 154 billion liters [4]. A
twenty-five percent increase in biofuel production is forecasted by the year 2024, due to the
better growth statuses of biofuel-producing countries, including Brazil, the United States,
and, especially, China [5]. Among all the countries, Brazil has the prominent agricultural
backbone to convert agroindustrial waste into renewable energy products [6]. Biobased
residues, including fats and oils, are most frequently used for the synthesis of biofuels.
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These contain energy-rich and readily available triglycerides, having a reduced carbon
source [7]. The demand for nonedible vegetable oils as a potential second-generation
feedstock for biofuel production has significantly increased. Jatropha curcas, Sterculia feotida,
and many other nonedible oil-producing plant feedstock is utilized for ecofriendly and
sustainable biodiesel production, which is catalyzed by fungal lipases. [8].

Biological pretreatments using fungal fermentation processes are considered to be a
highly efficient approach for the downstream production of biofuel, but the duration of
incubation extends from weeks to months [9]. Hence, microbial enzymes are popular for
catalyzing complex substrates into renewable fuels within hours, leading to maximum
yields [10]. Different technical approaches, including thermochemical, physicochemical,
and biological methods, are being used for the sustainable and successful treatment of
biomass before conversion into biofuel using microbial enzymes [11,12]. Fungal lipases,
such as Candida lipases, are widely used for biodiesel production [4,13]. The lipases of
other fungi, including Aspergillus niger, Rhizopus oryzae, and Rhizomucor miehei are also
well-known sources for commercial biodiesel production [13,14].

Lipases have the ability to catalyze triglycerides into diglycerides, monoglycerides,
glycerol, and the free form of fatty acids. Lipases catalyze the released free sterols and
fatty acids by acting as sterol esterases [15]. Lipases are popular in commercial industries,
including in detergents, wastewater pretreatment, food processing, chemical synthesis,
biofuel production, and the paper and textile industries [16,17]. Fungal lipases are classified
based on the type of amino acid needed to form oxyanion holes, as in the GX, GGGX, and
Y classes, and are further categorized into five subclasses: two GX, two GGGX, and one
Y [18]. G indicates conserved glycine joined with C-terminal backbone neighbor X, being
the hydrophobic residue of an oxyanion hole. The Y-class consists of Candida antarctica
lipase A, such as in [19]. Fungal lipases have molecular masses ranging from 20 kDa to
60 kDa, approximately, in various fungi species [20]. Lipases are promising catalysts for
biofuel production because of their high specificity for the transesterification of fatty acids
into methyl or ethyl esters at the industrial level [21].

B. cinerea is well-known for its enzymatic repertoire and for actively participating
in various metabolic pathways, including the cAMP signaling pathways and MAPK cas-
cades [22]. It is a most significant necrotrophic fungus, infamous for causing pathogenesis
in more than 200 plant species because it secretes several effector proteins and cell-wall-
degrading enzymes, including lipases [23,24]. Lipase extracted from B. cinerea demon-
strated significant similarity with lipases isolated from Candida rugosa and the Geotrichum
species. However, B. cinerea lipase showed a higher protein similarity with filamentous
fungi, including the Aspergillus species [23]. Hence, B. cinerea lipase can also be used as a
potential biocatalyst.

Since the molecular characterization of B. cinerea lipase has not been reported yet, the
current study assessed the various plant-derived fatty acids and triglyceride molecules as
substrates of B. cinerea lipase in order to produce cost-effective biofuel. Therefore, an in
silico molecular characterization of B. cinerea lipase was carried out. Plant-based fatty acids
were used to perform molecular docking and molecular dynamics simulations in order to
identify efficacious fatty acids for B. cinerea lipase to produce biofuel. This study provides
novel insights into Botrytis cinerea lipases, and identifies the plant-derived fatty acids best
suitable for biofuel production using B. cinerea.

2. Results
2.1. Multiple Sequence Alignment and Phylogenetic Analysis of B. cinerea Lipase

The physicochemical properties of B. cinerea lipase are represented in Table 1. Multiple
sequence alignment revealed that lipases in Botrytis share higher identity within the genus.
The active site, in the form of catalytic residues (G–X–S–X–G), is conserved in all fungal
lipases. For the phylogenetic tree, multiple sequence alignment was used to generate a
maximum likelihood tree on MEGAX software, as shown in Figure 1. The phylogenetic
tree, based on the protein sequences of isolates, is represented in Figure 2. The tree was
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divided into subgroups. B. cinerea lipase showed a close relationship with Botrytis cinerea
lipase, and forms a sister clade with the lipases of other Botrytis species, and with the
lipases of many different fungal species. However, it showed a distant relationship with
the lipases of Rutstroemia sp., Lepidopterella palustris, and Coleophoma crateriformis. The lipase
from Vibrio coralliilyticus was an outgroup in the rooted phylogenetic tree.

Table 1. Physicochemical properties of B. cinerea lipase. Physicochemical properties, including amino
acid residues, molecular weight, theoretical pI, positively and negatively charged residues, molecular
formula, instability index, aliphatic index (%), and GRAVY, are represented in the table.

Sr. No Physiochemical Properties of B. cinerea Lipase Values

1 Amino acid Residues 557

2 Molecular weight (Da) 59,090.04

3 Theoretical pI 4.93

4 Positively Charged Residue 30

5 Negatively Charged Residue 38

6 Total No. of Atoms 8312

7 Molecular formula C2703H4129N675O797S8

8 Instability index 36.20

9 Aliphatic index (%) 92.21

10 GRAVY 0.194
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Figure 2. Phylogenetic tree of B. cinerea lipase. Phylogenetic rooted tree of B. cinerea lipase is constructed using maximum
likelihood method.

2.2. Signal Peptide Removal

For B. cinerea lipase, the signal peptide cleavage site was found between the 27 and
28 aa residues, as depicted in Figure 3. The Sec/SPI score was 0.9965, which indicated
the presence of a signal peptide in the protein sequence of B. cinerea lipase. Similarly, the
Philius web server also predicted the same cleavage site.
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Figure 3. Signal peptides of B. cinerea lipase are presented by using SignalP server. Signal peptides are present in
B. cinerea protein that direct it to the subcellular localization site. The signal peptide is 27 aa residues long in the lipase
protein sequence.

2.3. Prediction of Secondary Structure of B. cinerea Lipase

The secondary structure of lipase by PSIPRED is shown in Figure 4. A total of 18 helices
were found. Six beta sheets were also found.
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Figure 4. Alpha helices in B. cinerea lipase. Alpha helices have been depicted by PSIPRED in B. cinerea lipase. A total of
eighteen alpha helices were present in the protein structure.

2.4. Prediction of Tertiary Structure of B. cinerea Lipase

All the models were evaluated for the Q-mean, the ERRAT score, and Ramachandran
plots of the predicted models. The scores for the top models of each method used for
prediction are provided in Table 2. Robetta-TR model 1 had the best scores among all the
tested models, as its ERRAT score graph and Ramachandran plots show in Figures 5 and 6.
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Therefore, Robetta-TR model 1 was further refined using the 3Drefine webserver. The
predicted model is shown in Figure 7. Furthermore, the predicted model of the B. cinerea
lipase was superimposed on the sterol esterase of Ohiostoma piceae, as shown in Figure 7. A
similarity of 80% was selected as the default, and the RMSD values for the alpha carbons
and backbone were 2.90 and 2.86, respectively. The binding sites, predicted by CASTp, are
shown in Figure 8.

Table 2. Thread-based and ab initio scores for protein modeling. Scores obtained from output models of I-TASSER, Phyre2,
and Robetta ab initio TR are shown. Robetta-TR models with best scores were selected.

Protein Type Method/Tool Method ERRAT Q-Mean
Ramachandran Plot

Outlier (%) Allowed Region
(%)

Favorable Region
(%)

B. cinerea
Lipase

ITASSAR_1 Thread-Based 68.4 0.5 3.6 7.8 55.0

PHYRE_2 Normal 56.5 0.3 2.2 18.4 50.0

ROBETTA_ Ab AB-initio 72.4 0.35 0.9 23.2 74.0

ROBETTA_TR Thread-Based 93.2 0.68 1.5 14.4 83.0
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2.5. Prediction of Binding Pocket Site of Protein

The binding sites of the protein were identified by CASTp, as represented in Figure 9,
and were embedded inside the proteins. The protein had large and deep binding sites,
consisting of 100 amino acid residues.
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2.6. Molecular Docking of Lipase with Plant Triglycerides

The top ten triglycerides having the least number of binding affinities associated with
B. cinerea lipase were selected, and their binding affinities are shown as boxplots in Figure 9.
The IUPAC names, molecular weights, PubChem IDs, and the numbers of hydrogen and
hydrophobic interactions are shown in Table 3. Docosahexaenoic acid possessed the lowest
binding energy (−7.6 kcal/mol), followed by dicranin (−6.7 kcal/mol), and hexadeca-
7,10,13-trienoic acid (−6.3 kcal/mol). The protein-ligand interactions of the top three
triglycerides, including docosahexaenoic acid, dicranin, and hexadeca-7,10,13-trienoic
acid, are represented in Figure 10. Docosahexaenoic acid and hexadeca-7,10,13-trienoic
acid both contained two hydrogen bonds, while dicranin had three hydrogen bonds.
Docosahexaenoic acid and dicranin both had fourteen hydrophobic interactions, while
hexadeca-7,10,13-trienoic acid had 9 hydrophobic interactions with B. cinerea lipase. The
protein-ligand complexes were proceeded by molecular dynamics simulation in order to
explore conformational energy landscapes.

Table 3. The list of top ten compounds showing the lowest binding affinities with B. cinerea lipase. Plant fatty acids with
molecular weights and molecular formulas, binding affinites, hydrgen bonds, and hydrophobic interactions are represented
in the table.

Compound IUPAC Names PubChem ID Molecular
Formula

Hydrogen
Bonds

Hydrophobic
Interactions

Binding
Affinities

Oxiraneoctanoic acid
8-(3-oct-2-enyloxiran-2-

yl)octanoic
acid

1929 C18H32O3 3 10 −5.7

Docosahexaenoic acid

(4Z,7Z,10Z,13Z,16Z,19Z)-
docosa-4,7,10,13,16,19-

hexaenoic
acid

445580 C22H32O2 2 14 −7.6

Hexadeca-7,10,13-
trienoic

acid

hexadeca-7,10,13-trienoic
acid 2826712 C16H26O2 2 9 −6.3

Suberic acid octanedioic acid 10457 C8H14O4 2 4 −5.0

Chaulmoogric acid
13-cyclopent-2-en-1-

yltridecanoic
acid

72853 C18H32O2 1 10 −5.0

11-Dodecenoic acid
(8Z,10E,12Z)-octadeca-

8,10,12-trienoic
acid

125207 C12H22O2 0 7 −4.5

Palmitoleic acid (Z)-octadec-9-enoic acid 445638 C16H30O2 1 12 −5.8

Oleic acid (Z)-octadec-9-enoic acid 445639 C16H34O2 1 13 −5.1

Dicranin
(9Z,12Z,15Z)-octadeca-

9,12,15-trien-6-ynoic
acid

44584408 C18H26O2 3 14 −6.7

Octadecatetraenoic acid

(9Z,11Z,13E,15E)-4-
oxooctadeca-9,11,13,15-

tetraenoic
acid

5312915 C18H26O3 3 10 −5.3

2.7. Molecular Dynamics Simulations

The molecular dynamics simulations of the top three complexes revealed structure
stability and fluctuations during the 20 ns simulations. Hexadeca-7,10,13-trienoic acid
showed minor fluctuations at the start, but stabilized from 4.5 ns to 11.5 ns, according to the
RMSD values shown in Figure 11. The structure fluctuated from 11.5 ns to 14 ns and again
stabilized onwards, whereas the dicranin complex with the lipase was only stable from
9 ns to 17 ns. It fluctuated at the start and end of the simulation. Doxosahexaenoic acid
was unstable initially, but then stabilized after ~8500 ps, and remained stable to ~18,500 ps.
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The radius of gyration represents the compactness of the structure in Figure 12. The
structures fluctuated between 2.40 nm and 2.50 nm. The Rg for hexadeca-7,10,13-trienoic
acid was lower at the start, representing that the structure is compact, wheras the Rg values
for docosahexaenoic acid and dicranin showed overall fluctuations. However, in the end,
the compactness was reduced as the Rg value increased.

The lipase complex with docosahexaenoic acid became more compact towards the end
of the simulation. Similarly, the compactness of the lipase complex with dicranin increased
towards the end of the simulation.

The root mean square fluctuation of docosahexaenoic acid, dicranin, and hexadeca-
7,10,13-trienoic acid in the complex showed stability, as shown in Figure 13. Only a
few residues at the start fluctuated, but overall the structure was stable. Other minor
fluctuations were less than 0.75 nm, indicating the stability.
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(green), are represented.
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3. Discussion

Fungal lipases are advantageous over other microbial lipases because of their potential
to utilize free fatty acids, monoglycerides, diglycerides, and triglycerides during the trans-
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esterification reaction at higher activity and maximum yields. These lipases can catalyze the
reaction in nonaqueous media at lower temperatures, within shorter times, and ease mass
biofuel production [25,26]. Approximately more than 80% plant triglycerides are used for
diesel fuels because of their availability, higher heat content, biodegradability, lower sulfur
content, renewability, and lower aromatic content [27,28]. Current research reveals that
plant triglycerides, such as dicranin, docosahexaenoic acid, and hexadeca-7,10,13-trienoic
acid, were potent feedstock for B. cinerea-lipase-mediated biofuel production.

B. cinerea lipase represent a 50 to 60% homology with lipases from filamentous fungi,
and a 35 to 45% homology with lipases from C. rugosa and G. candidum [23]. In the current
study, the lipases from two different strains of Botrytis represented a 100% homology.
Hence, the lipases from any Botrytis strain can contribute in similar manners for biofuel
production, as these are very similar.

Because of the great advancements in in silico approaches, this study was designed
to decipher the interactions between B. cinerea lipase and the plant triglycerides that have
been previously reported [29]. Recently, fungal lipases obtained from Mucor circinelloides,
f. circinelloides, and Rhizopus oryzae interacting with triglycerides were also modeled using
computational approaches [30]. The three-dimensional protein structures of various lipases
from ascomycetes, such as Ophiostoma piceae, Melanocarpus albomyces, and Candida rugosa,
have been resolved [31–33]. However, B. cinerea lipase has not been structurally charac-
terized. In earlier studies, protein homology modeling was used for the prediction of the
tertiary structure for those not already resolved [34]. For this purpose, SWISS MODEL was
chosen for homology modeling, and the resultant homology was found to be 58% with
Ophiostoma piceae sterol esterase. The obtained value is higher than other recently modeled
lipases: 32% for Arabidopsis thaliana lipase, and 32.11% for Streptomyces rimosus lipase [35,36].
The protein modeling for B. cinerea lipase was also performed using thread-based and ab
initio approaches after first removing 17 amino acids from the signal peptide. I-TASSER,
Phyre2, and the Robetta ab initio and TR methods were chosen for the determination of the
protein tertiary structure, but the final model was selected from the Robetta-TR method
having the highest scores, as shown in Table 2.

An ERRAT-based statistical analysis was performed for the quality validation of the
selected model. This program analyses the nonbonded interaction patterns of various
types of atoms [37]. The overall quality factor assigned to the B. cinerea lipase model was
93.236%, as shown in Figure 6, which is a good value for a predicted protein structure.
Similarly, the quality factor for Glaciozyma antarctica lipase was found to be 91.3% [38]. A
Q-mean-based quality estimation was also performed, and the best fit model represented
a 0.68 value, which is above the 0.52 reported for Nocardiopsis alba lipase modeling [39].
Therefore, the quality of the selected model was further assessed by a Ramachandran plot.
The Ramachandran plot obtained showed that 83.0% of the residues were found in the most
favored regions. A total of 14.4% of the residues were in the additional allowed regions,
1.1% residues were found in the generally allowed regions, and 1.5% of the residues were
found in the disallowed regions, as shown in Figure 7. Similarly, the crystal structure
of feruloyl esterase from A. niger represented 81.1% of the residues in the most favored
regions, 15.8% in the additional allowed regions, and 0.9% in the disallowed regions [34,39].

The isoelectric point predicted for B. cinerea lipase was 4.93, which is below 7.0, an
indication of its acidic nature, as was reported very recently for β-glucosidase and xylanase
from Trichoderma asperellum [40,41]. The instability index value was 36.20%, validating the
stable lipase, while the aliphatic index was 92.21%, proving the thermal stability of the
lipase because the higher aliphatic index (>40%) presents thermostable tertiary protein [42].
The grand average of the hydropathicity (GRAVY) indicates the sum of the hydropathy
values of the protein. Negative and positive GRAVY values indicate hydrophilicity and
hydrophobicity, respectively [43]. The values for the negatively and positively charged
residues were 38 and 30, respectively. These values correspond to the hydrophilic or
hydrophobic nature of the protein. The B. cinerea lipase protein had a positive GRAVY
value, which corresponds to its hydrophobic nature, while the GRAVY values reported
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for the recombinant lipases, EXANL1 and A. niger F044 lipase lip1, were 0.025 and 0.05,
respectively, which also corresponds to a hydrophobic nature [40,44].

Finally, the top ten fatty acids were selected having the least number of binding
affinities from 161 fatty acids docked with B. cinerea lipase. The resultant affinity energy
values of the lipase with triglycerides were consistent, and even greater than recently
reported in the literature. Lower affinity values exhibit higher interactions between the
fatty acid and the lipases [45,46]. The docking affinity values of the lipase, with different
fatty acids, such as palmitic acid, stearic acid, lauric acid, and myristic acid, were −5.9,
−3.7, −3.5, and −3.2 kcal/mol, respectively. The current resultant affinity values for
docosahexaenoic acid, dicranin, and hexadeca-7,10,13-trienoic acid are −7.6, −6.7, and
−6.3 kcal/mol, respectively. Therefore, the resultant values confirm that B. cinerea lipase
shows promising interactions with plant triglycerides for biofuel production.

The molecular docking results were further assessed for quality estimation through
docking accuracy and screening enrichment procedures [17]. Lipases contain the consensus
sequence, G-X-S-X-G, which presents the active residue-forming catalytic site. The residues
include active glycine (G) and serine (S), in combination with any other (X) [47]. The active
residues shown in Figure 1 present G-X-S-X-G as a conserved motif, whereas the active
residues of the B. cinerea lipase were comprised of the binding pockets of 100 amino acid
residues containing the G-S-X-S-X-G motif, from residue no. 225 to 232, as predicted by
DoGSiteScorer [48] and CASTp analysis [49].

The catalytic activity of hydrolases is known to depend upon the transition state
stability caused by the hydrogen bonds involved. To assess the transition state stabil-
ity, protein interactions with the top three ligands, docosahexaenoic acid, dicranin, and
hexadeca-7,10,13-trienoic acid, were predicted through molecular docking. These interac-
tions represent the active sites of B. cinerea lipase in the form of amino acid residues, which
were directly interacting with ligands, accompanied by a number of hydrogen bonds and
hydrophobic interactions, as shown in Figure 10. Docosahexaenoic acid has two hydro-
gen bonds interacting with Val 263 and Ala 265, and fourteen hydrophobic interactions.
Moreover, hexadeca-7,10,13-trienoic acid also has two hydrogen bonds interacting with
Val 263 and Ala 265, and nine hydrophobic interactions, whereas dicranin has three hy-
drogen bonds interacting with Val 286 and Ser366, and fourteen hydrophobic interactions
with B. cinerea lipase. These results were in accordance with the reported studies where
lipase-based transesterification depended on three hydrogen bonds for the stable transition
state [50,51]. Hence, protein ligand complexes provide valuable information about the
overall interactions taking place at the molecular level.

Molecular dynamics simulation was then chosen for providing insights into the
dynamic structure and protein–ligand interactions for recognizing the structure-based func-
tionality. The stability of these structures was confirmed by 20 ns simulation, through the
MD simulation protocol [52]. The structural stability of the protein was evaluated through
the RMSD and RMSF values of the given protein-ligand complex [53]. The compactness of
the protein structure was indicated by the Rg value during the simulation, which has an
inverse relation with the stability of the structure. B. cinerea lipase complex with dicranin
and docosahexaenoic acid had compact structures towards the end of the simulation,
whereas hexadeca-7,10,13-trienoic acid displayed reduced compactness towards the end.
The RMSD values of dicranin presented stability from 9 ns to 17 ns, docosahexaenoic acid
showed overall stability from 5 ns to 15 ns, with minor fluctuations at the start, whereas
hexadeca-7,10,13-trienoic acid presented stabilized values from 4.5 ns to 11.5 ns, which
was the highest stability without any fluctuations. This indicates that, as the complex was
stabilized, the lipase protein’s compactness was reduced.

The RMSF values of the three ligands showed major fluctuations at the start, around
100, and minor fluctuations of around 250 and 400, which were less than 0.75. The MD
simulation revealed that hydrogen bonds significantly affect the intermolecular recognition
and active center for the lipase–substrate interaction. It can be concluded that dicranin,
docosahexaenoic acid, and hexadeca-7,10,13-trienoic acid indicated overall stable structural
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confirmations with B. cinerea lipase. Hence, B. cinerea lipase can be utilized as a potent
biocatalyst to process feedstock substrates for biofuel production.

4. Materials and Methods

Detailed flowchart of methodology is represented in Figure 14.
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4.1. Multiple Sequence Alignment and Phylogenetic Analysis of Lipase in Botrytis cinerea

The FASTA protein sequence of the lipase from Botrytis cinerea was retrieved from
NCBI (Accession ID: AAU87359.1) to assess its function in biofuel production. Furthermore,
protein sequences of Botrytis cinerea (EMR87289.1), Botryotinia calthae (TEY34585.1), Botrytis
paeoniae (TGO23174.1), Botrytis aclada (KAF7954737.1), Botrytis galanthina (THV45129.1),
Botrytis porri (XP 038771839.1), Botrytis fragariae (XP 037192258.1), Sclerotinia trifoliorum
(CAD6445655.1), Sclerotinia borealis (ESZ89724.1), Monilinia fructicola (KAG4025977.1), Rut-
stroemia sp. (PQE07089.1 & PQE21327.1), Coleophoma crateriformis (RDW65441.1), Hy-
phodiscus hymeniophilus (KAG0651924.1), Lophiostoma macrostomum (KAF2654595.1), Glo-
nium stellatum (OCL11685.1), Lepidopterella palustris (OCK74922.1), Hyaloscypha hepati-
cicola (PMD12516.1), and Vibrio coralliilyticus (NOI18297.1) were retrieved from NCBI
(https://www.ncbi.nlm.nih.gov/, accessed on 5 June 2021) for multiple sequence align-
ment. The multiple sequence alignment of all these lipases was carried out using ClustalW
plugin in MEGAX software (version 10.1.7) [54]. The pairwise and multiple alignment
score for the gap opening penalty was 10.00 for both, whereas the gap extension penalty
was 0.10 and 0.20, respectively. Using multiple sequence alignment, phylogenetic analysis
was performed using MEGAX (version 10.1.7) through the maximum likelihood statistical
method and the Jones–Taylor–Thornton (JJT) model as an amino acid-based substitution
model. The rooted tree was generated with the bootstrap values of 10,000 replicates.

https://www.ncbi.nlm.nih.gov/
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4.2. Signal Peptide Prediction

The FASTA protein sequence of the selected lipase (Accession ID: AAU87359.1) was
analyzed for signal peptide prediction using the YRC Philius web server and SignalP 5.0
(http://www.cbs.dtu.dk/services/SignalP/, accessed on 6 June 2021) [55,56].

4.3. Protein Secondary Structure Prediction

The secondary structure prediction was elucidated by PSIPRED workbench (http:
//bioinf.cs.ucl.ac.uk/psipred/, accessed on 6 June 2021). PSIPRED uses protein peptide
sequences to analyze the three-dimensional secondary structure of protein, including the
α-helix, β-strand, and coil [57]. For structure prediction analysis, a FASTA sequence of B.
cinerea lipase (AAU87359.1) was submitted in PSIPRED.

4.4. Tertiary Structure Prediction of B. cinerea Lipase

Previously, the crystal protein structure of lipase from B. cinerea was not resolved. A
homology search was carried out using the BLASTp, and B. cinerea lipase showed 58%
similarity with Ophiostoma piceae sterol esterase. A lower homology with the template
crystal structure can result in a low-quality model. Therefore, the three-dimensional
structure of B. cinerea lipase was determined using thread-based and ab initio approaches.
The B. cinerea lipase sequence was used for the tertiary structure prediction after removal of
the signal peptide. I-TASSER, Phyre2, and the Robetta web server were used to determine
the tertiary structure of the lipase. I-TASSER (https://zhanglab.dcmb.med.umich.edu/
I-TASSER/, accessed on 7 June 2021) is a thread-based tool that uses a hierarchy-based
approach to predict the protein structure and annotate its structure-based function [58].
Phyre2.0 uses the remote homology detection method to predict the three-dimensional
structure of proteins. The Robetta web server (https://robetta.bakerlab.org/, accessed on
9 June, 2021) was used to determine the ab initio and thread-based structure prediction of
B. cinerea lipase [59].

4.5. Protein Model Validation

All output models were verified by Q-mean, ERRAT, and PROCHECK (https://
saves.mbi.ucla.edu/, accessed on 10 June 2021) [60]. ERRAT analyzes the patterns of
nonbonded atomic interaction present in protein, while PROCHECK provides information
on the overall structural geometry. The best protein model was refined by the 3Drefine
webserver (http://sysbio.rnet.missouri.edu/3Drefine/ accessed on 11 June 2021) [58]. The
physicochemical properties of the final protein model were determined using the ExPASy’s
ProtParam tool (https://web.expasy.org/protparam/ accessed on 12 June 2021) [61].

4.6. Binding Site Prediction

The refined protein model was analyzed for binding site prediction using the CASTp
webserver (http://sts.bioe.uic.edu/castp/index.html?1bxw, accessed on 13 June 2021) [49].
DoGSiteScorer web server (https://bio.tools/dogsitescorer, accessed on 13 June 2021) was
used for the validation of binding sites [48]. Binding site prediction gives information on
the active residues involved in the catalytic site for ligand attachment.

4.7. Ligand Preparation

Plant lipids were identified from the Plant Fatty Acid database (https://plantfadb.
org/, accessed on 13 June 2021) [62], and three-dimensional structures of 161 plant lipids
were downloaded in .sdf format from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/#query=plant%20fatty%20acids, accessed on 15 June 2021) and selected as
ligands [63]. Ligands were converted from .sdf format to. pdbqt format using Open Babel
at pH 7 [64] to perform molecular docking.

http://www.cbs.dtu.dk/services/SignalP/
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https://plantfadb.org/
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4.8. Protein Preparation

The refined protein structure was prepared and converted into .pdbqt format from
.pdb format using the MGL tool (http://mgltools.scripps.edu/downloads, accessed on 19
June 2021) [65]. Water molecules were removed, whereas polar hydrogens were added to
the protein.

4.9. Molecular Docking

Molecular docking was performed to investigate the appropriate ligands that energet-
ically fit into the protein binding site. AutoDock Vina [65] was used for molecular docking.
The top ten compounds having the least number of binding affinities were selected, and
a boxplot was generated using R-studio with ggplot2 [66]. The output .pdbqt were com-
bined with the respective protein, and the protein–ligand interactions were determined
using Protein–Ligand Interaction Profiler (https://plip-tool.biotec.tu-dresden.de/plip-
web/plip/index, accessed on 30 June 2021).

4.10. Molecular Dynamics Simulation

A molecular dynamics simulation of 20 ns was performed to investigate the back-
bone stability of B. cinerea lipase with the top three ligand–protein complexes having the
least number of binding affinities. GROMACS 5.1 was used for the molecular dynam-
ics simulations [67]. CHARMM 36-feb2021 forcefield was used for the protein topology
preparation by using pdb2gmx. CHARMM General Forcefield CGenFF online server (
https://cgenff.umaryland.edu/, accessed on 5 July 2021) was used for the initial ligand
topology. Ligand and protein were combined and centralized in the dodecahedron. 2
Na+ counterions were added to neutralize the system. The steepest descent minimization
algorithm was used to neutralize the energy of the system. To carry out the equilibrium
of ions and the solvents, a position-restraining simulation was performed. NVT (constant
particles number: N; volume: V; and temperature: T) was executed for 100 ps in a 300 K
temperature bath with a constant coupling of 0.1 ps. NPT (constant particles number: N;
pressure: P; and temperature: T) was executed at 1 bar constant pressure and the coupling
constant of 0.2 ps. Final molecular dynamics simulation was performed for 20 ns. The root
mean square fluctuations (RMSF), the root mean square deviation (RMSD), and the radius
of gyration were calculated between the protein and ligands by using GROMACS.

5. Conclusions

The conversion of plant triglycerides into biofuel using B. cinerea lipase as a catalyst
could be a promising approach for the assimilation of plant-based fatty acids as precursor
raw material for environmentally sustainable biofuel or biodiesel production. In the
current study, molecular docking and molecular dynamics simulations were performed
for identifying the potential of B. cinerea lipase as a biofuel-catalyzing agent. The MD
simulations results indicate the stable RMSD between the ligand and protein. Hence,
it is inferred that B. cinerea lipase is a promising catalyst for plant fatty acid residual
bioconversion into biofuel.
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