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Abstract: The conversion of solar to chemical energy is one of the central processes considered in the
emerging renewable energy economy. Hydrogen production from water splitting over particulate
semiconductor catalysts has often been proposed as a simple and a cost-effective method for large-
scale production. In this review, we summarize the basic concepts of the overall water splitting (in the
absence of sacrificial agents) using particulate photocatalysts, with a focus on their synthetic methods
and the role of the so-called “co-catalysts”. Then, a focus is then given on improving light absorption
in which the Z-scheme concept and the overall system efficiency are discussed. A section on reactor
design and cost of the overall technology is given, where the possibility of the different technologies
to be deployed at a commercial scale and the considerable challenges ahead are discussed. To date,
the highest reported efficiency of any of these systems is at least one order of magnitude lower than
that deserving consideration for practical applications.

Keywords: overall water splitting; hydrogen production; UV and Vis light responsive catalysts;
Z-scheme; mass transfer; future R&D perspective

1. Introduction

The increasing use of fossil fuels is the cause of considerable concern due to the
generation of greenhouse gases, and their link to global warming. The last few years have
been recorded as the hottest ever on the planet [1]. There is a need to find alternative
sustainable sources and vectors of energy, ideally with zero carbon emissions. The sun is
an inexhaustible and clean source of energy. It provides energy in one hour (432 × 1018 J)
close to our annual demand (575 × 1018 J) [2–4]. However, its low power flux-density
(1 kW m−2 at maximum) coupled with its intermittent nature dictates the need to develop
technologies for solar energy storage [3–5].

Hydrogen is one of the best options to store solar energy since it has the highest gravi-
metric energy density (142 MJ kg−1) of all known compounds and produces zero carbon
upon combustion. It is also a reactant in industrially important chemical processes such
as CO hydrogenation to methanol and ammonia production (Haber-Bosch reaction) [6,7].
It is largely produced via steam methane reforming (SMR) and coal gasification, both
result in significant amounts of CO2 emission [8]. Although in small quantities (2–3% of
total hydrogen production), it is also produced by electrolysis of water. The process can
be made renewable if the electricity used is obtained from renewable resources such as
solar or wind [9,10]. The economy of the process is driven by electricity costs and despite
decreasing renewable electricity costs, hydrogen made via electrolysis is still expensive
when compared to that produced by SMR [11,12].

Photocatalytic systems that drive the water splitting reaction on the surface of semicon-
ductor nanoparticles using solar energy could be a promising alternative. This method has
the advantage of using low cost photocatalysts when compared to photovoltaic cells, along
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with simplicity of reactor design [13–15]. Various reports on the techno-economic analysis
(TEA) of these systems propose a target of ~10% solar-to-hydrogen energy conversion
efficiency (STH) for the process to be economically viable [13,14]. However, these reports
are based on many questionable assumptions in addition to several challenges that need to
be addressed before further considerations for their commercial/economic viability. The
first major hurdle is to improve the efficiency of photocatalysts itself for overall water
splitting (OWS). After 50 years of research or so, the most efficient photocatalyst demon-
strated a STH of ~1% (a performance that needs to be reproduced by other groups), which
is far from the minimum proposed target of 10% [16]. The second subsequent hurdle is
the demonstration of long-term stability for these photocatalysts which otherwise would
have a significant effect on the economics of the process. In addition, the development
of a technology for the separation and compression of molecular hydrogen and oxygen
from a photocatalytic reactor is a daunting challenge. Without addressing these challenges,
studies on the commercial and economic viability of photocatalytic hydrogen production
would be irrelevant.

To facilitate scientific progress in this field, it is important to take a critical look and
understand the underlying principles governing fundamental processes such as light
absorption, charge carrier generation and their recombination, charge transfer, redox
reactions and mass transfer limitations that in combination dictate the overall efficiency of
a photocatalytic system. In this regard we present a review of such systems that attempted
to improve the overall process efficiency by addressing the fundamental steps involved.
The review starts by presenting the basic concepts involved in the overall water splitting
reaction using single component photocatalysts through one-step photoexcitation. This is
followed by summarizing the most used strategies for the design and synthesis of these
materials. Subsequently, approaches taken to improve light absorption, treating UV and
visible light absorbing materials separately are presented. In the later sections of the review,
approaches to reduce charge carrier recombination and few reports addressing mass
transfer limitation and the prevention of H2/O2 back-reaction are discussed [16–19]. The
review concludes with a brief techno-economic analysis taking into consideration possible
reactor configurations for photocatalytic hydrogen production and future perspectives.

2. Fundamental Processes in Photocatalytic Overall Water Splitting

The first report on water splitting using light radiations considered a photoelectro-
chemical cell with a TiO2 photoanode [20]. This demonstration led to numerous efforts for
photocatalytic water splitting on powder semiconductors in the late 20th century [20–27].
Metal-loaded semiconductor (such as Pt/TiO2) can be considered as a short-circuit photo-
electro-chemical (PEC) cell that offers both oxidation and reduction centers on the same
catalyst (see Figure 1) [28]. A photocatalytic reaction is initiated by the absorption of
photons with energy higher than the bandgap (Eg) of a semiconductor material (step 1).
Thermodynamically, the bandgap energy should be larger than 1.23 V and band positions
below 1.23V vs Normal Hydrogen Electrode (NHE) to abstract electrons from O2− anions
of water and above 0.0V vs NHE to reduce H+ ions of water. Following light absorption,
electrons are transferred to the conduction band (CB) with simultaneous generation of
holes at the valence band (VB) (step 2). The recombination of photogenerated charge
carriers in the bulk or on the surface (step 3) competes with their diffusion to the surface to
carry the redox reactions (steps 4 and 4′). The presence of metal particles with higher work
function than the oxide semiconductor may pump excited electrons to increase the rate of
charge separation and to reduce H+ ions to atomic hydrogen that then recombine to make
H2. At the energy level of the valence band, electrons are abstracted from O2− anions of
water to close the cycle. Ultimately, the reaction products desorb from the catalyst surface
and are transferred to the medium to complete the overall process.
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catalysts for each of the half reactions (either H+ reduction or OH− oxidation). The semi-
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have been prepared [49–53]. To prepare them, commercial metal oxides and alkali car-
bonates are mixed in a stoichiometric ratio followed by mechanical grinding in a solvent 
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Figure 1. Schematic representation of photocatalytic overall water splitting on a metal-loaded
semiconductor (such as Pt/TiO2) particle system: (1) light absorption, (2) electron excitation from the
VB to the CB, (3) e-h recombination, (4) electron transfer from O2− to the VB, (4′) electron transfer
from the metal to H+ ions reduction and (5 and 6) H2 and O2 production.

3. Design and Synthesis of Particulate Photocatalytic Systems

Currently, photocatalytic water splitting research is focused on two approaches; one-
step excitation using a single particulate photocatalyst [29–39] and a two-step excitation
using coupled two individual particulate photocatalysts with an electron transfer mediator,
known as a Z-scheme process [17,40–48]. The first approach requires the development
of a particulate photocatalyst that is capable of being excited by light and efficiently per-
forms all the steps as described in Figure 1 on the same surface (since it is composed of
multiple phases). This implies many daunting requirements including a suitable band
gap energy and bands positions with sufficient driving potential, efficient separation
and transport of electron–hole pairs and photo-corrosion resistance for a given semicon-
ductor particle [29–39]. The second approach requires two (ideally) visible-light-driven
photocatalysts for each of the half reactions (either H+ reduction or OH− oxidation). The
semiconductor band positions, redox potentials of water and that of the mediator used
must be aligned in such a way to allow electron transfer from the oxygen to that of the
hydrogen evolution centers [17,40–48]. It also requires that the transport and the catalyst
to be chemically inert (so irreversible adsorption (poisoning by the charge transfer medi-
ators) does not occur for example). Further details about both approaches are presented
later in the review. Consequently, the electronic properties and materials design are the
main challenges.

Particulate photocatalytic materials that are able to perform a water splitting reaction
can be divided into two categories; the metal oxide and (oxy-) nitrides with metal particles
on top, and metal-free catalysts. For the first category, which is the most widely studied,
many methods of preparation have been used. The most common one is the solid-state
reaction synthesis used for di- or multi-metallic oxides. For example, Ba doped La2Ti2O7,
NaTaO3, SrTiO3:(Rh, Sb), BiVO4:(In, Mo), Bi1−xInxV1−xMoxO4 and BiYWO6 photocatalysts
have been prepared [49–53]. To prepare them, commercial metal oxides and alkali carbon-
ates are mixed in a stoichiometric ratio followed by mechanical grinding in a solvent such
as ethanol and dried in an oven. In general, the dried powder, in general, is pressed into
the form of a pellet followed by calcination in the 800–1000 ◦C temperature range for many
hours to obtain the appropriate composition and phase. The flux or molten salt methods
have also been used for catalyst preparation. For example, SrTiO3:Al catalyst is prepared
by mixing SrTiO3 and Al2O3 in the presence of SrCl2 flux in an appropriate molar ratio
followed by heating at 1100 ◦C in air [15,54]. The flux method is particularly important
to reduce thermal strains during preparation and may reduce the defect densities in the
final product.
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In the case of monometallic oxides, they can be prepared under controlled atmosphere
using a variety of methods. For example, Co3O4 powder (size <10 µm,) decomposes
into CoO powder in a quartz tube furnace at 1000 ◦C in an Ar environment [55]. Ga2O3
is prepared from Ga(NO3)3.xH2O using the ammonia precipitation method followed by
calcination under oxygen atmosphere [56,57]. Most of the above methods produce metal
oxide catalysts active under UV irradiation. These as prepared oxides can be heated
under ammonia flux at high temperature to convert them into (oxy-) nitrides photocata-
lysts, for example LaMg1/3Ta2/3O2N, TaON:ZrO2, CaTaO2N, LaSc0.5Ta0.5O2N, Ta3N5 and
(Zn0.18Ga0.82) (N0.82O0.18) which are active under visible irradiation [58–64]. One common
issue with all the above conventional preparation methods is that it is hard to obtain pure
and defect free materials. Other methods include plasma-assisted molecular-beam epitaxy,
for example, to make GaN:Mg/InGaN:Mg [62]. For metal free catalysts, they are mainly
based on graphitic carbon nitride (g-C3N4). Urea is used as a source of carbon and nitrogen
whose appropriate calcination for many hours resulted in g-C3N4 [65]. To further improve
the performance, g-C3N4 can be mixed with carbon dots (C-dots) [66]. The latter can be
synthesized by a typical electrochemical exfoliation followed by hydrothermal treatment
with ammonia.

In most cases, a photocatalyst requires a metal in addition to a semiconductor. This
is commonly called a “co-catalyst” to help improve the kinetics of the reaction, by facili-
tating charge transfer between semiconductor and the reactants. The word co-catalyst is
misleading, most heterogeneous catalysts are composed of multiple elements and phases
and therefore there is no need to label one part as a catalyst and another as a co-catalyst.
Wet impregnation and photo-deposition are the two most commonly used methods to load
these metals. Among these, the former method is the most widely used, simply because the
latter does not provide a better dispersion nor a more homogenous particle size distribu-
tion. For example, in the case of Rh2−yCryO3 supported on SrTiO3:Al, an aqueous solution
containing the needed concentrations of Na3RhCl6 and Cr(NO3)3, in addition to the semi-
conductor, is followed by evaporation [15,54] and then calcination at 300 ◦C. A source of
light irradiation is used for the photodeposition of metals. For example, consider RuO2
photo-deposition on Bi1−xInxV1−xMoxO4 [52,53], where the powder (semiconductor) and
RuCl3.6H2O precursor are dispersed in methanol (hole scavenger)-water mixture under
light irradiation to obtain the final metal loaded photocatalyst. Table 1 presents a summary
of the main methods for photocatalyst preparation used for the water splitting reaction.

Table 1. Major photocatalysts synthesis methods for overall water splitting applications.

Photocatalysts Preparation Method Examples Cocatalyst Loading Examples

Metal oxides →
Molten salt (Flux)

Solid state reactions
Ammonia precipitation

→
SrTiO3:Al, SrTiO3:Rh,Sb,

La2Ti2O7:Ba, NaTaO3,
Ga2O3:Zn, BiYWO6,
Bi1−xInxV1−xMoxO4

→ Impregnation
Photodeposition

→ NiOx, CoOx,
IrO2, RuO2,
Rh2−yCryO3Calcination under

controlled atmosphere → MxOy

Metal (oxy) nitrides → Thermal nitridation of
metal oxides using NH3

→

Ge3N4, TaON:ZrO2,
(Zn0.18Ga0.82)(N0.82O0.18),

LaMg1/3Ta2/3O2N,
CaTaO2N, Ta3N5,

LaScxTa1−xO1−2xN2−2x,
GaN:Mg/InGaN:Mg

→ Impregnation
Photodeposition → RuO2,

Rh2−yCryO3

Metal-free
photocatalysts → Thermal polymerization

Electrochemical → g-C3N4, C-dot/g-C3N4

4. Improving Light Absorption
4.1. UV Light Photocatalysts

The UV-light excited photocatalysts are among the earliest ones studied since the
first report on the water splitting reaction using a TiO2 photoelectrode in 1972 [67].
These are mainly oxides of group IV-VI transition metals with d0 (Ti4+, Zr4+, Nb5+, Ta5+

and W6+) [68,69] and group III-V p-block elements with d10 (Ga3+, In3+,Ge4+, Sn4+ and
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Sb5+) [70–72] electronic configurations of their cations. While O2p orbitals make valence
band for both types, the empty d-orbitals of d0 and hybridized sp-orbitals of d10 oxide
materials form conduction bands. They possess a large bandgap (>3 eV) mainly due to
the electrochemical potential of O2p orbitals located near 3.0 V (vs. NHE at pH = 0) [73].
There are very few reports on UV-light responsive non-oxide catalysts [58]. Metal oxide
catalysts such as Al-doped SrTiO3 [54] or Zn-doped Ga2O3 show noticeable one-step pho-
tocatalytic water splitting activity reaching 71% apparent quantum yield (AQY) at 254 nm
of light irradiation [57]. Apparent quantum yield is defined as the ratio of the number
of reacted electrons or holes with the reactants to the number of incident photons on the
photocatalysts. Among metal oxide catalysts, TiO2 is the most commonly studied due to its
superior photo-stability, nontoxicity, high activity for dye degradation [74] and hydrogen
production using sacrificial agents (upon UV radiation λ <387 nm) [29–34]. There are few
reports about overall water splitting using TiO2 as well; however, its activity is below
par as compared to other oxide catalysts [22,23,25,75,76]. Detailed reviews on TiO2-based
materials and their photocatalytic performances can be found elsewhere [75,77,78]. The
hydrogen and oxygen evolution activity under UV radiation and the apparent quantum
yield of some of these selected materials are given in Table 2.

Table 2. Hydrogen and oxygen evolution activity of d0 and d10 metal oxide particulate catalysts under UV light irradiation.

Semiconductor Metal/Metal Oxide
(wt.%)

Eg
(eV)

H2 Rate
(mmolh−1)

O2 Rate
(mmolh−1) AQY (%) Ref.

La2Ti2O7:Ba(8.0 mol %) Ni (2.0) 3.2 5 2.5 50 (not given) [49]

SrTiO3:Al(0.1 mol %) RhxCryO3
(Rh = 0.1, Cr = 0.1) 3.2 1.4 0.7 56 at 365 nm [15,54]

SrTiO3:Al(0.1 mol %) MoOy/RhCrOx
(Mo = 0.03, Rh = 0.1, Cr = 0.1) 3.2 1.8 0.9 69 at 365 nm [54]

SrTiO3:Rh,Sb(0.5 & 2.0 wt.%) IrO2 (3.0) 3.2 4.4 1.9 0.1 at 420 nm [50]

NaTaO3 NiO (0.05) 4.0 3.4 1.6 20 at 270 nm [51]

Ga2O3:Zn(1.0 mol %) Ni (1.0) 4.4 4.1 2.2 20 at 270 nm [56]

Ga2O3:Zn(3.0 mol %) RhxCryO3
(Rh = 0.5, Cr = 1.5) 4.4 3.2 1.6 71 at 254 nm [57]

Ge3N4 RuO2 (1.0) 3.8 0.2 0.1 9 at 300 nm [58]

An enhancement in the apparent quantum yield in a semiconductor photocatalyst is
generally achieved after loading metal (metal oxide) for H2 (O2) production. They improve
photocatalytic activity by promoting charge separation by extracting photo-generated
electrons and holes. They may also inhibit the photodegradation of a photocatalyst due to
the kinetics promotion of catalytic reactions at the surface, thus, decreasing the probability
of charge carriers’ reaction within the semiconductor itself [79,80]. As for most multicom-
ponent heterogeneous catalytic materials, attention needs to be given to the energy levels
of each component with respect to the Fermi level, which is also a function of their surface
and bulk atomic structure. This is to permit the formation of the desirable junction (an
Ohmic or a Schottky-type contact) allowing charges to flow in the needed direction at
the interface. Transition metals, in particular precious metals, such as Pt [24,25], Rh [22],
Ru [81], and Au [82,83] and also non-precious metals such as Cu [84] and Ni [23] have
been studied to promote the hydrogen evolution reaction. On the other hand, CoOx [85,86],
FeOx [87], MnOx [87], RuO2 [88] and IrO2 [89] promote the oxygen evolution reaction. For
the majority of water splitting photocatalysts, the loading of a reduction center is obligatory
due to an insufficient over-potential for H+ reduction as compared to H2O oxidation. In
particular, the role of Ni/NiO is in particular noteworthy since Ni captures electrons from
the CB of the semiconductor (to reduce hydrogen ions) and NiO captures electrons from
O2− anions of water [49,51,56,90,91].
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4.2. Visible Light Photocatalysts

As noted above, one of the main issues with oxide catalysts is their high band gap
energy and the UV portion of the solar spectrum is up to 4% or so only [92]. To enable
visible light utilization, the valence band level of these semiconductors should be shifted
upward without changing the conduction band position. One approach to achieve this is to
use oxynitrides to take advantage from N2p states that lie at a more negative potential than
O2p states (Table 3) [37–39]. In general, Ta- and Ga-based oxynitrides with partial La or Ga
substitution with other metals (Zn, La, Nb, Ca, Ba, Mg, Sr, and Sc), show activities under
visible light irradiation. For example, LaMgxTa1−xO1+3xN2−3x and (Ga1−xZnx)(N1−xOx)
are representative oxynitride photocatalysts capable of water splitting under visible-light
irradiation [37,93]. While the formula LaMgxTa1−xO1+3xN2−3x represents a solid solutions
of LaTaON2 and LaMg2/3Ta1/3O3, (Ga1−xZnx)(N1−xOx) is a solid solutions of GaN and
ZnO [39,64]. The compounds LaScxTa1−xO1+2xN2−2x (x ≥0.5) and CaTaO2N are also capa-
ble of driving the water splitting reaction and both are related to LaMgxTa1−xO1+3xN2−3x.
In these catalysts La or Ta sites in the perovskite structure are replaced by Ca or Sc that alter
O/N ratios due to charge compensation, which in turn results in a valence band energy-
level shift [63,64]. The conduction band minimum and valence band maximum for these
materials are invariably composed of Ta5d and N2p orbitals, respectively. Recently, overall
water splitting was made possible on epitaxially grown Ta3N5 nanorods. The activity was
attributed mainly to the elimination of crystalline defects in the photocatalyst [94,95].

Table 3. Hydrogen and oxygen evolution activity of photocatalysts under visible light irradiation.

Semiconductor Metal Oxide
(wt.% Unless Indicated)

Eg
(eV)

H2 Rate
(µmolh−1)

O2 Rate
(µmolh−1) AQY (%) Ref.

Bi1−xInxV1−xMoxO4 RuO2(3.0) 2.5 17 7.8 3.2 at 420 nm [52]

BiYWO6 RuO2(1.0) 2.7 4.1 1.8 0.17 at 420 nm [53]

LaMg1/3Ta2/3O2N RhCrOx (Rh = 0.5 Cr = 0.5) - 22 11 0.18 at 440 nm [59]

TaON:ZrO2 (Zr/Ta = 0.1) RuOx/Cr2O3/IrO2 (Ru = 3.0,
Cr = 2.5, Ir/Ta = 0.04) 2.5 6.7 × 10−3 2.3 × 10−3 <0.1 at 420 nm [60]

CoO - 2.6 1785 848 5% (STH) [55]

(Zn0.18Ga0.82)
(N0.82O0.18)

Rh2−yCryO3
(Rh = 2.5, Cr = 2.0)

2.64 927 460 5.9 at 420 nm [61]

GaN:Mg/InGaN (grown
using MBE) Rh/Cr2O3 (Not applicable) 2.22 38 21 12.3 at 400 nm [62]

CaTaO2N RhCrOy (Rh = 0.5, Cr = 0.5) 2.43 14 × 10−2 7 × 10−2 0.003 at 440 nm [63]

LaSc0.5Ta0.5O2N RhCrOy (Rh = 0.5, Cr = 0.5) 2.1 2.4 × 10−3 1.2 × 10−3 - [64]

Ta3N5/KTaO3
(Ta3N5 = 1.4 wt.%)

Rh/Cr2O3
(Rh = 0.002, Cr = 0.004) 2.1 6 × 10−3 3 × 10−3 0.25 at 400 nm [94]

g-C3N4 CoOx (1.0) 2.8 8.5 3.5 0.3 at 405 nm [65]

C3N4/C-dots - 2.74 46 - 16 at 420 nm [66]

One of the main issues often debated for nitrogen-doped photocatalysts is their
stability. In most of the cases, their photocatalytic activity is reported for a few hours
(often less than 20 h). While some of these catalysts are reported to be stable on this time
scale, most show clear decrease in their activities implying that any of them may not be
stable over extended periods given their similar chemistry [37,60,79,93,94]. However, it is
stunning that so far after decades of work no standard has been put in place in order to
ensure that at least each catalytic site is used more than one. Turn over Numbers (TON)
like terms can be introduced. For example for a reaction requiring GaN as a catalyst the
number of hydrogen molecules should be compared to the number of Ga atoms in the
catalyst so as to ensure that the reaction is catalytic for at least two cycles. There is no strict
heterogeneous catalytic definition of TON. In this case, one can define TON as the total
number of reaction product divided by the total number of metal cations of the catalyst.
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Apart from nitrogen doping, the incorporation of dn-transition (n= 1–10) metal cations
also results in visible-light absorption by forming energy states above O2p states, but
these cations also tend to function as recombination centers thus showing overall little
success [73,96]. A relatively successful example of this strategy is Rh, Sb-doped SrTiO3 [97].
The visible light absorption results due to electron transition from the Rh4d state to the
conduction band that is primarily composed of Ti3d orbitals. While Rh doping induces
hydrogen evolution ability, Sb co-doping can induce oxygen evolution activity, albeit with
reduced capacity for hydrogen evolution. Therefore, an adjustment in the Rh/Sb ratio
to achieve an optimal balance between hydrogen and oxygen evolution was found to be
important [50,60,63]. Yet, it is unclear if the reaction is indeed catalytic for these type of
catalysts because turnover numbers were not reported in order to ensure that each site is
used more than once.

Metal-doped BiVO4 is another example which in its pristine monoclinic phase is
unable to drive the water splitting reaction because of its thermodynamically insufficient
conduction band minimum potential. However, the co-doping of BiVO4 with In and Mo
results in a partial transformation of the pure monoclinic crystal structure to a mixture of
monoclinic and tetragonal structures. This leads to an increase in its unit cell volume that
results in a negative shift in the conduction band minimum and enables the reaction [52].
Based on this strategy, BiYWO4 was found to function under visible light [53]. Surprisingly,
pristine CoO (with a d7 electronic configuration) has been reported to be active even without
the presence of a cocatalyst [55]. The highest ever STH for a particulate photocatalyst
of 5% was reported for CoO. These results were later supported by others using DFT
calculations [98]. However, further work is needed to confirm and clarify this, in particular
the stability of CoO nanoparticles under photocatalytic conditions. Graphitic carbon
nitride has been reported to function as a photocatalyst in the two-step [99,100] as well
as a stand-alone catalyst for a one-step water splitting reaction upon the deposition of a
suitable co-catalyst [65]. It was reported that C-nanodots supported g-C3N4 resulted in
an active and stable photocatalyst, exhibiting an STH of 2% [66]. However, it is unclear
what C-nanodots do in term of catalytic sites or activity however; this result has not been
reproduced by others to date.

4.3. Z-Scheme: A Two-Step Approach

An alternative way, inspired by natural photosynthesis, to utilize a larger part of the
solar spectrum is to use two different photocatalysts with an electron transfer mediator in
between (Z-scheme). The Z-scheme needs a large overpotential for the overall reaction due
to the accommodation of charge carriers in their respective high-energy states. Another
drawback for this system is its requirement of eight photons to complete the wate splitting
cycle, whereas a one-step process requires four photons [101]. This difference results in the
amounts of hydrogen and oxygen generated equal to half of that produced via one-step
photoexcitation system at a given apparent quantum yield and incident light flux [67]. The
Z-scheme system only works if the redox potential associated with each photocatalyst
component as well as water redox potential are situated with respect to each other as
shown in Figures 2 and 3.

The Z-scheme allows flexibility in selecting the semiconductors with small band gaps
and therefore opens other routes for visible light utilization. For example, for the H+ ion
reduction catalyst, its valence band potential can be located anywhere within the band
gap of the oxidation catalysts. This allows the selection of a photocatalyst with conduction
band potential much negative that the water reduction potential with much more driving
force for the reaction. Similar flexibility is available for the oxidation catalyst. In general,
this is not possible in the case of a catalyst used for a one-step reaction. However, care
must be taken not to select a catalyst with a band gap wide enough to compromise a visible
light absorption range. Based on the type of the redox mediator used, Z-scheme systems
can be divided into two types: The Z–scheme with an aqueous redox mediator and with a
solid-state mediator. Both types are discussed in the following section.
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4.3.1. Z-Scheme with Aqueous Redox Mediator

In such a system, a vectorial electron transfer from the oxidation to reduction catalyst
is facilitated by a redox pair without the need of a physical contact between them. (See
Figure 2 and Table 4). The reaction may start by the oxidation of water at the valence
band of the photocatalyst, while the photo-generated electron is transferred to a mediator
(such as Fe3+ or IO3

− ions) to reduce it. Then, the reduced mediator is oxidized back after
donating its electron(s) to the conduction band of the hydrogen production catalyst, which
subsequently reduces water.
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The photocatalytic water splitting using TiO2 anatase and rutile as the reduction and
oxidation catalysts in 2001 was one of the earliest reports among Z-scheme approaches [102].
The IO3

−/I− redox couple, with a redox potential (+0.67 V versus NHE, pH 7), intermediate
between those of H+/H2 and O2/H2O, was used as an aqueous shuttle. Since then,
extensive efforts have been made to use narrow-bandgap semiconductors to achieve
overall water splitting driven by visible light. SrTiO3:Rh- based semiconductors and some
(oxy)nitrides and (oxy)sulfides, such as MgTa2O6−xNy/TaON, C3N4, CdS and Sm2Ti2S2O5,
have been the main materials investigated as reduction catalysts [40,100,103–109]. WO3
has been the main focus as an oxidation catalyst due to its activity, stability and ability
to absorb visible light (<450 nm) [110–112]. Other materials, include BiVO4, TiO2:Cr/Sb,
Bi4NbO8Cl and Ta3N5 [40–43]. Several aqueous redox couples I(5+/−1), Fe(3+/2+), Co(3+/2+)

and Mn(3+/2+) have been used as electron mediators [40,104,106,107,113,114].

Table 4. Z-scheme-type photocatalysts for water splitting without sacrificial agents.

H2 Photocatalyst
(wt. % Unless Indicated)

O2 Photocatalyst
(wt.%) Mediator H2 Rate

(mmolh−1)
O2 Rate

(mmolh−1) AQY (%) Ref.

Pt/SrTiO3:Rh BiVO4 Fe3+/Fe2+ 15 7.2 0.4 at 420 nm [110]

Pt/SrTiO3:Cr/Ta (Pt = 0.3,
Cr, Ta = 4.0 mol% each)

PtOx/WO3
(Pt = 0.5) IO3

−/I− 16 8 1 at 420 nm [111]

Pt/TaON (Pt = 0.3) PtOx/WO3 (Pt = 0.5) IO3
−/I−_ 16.5 8 0.5 at 420 nm [112]

Pt/ZrO2/TaON (Pt = 1.0,
Zn/Ta = 0.1)

PtOx/WO3
(Pt = 0.5) IO3

−/I−_ 52 27 6.3 at 420 nm [109]

Ru/SrTiO3:Rh (Ru = 1.0,
Sr:Ti:Rh = 1.1:0.98:0.02)

PtOx/WO3
(Pt = 0.3) Fe3+/Fe2+ 88 44 4.2 at 420 nm [40]

Pt/MgTa2O6−xNy/TaON
(Pt = 0.4, Mg/Ta = 0.2)

PtOx/WO3
(Pt = 0.45) IO3

−/I− 108 55 6.8 at 420 nm [110]
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In general, a pH adjustment is required to stabilize the redox couple. For example,
I−/I3

− is stable in acidic where IO3
−/I− is stable in basic aqueous media [104,115]. The re-

dox potentials and reactivity of metal cations are tunable through the formation of complexes
that also require pH adjustments. For example, in the case of [Fe(CN)6]3−/[Fe((CN)6]4−,
the former requires acidic conditions (with a pH of approximately 2.5) to stabilize the
Fe3+ ions [40,108]. Various Co-based redox complexes have been reported to function as
mediators, although a simple Co3+/Co2+ couple is not active [106,108,114].

4.3.2. Z-Scheme with Solid-State Electron Mediator

In this approach, charge transfer proceeds either through a solid electron mediator or
a physical contact between two different catalysts (see Figure 3).

Among the first reports of a solid-state Z-scheme for an overall water splitting reaction,
one was based on a combination of Ru/SrTiO3:Rh and BiVO4 where Rh3+/4+ played the
role of a mediator [116]. Several other semiconductors such as AgNbO3, TiO2:Rh,Sb and
WO3 loaded with suitable oxidation co-catalysts, can also be combined with Ru/SrTiO3:Rh
to split water under visible light [41]. A variety of electrical conductors such as Ir, Ag, Au,
Rh, Ni, and Pt, reduced graphene oxide and C-dots have been found effective [17,44–48].
The fabrication of a good quality contact of both the catalysts with solid mediator is
critical in these systems to allow smooth migration and the recombination of charges at
the mediator surface. In these composites, the conduction band of the oxidation catalyst
and the valence band of the reduction catalyst should form an Ohmic contact (rather than
a Schottky barrier) through the solid mediator to reduce the resistance for the migration
of electrons and holes [117,118]. Since noble metals have good inherent photo-corrosion
resistance, they have been the preferred choice as electronic mediators [17,44–48].
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Figure 3. Schematic diagram for photocatalytic water splitting using a Z-scheme with a solid-state
electron mediator: (1) light absorption, (2) electron excitation from the VB to the CB, (3) electron(s)
transfer to the metal co-catalyst for H+ reduction to produce H2, (4) electron(s) transfer from the CB
of oxidation catalyst to the VB of reduction catalyst via solid state electron mediator (electron-hole
recombination) and (5) hole transfer to a metal oxide cocatalyst to catalyze water oxidation.

In many cases, a direct physical contact is made between the two catalysts to form
a simple binary structure that functions as a solid-state electron mediator where charge
carriers recombine at the interface of the two semiconductors. This intimate contact can be
developed by making use of the electrostatic attractive force obtained by tuning the pH of
the reaction medium [47,48,116]. Similar to the Z-scheme with a metal electron mediator, it
is highly desirable to have an Ohmic contact with low interfacial resistance between two
catalysts to improve the overall charge separation efficiency [117,118]. It has been found
that surface defects act as trapping sites for electron–hole recombination by forming a series
of intermediate energy levels in the semiconductor bandgaps, which enables the interface
between two catalysts to achieve approximately Ohmic contact [119]. This simple structure
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has several advantages over a Z-scheme with solid-state mediators. First, the system offers
higher long-term stability because of the absence of any photocorrosion associated with a
metal mediator. Second, the oxygen and hydrogen recombination reaction is weakened
because using the noble metals as an electronic mediator is avoided. Third, a facile and cost-
effective fabrication of such systems is possible when compared to those with expensive
noble metals. Further details can be found in other reviews dedicated to this topic [101,120].

5. Improving Efficiency
5.1. Charge Recombination

The charge carrier recombination is largely linked to the material’s property where it
occurs through various mechanisms within the semiconductor before a chemical reaction at
the surface. The charge carrier generation happens at the femto second (fs) time scale [75].
These charge carriers are either transferred to the surface or trapped on a time scale of
few tens to few hundreds of fs (50–200 fs) [75,121,122]. In general, the charge carrier
recombination in the bulk or on the surface is faster (>20 ns) than the rate of the chemical
oxidation/reduction reactions (10–100 µs) and therefore, it is considered one of the main
reasons limiting the process efficiency [75,83,122,123]. According to Leytner and Hupp, 60%
of the trapped electron–hole pairs recombine within a timescale of about 25 ns [122,124].

An account of various strategies adopted to reduce charge carrier recombination is
given in the following. For example, an increase in crystallinity, to decrease defects such
as vacancies and dislocations, most often decreases the charge carrier recombination rate
and increases photocatalytic hydrogen production [94]. Pre-calcination of the powders is
often an effective mean to increase crystallinity; however, it may also result in lowering the
catalyst surface area due to particle sintering. Therefore, it is necessary to balance these
two effects to optimize the catalytic activity [125]. In general, for materials with relatively
high bulk defect densities, a small particle size minimizes the charge carriers migration
distance to the surface reaction centers, thus enhancing their photocatalytic activity [68].
For example, a two-time increase in AQY (from 30% at 260 nm to 56% at 365 nm) on
an Al-doped SrTiO3 photocatalyst with a particle size drop from few micrometers to
200 nm has been demonstrated [69,121]. On the other hand, for an undoped semiconductor
such as TiO2 the increase in size does not show a similar effect. For example, the rate of
photocatalytic hydrogen production on micro and nano size TiO2 was found to be similar
when normalized to their surface area [126].

Polymorphic semiconductors are quite common in Nature. An atomically well-
matched phase junction can be conveniently fabricated by fine-tuning the phase transforma-
tion conditions to enhance charge separation. It has been reported that the water splitting
activity of Ga2O3 is significantly enhanced due to efficient charge separation and transfer
across the α-β phase junction as compared to the individual activities of its constituent
(See Figure 4a for details) [127]. The enhanced photocatalytic activity of P25 as compared
to individual TiO2 polymorphs is another example [124]. There are some other strategies
to decrease charge carrier recombination. For example, Li and co-workers reported the
suppression of electron-hole pair recombination on the surface of N-doped TiO2 powders in
the presence of a local electric field due to the presence of MgO (111) support [128]. Lately,
a few reports have emerged about an increase in photocatalytic activity under an external
magnetic field with an objective to decrease charge carrier recombination rates [129–131].
Further work may need to be conducted on this, in particular to see if indeed a magnetic
field with the given strength can affect the charge carrier life-time or the charge transfer of
a chemical reaction.
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Figure 4. (a) Band alignment at the α- and β-phase junction of Ga2O3 for enhanced water splitting activity. Upon
irradiation, photogenerated electrons tend to transfer from the α-phase to the β-phase and vice versa for photogenerated
holes, which is driven by the potential difference due to their relative band positions. Reproduced with permission from
reference [127]. Copyright © (2012), John Wiley and Sons. (b) Schematic of reduction catalyst for the Z-scheme with an
aqueous redox mediator to avoid backward charge recombination. Gray and orange spheres represent Pt reduction and
oxidation cocatalysts, respectively. Reproduced with permission from reference [103]. Copyright © (2011), The Chemical
Society of Japan.

In the case of a Z-scheme with an aqueous redox mediator, backward charge transfer
to the redox couple is an additional aspect of charge recombination. For example, instead of
IO3
−/I− reduction and H2O oxidation, I− to IO3

− oxidation and oxygen to H2O reduction
may happen on the oxidation catalyst. One way to circumvent this issue is the selective
adsorption of mediator species. It has been found that IO3

− selectively adsorbs on the
surface of WO3, thus preventing the back-reaction. This may also one of the reasons behind
WO3 activity to efficiently oxidize water and its preferred choice in Z-scheme system with
IO3
−/I− mediators [103,109,111–115]. Another strategy to overcome the back-reaction is

to spatially separate the oxidation and the reduction sites. For example, in the case of
Pt/K4Nb6O17 reduction photocatalyst, K4Nb6O17 consists of K+ ion and Nb6O17

4− layers.
Pt nanoparticles can be incorporated into the K+ layers through an ion-exchange reaction,
whereas oxidation cocatalyst can be loaded on the external surface. This spatial separation
of reduction and oxidation sites has been proposed as method to prevent the access of
oxidized species (I3

− or IO3
−) to the Pt particles due to the electrostatic repulsion by the

Nb6O17
4− layers while H3O+ selectively diffuses to reach Pt sites and is reduced (see

Figure 4b) [103].
In the case of solid-state Z-scheme systems, the backward flow of electrons and holes

to undergo recombination at solid conductors may occur unless a rectification function is
induced. Band bending at photocatalyst-solid conductor interfaces may help to rectify the
charge transfer direction [16,132]. The backward electron transfer through the solid-state
mediator cannot be monitored as easily as in the case of an aqueous electron mediator. This
is because the change in aqueous mediator concentration can be measured relatively easily
unlike the case of a fully solid-state system.

5.2. Back-Reaction (2 H2+O2 → 2 H2O)

In 1985, Sato and co-workers noted that rate of the overall water splitting reaction over
Rh/TiO2 Pt/TiO2 and Pd/TiO2 catalysts declined with the accumulation of the products.
They attributed this decline to the thermal back-reaction assisted by loaded metals with
a reaction rate proportional to hydrogen pressure. The first-order rate constant of the
back-reaction was found to be the lowest for catalyst with Rh loading [22]. Earlier, others
using an NiO/SrTiO3 photocatalyst found that the rate of reaction was approximately
proportional to water-vapor pressure up to 10 Torr indicating a negligible thermal back-
reaction [35]. These are probably a few of the reasons behind the relatively high activity
of Rh and NiO as the reduction co-catalyst during numerous water splitting reaction
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studies [59,61,62]. However, during hydrogen generation using sacrificial agents, Pt, Pd
and Au are the preferred choice mainly due to their electron trapping and hydrogen
atom recombination ability. Their activity towards back-reaction is ignored due to the
absence of oxygen formation under such conditions [9,29,31,33,83,84,123]. In 2000, Anpo
and co-workers investigated the back-oxidation reaction on Pt/TiO2 systems under dark
conditions and observed an increased reaction rate with increasing Pt loading [133]. There
are few other accounts of back-reactions in the literature [76,134,135].

Later on, it was shown that the Cr2O3 coating of Rh metal to make a core-shell structure
increases the rate of reaction on an Rh/GaN:ZnO photocatalyst (see Figure 5 for details) [79].
The core-shell structure is achieved by drying Cr and Rh metals deposited on the photocat-
alyst at 343K in air. The metal deposition is achieved in two steps by photodepositing Rh
and Cr metal one after the other from their aqueous ionic solutions. In the second step, Cr
prefers to sit on the Rh sites due to higher electronic density. The same effect was also noted
for Cr2O3-coated Pt/GaN:ZnO [136]. A hydrated Cr2O3 nanolayer prevents back-reaction
by selectively allowing protons to permeate for hydrogen evolution reaction [137], while
hindering oxygen permeation to inhibit its reduction on metal sites [136]. Coatings of the
whole photocatalyst instead of the cocatalyst by oxyhydroxides of Ti, Nb, and Ta have also
been reported to suppress back-oxidation reactions [37,54,63,138]. Co-catalyst coverage
with a suitable ionic or molecular adsorbate is another strategy to curb recombination
reaction. For example, the presence of I− or F− anion in the reaction medium in the case of
Pt-loaded TiO2 photocatalysts results in lowering the rate of reverse reaction [76,139].
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tion in two ways. (1) The rates of products transfer from the catalyst surface are slower 
than the reduction/oxidation reaction rates. (2) The apparent hydrogen and oxygen evo-
lution rates at the liquid-gas interface are limited by the mass transfer rates. An enhance-
ment in the hydrogen generation rate with an increase in stirring rate-indicating improve-
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Figure 5. TEM images of GaN:ZnO after the photodeposition of (a) Rh and (b) Rh/Cr2O3 core-shell
structure obtained by the photodeposition of Cr on Rh/GaN:ZnO followed by heat treatment at
343 K in air. Adapted with permission from reference [79]. Copyright © (2007), American Chemical
Society. (c) Schematic representation of the role of the core-shell structure in the water splitting
reaction indicating the inhibition of oxygen permeation to the Rh core and at the same time allowing
H+ to diffuse through the Cr2O3 shell, thus preventing back reaction. Reproduced with permission
from reference [138]. Copyright © (2015), American Chemical Society.

In addition, the chemisorption of CO on Rh, Pt and Pd cocatalysts has been found to
inhibit recombination reaction while maintaining the rate of hydrogen evolution. However,
a CO oxidation side reaction also takes place at the same time [135]. The spatial separation
of oxidation and reduction sites may also decrease the extent of crossover to a certain
degree. For example, the photocatalytic activity of NiO/NaTaO3 was remarkably increased
by La doping partly due to the creation of a characteristic step structure at the crystal
surface. The preferential NiO or Pt loading at the step edges effectively separated reduction
from oxidation sites, where oxidation occurred inside the grooves [67,68].



Catalysts 2021, 11, 60 13 of 25

5.3. Mass Transfer Limitations

Most photocatalytic overall water splitting reactions have been performed at the
liquid-solid interface in the slurry phase, while a few have been carried at the gas-solid
interface [16,18,79,140,141]. A mass transfer limitation especially in the slurry systems is
the most overlooked yet important aspect in the photocatalytic water splitting research
that can considerably affect the efficiency of the overall process. In such a system, the
diffusion of gases from the catalyst surface to the gas phase is largely dependent on the
reactor type, reaction media and stirring rate. The photocatalytic experimental parameters
are not standardized in the literature unlike in the case of solar cells, therefore, it is
difficult to compare the photocatalytic activity, apart from mass transfer limitations among
different reported studies [142]. The photocatalytic activity of different systems may be
compared using apparent quantum yield; however, it is often measured at different incident
radiation intensities and wavelength ranges for similar catalytic materials that complicate
the comparison [65,66].

For slurry phase reactions, the presence of various interfaces, as shown in Figure
6, may impose a non-negligible mass transfer limitation effect on the overall observed
rates. Further, mass transfer limitations can affect gas generation rates by promoting
back-reaction in two ways. (1) The rates of products transfer from the catalyst surface
are slower than the reduction/oxidation reaction rates. (2) The apparent hydrogen and
oxygen evolution rates at the liquid-gas interface are limited by the mass transfer rates. An
enhancement in the hydrogen generation rate with an increase in stirring rate-indicating
improvement in mass transfer at the gas–liquid interface has been demonstrated on Pt/TiO2
photocatalyst [143]. An increase in the hydrogen production rate of ca. 1.4 times with
an increase in the stirring rate from 350 rpm to 900 rpm in a water-ethanol mixture was
noted [143]. Furthermore, at a fixed catalyst concentration a decrease in the rate per
gram of catalyst with an increase in liquid volume indicated significant mass transfer
limitations [143]. In another photocatalytic hydrogen production study over Pt/g-C3N4
and NaTaO3:La in a fluidized reactor a 3.7 times enhancement in the activity at a speed
from 0 rpm to 1035 rpm was observed [144].
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gas phase at the liquid-gas interface. Reproduced with permission from reference [145]. Copyright ©
(2018), Elsevier.

In another study, a mathematical model was developed to fit experimentally mea-
sured photocatalyst performances of Pt/TiO2 (Degussa P25) in a fluidized bed reactor.
This allowed some parameters such as the back-reaction rate constant, the mass transfer
coefficient and photon extinction coefficient to be estimated, and the maximum achievable
hydrogen production rate to be predicted. It was found that the hydrogen production rate
and the apparent quantum yield of the system were directly controlled by the rate of mass
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transfer in the reactor. A 350% increase in the hydrogen evolution rate was achieved when
the rate of mass transfer was made significantly large with respect to the back-reaction [145].
In the case of immobilized catalyst, there are two types of mass transfer limitations; external
mass transfer and internal mass transfer. While the former could be reduced to a negligible
value by increasing the flow rate (Reynolds number) of the solution, the latter is an intrinsic
property of the catalyst film, which is difficult to alter [146]. The Reynolds number is a
ratio of inertial to that of viscous forces within a fluid. At its low values, flow tends to be
laminar (dominated by viscous forces), while at high values the flow tends to be turbulent
(dominated by inertial forces). From the above discussion, it appears that further work
on the mass transfer dependence of hydrogen generation rates in different water splitting
reaction experiments is needed. These studies may help to enhance the rates and lead to a
better fundamental understanding of the photocatalytic reaction steps.

6. More Recent Overall Water Splitting Systems

Recently, a few more advanced (by design) overall water splitting-systems have
emerged. A brief account of some of them is given next. One example is a sheet system
based on a solid-state electron mediator in which a mixture of reduction and oxidation
catalyst particles is embedded in a thin conductive layer such that a sufficient contact
area for efficient charge transfer is achieved [16–19]. Typical example includes Ru-loaded
SrTiO3:La, Rh as a reduction catalyst and BiVO4:Mo as an oxidation catalyst put on either an
Au or carbon conductive layer (see Figure 7). In the case of carbon, this assembly exhibited
an STH of 1.2%, which is to be compared to that of 0.2% for Au [16,17]. Apparently, a six
times higher efficiency in the former case was attributed to the presence of the Cr2O3 layer
and lower activity of the carbon conductive layer for back-reaction as compared to the Au
layer. This technique does not necessarily require an electrolyte and the photocatalysts
can be easily replaced when required. Both these characteristics associated to this unique
system are advantageous to the design of practical solar water splitting units.
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Figure 7. Z-scheme using a carbon sheet as an electron transfer medium: (1) light absorption,
(2) electron excitation from the VB to the CB, (3) electron(s) transfer to Ru metal cocatalyst for H+

reduction to produce H2, (4) electron(s) transfer from the CB of an oxidation catalyst to the VB of
reduction catalyst via a conductor carbon layer (electron-hole recombination) and (5) hole transfer
to RuOx cocatalyst to catalyze water oxidation Reproduced with permission from reference [16].
Copyright © (2007), American Chemical Society.

One of the drawbacks of using these conductive layers is their deposition using a
costly sputtering process, which is not promising for large-scale fabrication. Alternatively,
these layers can be made from other less expensive conductive materials such as reduced
graphene oxide [18]. The photocatalysts particles can be deposited on conductive layer
electrically or using a printing technique with an ink containing catalyst powders [141].
However, such systems have shown far lower performance than the former cases, and hence
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further studies and improvements are required. The working principle of the photocatalyst
sheet is similar to that for a p–n tandem cell in which a SrTiO3:Rh, La photocathode and a
BiVO4:Mo photoanode are connected in a parallel configuration. The performance of such
sheets is found to be superior to tandem photoelectrochemical water splitting primarily due
to the close proximity of reduction and oxidation reaction sites, which lowered the solution
resistance [147]. Another direction to study overall water splitting uses metals such as Au
and Ag because of their surface plasmon resonance (SPR) properties. For example, one
characteristics of plasmonic enhanced photocatalysts is that the absorption of sunlight can
be expanded to almost all the solar spectral range depending on the type of metal used
and its particle size distribution [148,149]. Moreover, these metals also play cocatalyst
function at the same time [29,30,140,150,151]. It was noted that the hydrogen production
rate observed under UV light exposure increases with a simultaneous exposure to visible
light in the presence of Au and Pd supported on TiO2 and organic sacrificial agents [30,150]
however no such effect was seen in the case of Ag when supported on TiO2 [29].

Another important work in this direction was reported by Moskovit and co-workers
who demonstrated an Au nanorods-based autonomous overall water splitting device in
which all charge carriers originated from the generation of hot electrons resulting from the
excitation of surface plasmons [152]. TiO2 was deposited on one end of each nanorod to act
as an electron filter. Pt loaded on an electron filter layer and Co deposited directly on the
bare nanorod were used as reduction and oxidation catalysts, respectively (see reference
156 for further details). They reported approximately 1.14 mmol h−1 g−1 per gram of
(active photocatalytic device weight; Au, Pt, TiO2, Co) hydrogen production rate under one
sun illumination with long-term operational stability. The biggest drawback of making use
of plasmonic response is the capex cost of the plant at the commercial scale as this response
is only shown by expensive noble metals. Another work has demonstrated overall water
splitting by decorating CdS nanorods with a Pt reduction and a molecular oxidation catalyst
(a ruthenium organometallic complex (Figure 2), with dithiocarbamate groups for chemical
ligation). The process relies on the nanorod morphology of CdS to spatially separate the
reduction and oxidation sites [153]. However, given the photo-corrosion of CdS even in
the presence of sacrificial agents, and the fact that the rate of oxygen production went
to zero after about 100 min indicate that the absence of a catalytic reaction and therefore
the absence of water splitting. Recently, Takata and co-workers demonstrated a system
comprised of Rh/Cr2O3 as hydrogen and CoOOH as an oxygen evolution cocatalyst both
loaded on Al doped SrTiO3 photocatalyst [15,154]. The catalyst exhibited an external
quantum efficiency reaching 96% and an internal quantum efficiency reaching unity in a
350–360 nm irradiation wavelength range. The activity of the photocatalyst was thought to
mainly originate from two factors: the selective photo-deposition of Rh and Co on different
crystal facets of the semiconductor particles resulting in an anisotropic charge transport,
and the fact that (or as a consequence of) molecular hydrogen and oxygen productions
were spatially separated avoiding the back-reaction [155].

7. Reactor Design and Cost of Hydrogen

Over the years, the primary motive behind working on colloidal particle photocatalytic
systems was the conceptual simplicity and their possible low cost. Despite many decades
of technical research, there is no unbiased analysis available to determine whether research
dollars spent on such systems will lead to commercially viable solutions. The first detailed
technoeconomic analysis was published in 2009, which was a study conducted by the
United States Department of Energy (DOE) on hydrogen generation based on different
conceptual systems [11]. This was later summarized by others in a different study [13]. The
two types of colloidal systems (Figure 8) for water splitting considered in the study were:

Type-1: A single electrolyte filled reactor bed containing a colloidal suspension, which
produced a mixture of hydrogen and oxygen product gases.
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Type-2: Dual electrolyte-filled reactor beds containing colloidal suspensions, with one
bed carrying water oxidation and the other bed carrying water reduction and including a
mechanism for circulating the ions between the beds.

The two systems utilize aqueous reactor beds containing colloidal suspensions of
photocatalytic nanoparticles to generate hydrogen and oxygen, a gas processing system
that compresses and purifies the output gas stream, and ancillary equipment. The systems
were sized for an average daily production of 1000 kg hydrogen, operating at a STH of
~5% and 10%, respectively, and they had compression units to get hydrogen at 305 psi [13].
The base case results of this study placed the levelized cost of hydrogen at 1.60 $/kg and
3.2 $/kg, for type 1 and 2 systems, respectively (Figure 9) [13]. The capital costs were the
major contributor to the calculated cost of hydrogen where gas processing dominated for
the type 1 system and the reactor cost dominated for the type 2 system. These numbers
suggested that commercial-scale photocatalytic water splitting could be cost-competitive
with fossil-based fuels and spurred research in this direction. However, over the last decade
many researchers across the world have realized that achieving the assumptions made in
this study is not possible at present nor in the foreseen future. After 50 years of research, the
best particle systems have reached ca. 1% STH with limited stability (results still needing
confirmation by others) [141]. Thus, achieving 10% and 5% STH with stability for more
than 5 years is far away. In addition, the cost and challenges along with safety concerns
associated with separating H2/O2, which are produced together in type 1 reactor, were
hugely underestimated. The technoeconomic analysis assumes pressure swing adsorption
(PSA) for H2/O2 separation. While PSA plants can be used to recover and purify hydrogen
from hydrogen-rich streams such as synthesis gases resulting from steam reforming, or to
separate oxygen and nitrogen from air, the separation of H2/O2 is still not possible using
them.
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of overall water splitting is required. (b) Type 2 reactor cross-section showing the particle slurries contained within
baggie assemblies consisting of an alternating arrangement of a full size and half-size baggie each for hydrogen and
oxygen evolution. This design requires the use of a redox mediator (A/A−) and porous bridges to transport it from one
compartment to the other. Perforated pipes running the length of the baggies facilitate mixing of the redox mediator.
Adapted with permission from references [11,13]. Copyright © (2008), Royal Society of Chemistry.
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To overcome this, others suggested using N2 and CO2 as diluents to eliminate the
explosion hazard but this comes with an increase in cost [156,157]. Using N2 as a diluent, a
membrane cascade design was proposed to recover the hydrogen outside the flammability
range. Two different tertiary (H2, O2 and N2) mixtures with 4 and 6 mole % hydrogen
were investigated to recover hydrogen using a commercial polyimide membrane. The
results showed that 92% recovery and 92.5% purity was possible for a 4 mole % mixture
at a specific recovery cost of 8.20 $/kg. On the other hand, for 6 mole % mixture, 90%
recovery and 95% purity were achievable with a specific recovery cost of 6.15 $/kg [156].
The reduction in recovery cost is the result of the lower feed flow rates in the latter case
with higher hydrogen concentration. These two factors play a major role in reducing
the required membrane area and the compression power. The utilization of CO2 as a
flammability suppressant was found to be more effective than N2. A higher purity product
and lower specific cost with an overall slight decrease in recovery rate can be achieved
with the CO2 diluent system. The best economic results for this process were obtained at
an 85% recovery rate with 99% product purity at a cost of 6.40 $/kg [157].

Another design based on a fixed panel array, which generates molecular hydrogen,
and oxygen separately has been discussed in the 2009 DOE report and later by Shaner
and coworkers in 2016. See Figure 10 [11,12]. This design is primarily based on using
photovoltaic cells but in principal could also be used for colloidal photocatalyst materials.
The photocatalysts can be coated on conducting electrodes, which are connected electri-
cally, and H2/O2 can be produced separately. While this design addresses the challenges
associated with separation, it adds more area, cost and complexity to the reactor system.
At the same time, decoupling of the absorber and catalyst areas presents additional design
challenges and costs. Given the large scale of all the reactors, there may be a significant
voltage loss due to the voltage drop across the solution. The calculated levelized cost of
hydrogen for such systems was reported in the range of 10–12 $/kg. Capital costs dominate
the price per kg of hydrogen, with more than 80% of the cost originating from the materi-
als, construction, and installation of the photoactive cells. Given the rigid encapsulation
framework, as opposed to the flexible baggies of the Type 1 and 2 reactors, compression
cost for this type of reactor is also high since the auxiliary units must be sized for the peak
hourly output and not the average output over the day. The cost of hydrogen produced
from such a system could be lowered with the use of photocatalysts powder materials
coated on conducting electrodes instead of PV.
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such systems is to eliminate, or at least considerably decrease the use of rare, expensive or 
polluting elements. The separation of explosive H2–O2 mixtures and related safety issues 

Figure 10. Fixed panel array for spatially separated hydrogen and oxygen production. The panel is comprised of two
photoactive layers sandwiched between a transparent conductive anode and a metal cathode. While the former catalyzes
an oxygen evolution reaction and allows photons to pass through, the latter is responsible for a hydrogen evolution
reaction. The whole panel is encased in a transparent plastic layer and is tilted in a way to see maximum light from the sun.
Reproduced with permission from reference [11,12]. Copyright © (2008), Royal Society of Chemistry.

8. Conclusions and Future Perspective

The main underlying principles related to the overall water splitting using particu-
late photocatalysts are summarized. Various types of semiconductors including oxides,
nitrides and their derivative oxynitrides have been developed over the past three decades.
Some visible light responsive (up to around 500 nm; Eg = 2.5 eV) photocatalysts have
been demonstrated [16,158]. In order to become competitive with conventional industrial
processes such as steam methane reforming an STH around 10% is required as discussed
under the reactor design and cost of the hydrogen section [13,14]. To meet this goal a
photocatalyst capable of splitting water through one-step excitation must have absorption
edge between 350 and 1000 nm. The shorter wavelength bound is due to the fraction of
total solar incident light flux that is needed to be converted and the longer wavelength
bound is due to the minimum ∆G (1.23 V ≈ 1000 nm) requirement to split water. Although
one would intuitively prefer to have a photocatalyst with band gap as close as possible to
the longer wavelength bound, energy losses during the reduction and oxidation reactions
are unavoidable; these can be up to 0.5 V.

While most of the oxide catalysts absorb UV light, a range of (oxy)nitride and oxy-
sulfide semiconductors have an absorption edge close to 600 nm indicating their potential
as candidates to achieve the target efficiency [37,125,159]. Thermal and photostability are
chronic issues of all nitride-based catalysts that need to be solved. One way to achieve this
was through the use of cocatalysts, with some modest progress [37,159–161]. Enhanced
light harvesting is also found for some plasmonic photocatalysts [152,162]. This concept
may become useful for water splitting once with better fundamental knowledge is as-
similated within the catalysis community. In the case of the Z-scheme systems, all three
cocatalyst-semiconductor, cocatalyst-solution and semiconductor-solution interfaces must
be rationally designed after considering their, optical, electronic and catalytic properties to
maximize forward electron transfer rates. Furthermore, designing new integrated systems
based on rational interface-engineering strategies is another approach that can make use of
the inherent properties of semiconductor materials. An example of this in photocatalyst
sheet systems is given [17].

More efforts directed towards understanding the fundamental photocatalytic pro-
cesses, in particular charge carrier dynamics, using advanced characterization techniques
are poised to open new opportunities to enhance performance [122,163]; although for this
to be useful materials need to be characterized at the atomic scale and reproducibly made
by many other groups. Another important challenge for industrial-scale application of
such systems is to eliminate, or at least considerably decrease the use of rare, expensive or
polluting elements. The separation of explosive H2–O2 mixtures and related safety issues is
another important hurdle that need to be crossed [156]. Given our current understanding
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of the overall system, the development of a visible light responsive stable photocatalyst
dispersed in water in the form of particles that also meets a 10% STH requirement is still
very challenging at both the scientific and engineering levels.
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