

Supplementary Materials

Effect of Ag₂S Nanocrystals/Reduced Graphene Oxide interface on Hydrogen Evolution Reaction.

Chen Zhao ^{1,2}, Zhi Yu ¹, Jun Xing ^{1,2}, Yuting Zou ^{1,2}, Huiwen Liu ³, Hao Zhang ³, Weili Yu ^{1,2,*}, Hicham Idriss ^{4,*} and Chunlei Guo ^{5,*}

¹The Guo China-US Joint Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China

⁴SABIC-CRD, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Department of Chemistry, University College London, London WC1E 6BT, U.K.

⁵The Institute of Optics, University of Rochester, N Y 14627, USA

* Correspondence: weili.yu@ciomp.ac.cn (W.Y.);

Figure S1. Electrochemical performance of different catalysts. The horizontal axis represents the overpotential. The vertical axis represents the Tafel slope. Performance of rGO-based chalcogenide metal semiconductor composites as electrocatalyst for hydrogen evolution reaction was shown in **Table S2**. Performance of Ag-based chalcogenide metal semiconductor as electrocatalyst for hydrogen evolution reaction is presented in **Table S3**.

Figure S2. EDS of Ag₂S/rGO hybrid on glass substrate.

Figure S3. a. Changes in photoluminescence at different weight ratios of Ag₂S to rGO. b. normalized changes in the PL signal as a function of Ag₂S %. The fitting indicates a slight deviation from linearity.

Figure S4. a. Typical CV scans (1st and 1000th) of Ag2S/rGO. **b.** Durability tests of Ag2S/GO hybrid. The polarization curves were recorded before and after 1000 potential cycles in $0.5 \text{ M H}_2\text{SO}_4$ aqueous solution from 0 to -0.7 V (vs RHE).

Figure S5. The XPS spectra of the Ag₂S/rGO composite. **a.** Survey XPS spectrum of Ag₂S/rGO composite before electro-catalyst reaction. **b.** Survey XPS spectrum of Ag₂S/rGO composite after electro-catalyst reaction.

Figure S6. Tauc plots for Ag₂S/rGO, Ag₂S/GO, and Ag₂S used for the extraction of the band gaps.

Sample	A_1	τ ₁ (ns)	A ₂	τ ₂ (ns)	A ₃	τ₃ (ns)	τ (ns)	Average (ns)
Ag_2S_1	908.3	108.4	3164.2	5.6	11685.1	0.5	7.7	
Ag_2S_2	803.9	115.2	2744.2	6.1	10694.2	0.5	8.0	
Ag_2S_3	776.8	114.5	2727.2	5.9	10618.9	0.5	7.8	7.8
Ag_2S_4	762.5	113.9	2640.2	6.1	10699.2	0.5	7.7	
Ag_2S_5	837.1	113.9	2834.4	6.2	11919.1	0.5	7.6	
Ag ₂ S/rGO_1	814.2	75.0	3269.4	5.8	17918.0	0.6	4.1	
Ag ₂ S/rGO_2	1003.6	77.9	4290.3	6.4	23758.3	0.7	4.2	
Ag ₂ S/rGO_3	834.8	83.9	3020.2	6.9	19141.0	0.6	4.5	4.4
Ag ₂ S/rGO_4	1068.8	85.2	3819.5	7.1	24718.7	0.6	4.5	
Ag ₂ S/rGO_5	1077.0	84.3	3807.9	7.1	25250.6	0.6	4.4	

Table S1. The fluorescence lifetime of the Ag2S and the Ag2S/rGO.

Table S2. The performance of rGO-based chalcogenide metal semiconductor composites as
electrocatalyst for hydrogen evolution reaction.

Catalyst type	electrolyte	Overpotential	Tafel slope (mV/dec)	Year	Ref.
$(MoS_2)_x(SnO_2)_{1-}$ 	0.5 M H ₂ SO ₄	$263 \pm 5 \text{ mV}$	50.8 mV/dec	2018	[1]
Mo ₃ S ₁₃ -SrGO	0.5 M H ₂ SO ₄	244 mV	53 mV/dec	2018	[2]
Ni _{0.85} Se@NGO	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	104 mV	50.7 mV/dec	2018	[3]
WSe ₂ -rGO	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	100 mV	64 mV/dec	2018	[4]
CoS ₂ /RGO	0.5 M H ₂ SO ₄	180 mV	75 mV/dec	2017	[5]
NiSe-RGO-PI/CNT	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	270 mV	61 mV/dec	2017	[6]
FeSe ₂ /GO	0.5 M H ₂ SO ₄	250 mV	64 mV/dec	2017	[7]
WS ₃ @x/rGO	1M KOH	465 mV	54 mV/dec	2017	[8]
MoS ₂ /rGO	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	222 mV	59.8mV/dec	2017	[9]
MoSe ₂ -rGO-M	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	310 mV	57 mV/dec	2017	[10]
MoS ₂ /rGO	0.5 M H ₂ SO ₄	347 mV (η1)	48 mV/dec	2017	[11]
MoSSe@rGO	0.5 M H ₂ SO ₄	153 mV	51 mV/dec	2016	[12]
MoS ₂ NF/rGO	0.5 M H ₂ SO ₄	190 mV	95 mV/dec	2014	[13]
Ag ₂ S/rGO	0.5 M H ₂ SO ₄	120 mV	49.1 mV/dec		This work

Table S3. The performance of Ag₂S-based composites for hydrogen evolution reaction.

Catalyst type	electrolyte	Overpotential	Tafel slope (mV/dec)	Year	Ref.
Ag ₂ S/Ag	0.5 M H ₂ SO ₄	199 mV	102 mV/dec	2017	[14]
Ag_2WS_4	0.5 M H ₂ SO ₄	329 mV	62 mV/dec	2018	[15]
Ag ₂ S/Ag	0.5 M H ₂ SO ₄	190 mV	120 mV/dec	2018	[16]
Ag ₂ S	0.5 M H ₂ SO ₄	320 mV	86 mV/dec	2019	[17]
Ag ₂ S/CuS	0.5 M H ₂ SO ₄	193 mV	75 mV/dec	2016	[18]
Ag ₂ S/MoS ₂	0.5 M H ₂ SO ₄	110 mV	42 mV/dec	2017	[19]
Ag-Ag ₂ S/MoS ₂	0.5 M H ₂ SO ₄	200 mV		2014	[20]
Ag ₂ S/rGO	0.5 M H2SO4	120 mV	49.1 mV/dec		This work

References

 S. Ravula, C. Zhang, J. Essner, J. Robertson, J. Lin, G. Baker, Ionic liquid-assisted synthesis of nanoscale (MoS₂)x(SnO₂)1-x on reduced graphene oxide for the electrocatalytic hydrogen evolution reaction, Abstr Pap Am Chem S 255 (2018).

C.V. Pham, A. Zana, M. Arenz, S. Thiele, [Mo₃S₁₃](2-) Cluster Decorated Sulfur-doped Reduced Graphene Oxide as Noble Metal-Free Catalyst for Hydrogen Evolution Reaction in Polymer Electrolyte Membrane Electrolyzers, Chemelectrochem 5 (2018) 2672-2680.

Catalysts 2020, 10, x FOR PEER REVIEW

- H.Y. Fu, Y.J. Chen, Z.Y. Ren, Y.T. Xiao, Y.Y. Liu, X. Zhang, G.H. Tian, Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction, Electrochim Acta 262 (2018) 107-114.
- 4. J.S. Cho, S.K. Park, K.M. Jeon, Y. Piao, Y.C. Kang, Mesoporous reduced graphene oxide/WSe₂ composite particles for efficient sodium-ion batteries and hydrogen evolution reactions, Appl Surf Sci 459 (2018) 309-317.
- Y.Y. Yang, F. Li, W.Z. Li, W.B. Gao, H. Wen, J. Li, Y.P. Hu, Y.T. Luo, R. Li, Porous CoS₂ nanostructures based on ZIF-9 supported on reduced graphene oxide: Favourable electrocatalysis for hydrogen evolution reaction, Int J Hydrogen Energ 42 (2017) 6665-6673.
- T.X. Wang, X. Li, Y.M. Jiang, Y.X. Zhou, L.P. Jia, C.M. Wang, Reduced graphene oxide-polyimide/carbon nanotube film decorated with NiSe nanoparticles for electrocatalytic hydrogen evolution reactions, Electrochim Acta 243 (2017) 291-298.
- J. Theerthagiri, R. Sudha, K. Premnath, P. Arunachalam, J. Madhavan, A.M. Al-Mayouf, Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction, Int J Hydrogen Energ 42 (2017) 13020-13030.
- 8. S.M. Tan, M. Pumera, Electrosynthesis of Bifunctional WS_{3-x}/Reduced Graphene Oxide Hybrid for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Electrocatalysis, Chem-Eur J 23 (2017) 8510-8519.
- W.Y. Sun, P. Li, X. Liu, J.J. Shi, H.M. Sun, Z.L. Tao, F.J. Li, J. Chen, Size-controlled MoS₂ nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries, Nano Research 10 (2017) 2210-2222.
- 10 S.K. Park, G.D. Park, D. Ko, Y.C. Kang, Y. Piao, Aerosol synthesis of molybdenum diselenide-reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances, Chemical Engineering Journal 315 (2017) 355-363.
- 11., J.E. Lee, J. Jung, T.Y. Ko, S. Kim, S.I. Kim, J. Nah, S. Ryu, K.T. Nam, M.H. Lee, Catalytic synergy effect of MoS₂/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction, Rsc Advances 7 (2017) 5480-5487.
- B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann, MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction, Nano Energy 29 (2016) 46-53.
- C.B. Ma, X.Y. Qi, B. Chen, S.Y. Bao, Z.Y. Yin, X.J. Wu, Z.M. Luo, J. Wei, H.L. Zhang, H. Zhang, MoS₂ nanoflowerdecorated reduced graphene oxide paper for high-performance hydrogen evolution reaction, Nanoscale 6 (2014) 5624-5629.
- 14 M. Basu, R. Nazir, C. Mahala, P. Fageria, S. Chaudhary, S. Gangopadhyay, S. Pande, Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction, Langmuir : the ACS journal of surfaces and colloids 33 (2017) 3178-3186.
- F.P. Zhan, Q.H. Wang, Y.B. Li, X. Bo, Q.X. Wang, F. Gao, C. Zhao, Low-Temperature Synthesis of Cuboid Silver Tetrathiotungstate (Ag₂WS₄) as Electrocatalyst for Hydrogen Evolution Reaction, Inorganic chemistry 57 (2018) 5791-5800.
- C.M. Cova, A. Zuliani, A.R. Puente Santiago, A. Caballero, M.J. Muñoz-Batista, R. Luque, Microwave-assisted preparation of Ag/Ag₂S carbon hybrid structures from pig bristles as efficient HER catalysts, J Mater Chem A 6 (2018) 21516-21523.
- W. Yu, J. Yin, Y. Li, B. Lai, T. Jiang, Y. Li, H. Liu, J. Liu, C. Zhao, S.C. Singh, J. Chen, B. Lin, H. Idriss, C. Guo, Ag₂S Quantum Dots as an Infrared Excited Photocatalyst for Hydrogen Production, ACS Applied Energy Materials (2019).
- 18. H.T. Ren, W.C. Xu, S.L. Zhu, Z.D. Cui, X.J. Yang, A. Inoue, Synthesis and properties of nanoporous Ag₂S/CuS catalyst for hydrogen evolution reaction, Electrochim Acta 190 (2016) 221-228.
- M. Wang, P. Ju, W. Li, Y. Zhao, X.X. Han, Ag₂S nanoparticle-decorated MoS₂ for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting, Dalton transactions 46 (2017) 483-490.
- 20. X.H. Xia, X.J. Zhao, W.C. Ye, C.M. Wang, Highly porous Ag-Ag₂S/MoS₂ with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution, Electrochim Acta 142 (2014) 173-181.