Supplementary Materials:

Understanding the Photo- and Electro-carboxylation of Methyl Benzophenone with Carbon Dioxide

Keyi Tian,^a Ruonan Chen,^a Jiafang Xu,^a Ge Yang,^a Xintong Xu,^a and Yanhua Zhang*^a

^a Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China. E-mail: <u>tiankeyi@njtech.edu.cn</u> (K. T); <u>rnchen@njtech.edu.cn</u> (R. C); <u>201761100557@njtech.edu.cn</u> (J. X); <u>yangge05@njtech.edu.cn</u> (G. Y); <u>201961105031@njtech.edu.cn</u> (X. X). *Correspondence: <u>ias_vhzhang@njtech.edu.cn</u> (Y. Z)

Equipments.

Photoreactions were carried out under a LED lamp (customized by Shanghai Guige, 365 nm) irradiation. ¹H and ¹³C NMR spectra were recorded on a JEOL (100 MHz) or Bruker (400 MHz) in DMSO-d₆. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm (CHCl₃) and 2.50 ppm (DMSO-d₆). High-resolution mass spectra were recorded on a Waters (Acquity UPLC/XEVO G2-XS QTOF) spectrometer. IR measurements were performed on a FTIR (Nicolet is10) spectrometer fitted with a Pike Technologies MIRacle Single Reflection ATR adapter. Liquid chromatograph-mass spectra were recorded on a Thermo Scientific Exactive (MSQ PLUS/U3000) spectrometer. Conversion yield is measured by HPLC (ACQUITY Arc, Waters).

Supplementary data.

^L COOH ¹**H NMR** (100 MHz, DMSO-d₆): δ = 12.30 (s, 1H), 7.68 (dd, *J* = 27.3, 7.5 Hz, 3H), 7.53 (t, *J* = 7.8 Hz, 3H), 7.48 – 7.20 (m, 3H), 3.80 (s, 2H); ¹³**C NMR** (100 MHz, DMSO-d₆): δ = 197.94, 172.76, 138.51, 137.77, 135.02, 133.64, 132.55, 131.28, 130.49, 129.85, 128.99, 126.90, 39.94, 38.78, 21.61; **HRMS** (ESI+) *m/z*: calcd. For C1₅H1₃O₃ (M+H)⁺ 241.0859, found 241.0851.

¹H NMR (400MHz, DMSO-d₆): δ =13.20 (s, 1H), 7.53 – 7.42 (m, 2H), 7.42 – 7.26 (m, 3H), 7.24 – 7.11 (m, 2H), 7.06 (td, *J* = 7.1, 2.2 Hz, 1H), 6.85 (d, *J* = 1.3 Hz, 1H), 6.14 (s, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ =175.75, 143.10, 142.40, 138.15, 132.21, 128.27, 128.20, 128.06, 127.82, 127.48, 125.35, 81.64, 56.43, 40.05, 21.01; HRMS(ESI+) *m*/*z*: calcd. For C₁₅H₁₄O₃ (M+H)+ 243.1021, found 243.1011.

¹H NMR (400 MHz, DMSO-d₆): δ = 13.26 (s, 1H), 7.46 – 7.35 (m, 2H), 7.35 – 7.24 (m, 3H), 7.23 – 7.12 (m, 3H), 7.12 – 7.06 (m, 1H), 6.26 (s, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 175.40, 175.30, 144.36, 141.30, 136.89, 128.76, 128.15, 128.11, 127.70, 127.64, 127.56, 124.82, 80.64, 39.99, 21.14; HRMS(ESI+) *m*/*z*: calcd. For C₁₅H₁₄O₃ (M+H)⁺ 243.1021, found 243.1017.

HO COOH Ph

¹**H NMR** (400 MHz, DMSO-d₆): δ = 13.08 (s, 1H), 7.40 – 7.20 (m, 7H), 7.07-7.17 (d, *J* = 7.9 Hz, 2H), 6.22 (s, 1H), 2.28 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-d₆): δ =175.39, 144.36, 141.30, 136.89, 128.75, 128.15, 127.70, 127.63, 127.56, 80.54, 40.00, 21.15; **HRMS**(ESI+) *m*/*z*: calcd. For C₁₅H₁₄O₃ (M+H)⁺243.1021, found 243.1023.

Supplementary figures and tables.

Figure S1. Photocarboxylation of *o-*, *m-* and *p-*methyl benzophenone with CO₂ in different solvent.

Figure S2. Electrocarboxylation of *o-*, *m-* and *p*-methyl benzophenone with CO₂ in different solvent.

Figure S3. Cyclic voltammogram of a) *o*-methyl benzophenone and b) *o*-acylphenylacetic acid on glassy carbon electrode under argon (black trace) or with CO₂ bubbling (red trace). The reaction solution consists of supporting electrolyte (0.1 M of Bu₄NBr) and substrate (0.08 mM) in 20 mL of **DMSO** by using Ag/AgBr as the reference electrode and Al as the counter electrode.

Quantum chemical computational details.

All calculations in this work were performed using Gaussian 09 program package [1]. Full geometry optimizations in DMSO solvent were performed to locate all the stationary points, using the M062X [2] method with the 6-311+G(d) [3] basis, namely M062X/6-311+G(d) at 298.25 K. The self-consistent reaction field (SCRF) method based on the universal solvation model SMD was adopted to evaluate the effect of the solvent [4]. The intrinsic reaction coordinate (IRC) path was traced to check the energy profiles connecting each transition state to two associated minima of the proposed mechanism [5]. The solvation free energies of the proton $\Delta G_{sol}(H^+)$ [6] is defined analogously as followed:

$$\Delta G_{\rm sol}(\rm H^+) = G(\rm S-\rm H)^+_{\rm sol} - G(\rm S_{\rm sol}) - G(\rm H^+_{\rm gas})$$

Wherein, S represents the solvent molecule, DMSO in this work; The value of $G(H_{gas}^+)$ was referenced from the literatures [7,8].

Unless specified, the Gibbs free energies at 298.25 K were used in the discussion.

Structure of 2-(2-(carboxymethyl)-phenyl)-2-hydroxy-2-phenylacetic acid.

Energies optimized at M062X/6-311+G(d) level

	E	Н	G	
CO ₂	-188.565	-188.561557	-188.58582	
Im1	-992.745	-992.725734	-992.809	
Im2	-992.838	-992.818457	-992.904	
Im3	-992.845	-992.825355	-992.896	
Ts1	-992.840	-992.821303	-992.889	
Im4	-992.848	-992.830033	-992.894	
Im5-tri	-992.889	-992.869853	-992.938	
Im5	-992.951	-992.933257	-992.996	
Im6	-992.955	-992.936065	-992.987	
Ts2	-992.955	-992.937251	-992.983	
Im7	-992.995	-992.977578	-993.023	
Im8	-993.459	-993.0211386	-993.079	
Ts3	-993.447	-993.0084776	-993.067	
Im9	-993.470	-993.0309856	-993.093	
Im10	-993.902	-993.0431033	-993.131	

Cartesian coordinates of structures optimized at M062X/6-311+G(d) level

co			-
CO_2	0.000000	0.000000	0.000000
C	0.000000	0.000000	0.000000
0	0.000000	0.000000	1.154894
0	0.000000	0.000000	-1.154894
DMSC)		
S	-0.000024	0.217595	-0.447148
С	-1.349590	-0.795795	0.189115
Н	-2.282360	-0.282599	-0.043025
Н	-1.332116	-1.768350	-0.304812
Н	-1.233865	-0.905483	1.268373
С	1.349912	-0.795300	0.189132
Н	1.332576	-1.767994	-0.304537
Н	2.282525	-0.281951	-0.043267
Н	1.234336	-0.904749	1.268427
0	-0.000330	1.497023	0.380467
DMSC	0-Н		
S	-0.000013	-0.081776	-0.497129
С	1.380664	0.779936	0.231655
Н	2.287480	0.250319	-0.056294
Н	1.384401	1.787768	-0.187241
Н	1.249344	0.805673	1.312787
С	-1.380460	0.780290	0.231670
Н	-1.383229	1.788482	-0.186392
Н	-2.287540	0.251597	-0.057213
Н	-1.249584	0.804887	1.312866

-0.000194 -1.438467 0.399831

Ο

Н	-0.000346	-2.233936	-0.163043
im1			
С	3.760213	0.308844	0.593581
С	2.810847	1.026390	-0.125027
С	1.603670	0.441443	-0.509929
С	1.375996	-0.899403	-0.174083
С	2.341043	-1.629798	0.521687
С	3.527850	-1.025350	0.917445
Н	4.687116	0.788144	0.889164
Н	3.008184	2.057862	-0.400546
Н	2.148662	-2.670116	0.763306
Н	4.269112	-1.592567	1.469198
С	0.102625	-1.604183	-0.551786
С	-2.377155	-1.347509	-0.681912
С	-3.580938	-0.869829	-0.182695
С	-3.599616	-0.120724	0.994863
С	-2.413403	0.155908	1.667491
С	-1.202600	-0.304358	1.158451
С	-1.181465	-1.060256	-0.016155
Н	-2.352131	-1.936687	-1.592042
Н	-4.506456	-1.080718	-0.706916
Н	-4.542150	0.247848	1.385368
Н	-2.428146	0.734018	2.584831
Н	-0.278355	-0.086162	1.683161
0	0.127945	-2.600192	-1.244370
С	0.620213	1.238583	-1.335997
Н	0.025372	0.608854	-1.998386
Н	1.178665	1.922892	-1.985018
С	-0.348561	2.120749	-0.580318
0	-1.413708	2.474352	-1.015723
0	0.123205	2.539056	0.600673
Η	-0.541736	3.117857	1.009556
im2			
С	3.588475	-1.428159	0.461568
С	3.295777	-0.072234	0.319415
С	2.063981	0.345734	-0.178872
С	1.099209	-0.608519	-0.550037
С	1.397137	-1.963901	-0.384746
С	2.631553	-2.376329	0.113628
Н	4.553457	-1.739223	0.847460
Н	4.030881	0.671806	0.613400
Н	0.653002	-2.706214	-0.660569
Н	2.845177	-3.434544	0.224510
С	-0.195301	-0.160579	-1.168140
С	-2.668654	-0.047073	-1.100873
С	-3.881255	-0.263255	-0.468702
С	-3.944565	-0.860820	0.798184
С	-2.738615	-1.226358	1.422287
С	-1.518722	-1.017513	0.805959

С	-1.431995	-0.429631	-0.493531
Н	-2.635138	0.418413	-2.079695
Н	-4.799704	0.037743	-0.966054
Н	-4.897231	-1.026113	1.288902
Н	-2.761571	-1.674623	2.411890
Н	-0.608917	-1.291953	1.329289
0	-0.133223	0.456964	-2.278855
С	1.731436	1.813533	-0.276388
Н	1.529723	2.109009	-1.305920
Н	2.566991	2.416944	0.093552
С	0.518258	2.219679	0.529718
0	-0.242111	3.107315	0.233413
0	0 405729	1 540039	1 681940
C	-0 400142	1 836747	2 134427
C	0.100112	1.0007 17	2.101127
im3			
C	2.784162	-0.160736	2.434206
C	2 720098	0 718014	1 354658
C	1 676236	0.656794	0 433145
C	0.663979	-0.315147	0.585088
C	0 734712	-1 181553	1 684388
C	1 778973	-1 110641	2 600795
с н	3 606302	-0.099480	3 139223
н	3 489772	1 474928	1 231591
н	0.030994	-1 9/2251	1.201001
н	1 81/1213	-1.942201	3 435262
n C	-0.392794	-1.003030	-0.462757
C	2 762885	-0.404000	1 120700
C C	-2.702005	-0.702307	-1.120799
C C	4.110730	-0.701013	-0.030700
C	-4.567570	-0.464239	0.403190
C	-3.040303	-0.235551	1.4/9110
C	-2.200312	-0.248871	1.212980
C	-1.787380	-0.486187	-0.101455
	-2.412106	-0.869322	-2.132969
н	-4.829345	-0.8/1841	-1.643196
н	-5.650014	-0.484535	0.679737
н	-3.986360	-0.065406	2.493730
Н	-1.597375	-0.040855	2.022970
0	-0.012180	-0.574232	-1.676132
C	1.607544	1.660620	-0.690587
H	1.609307	1.170381	-1.662466
Н	2.470766	2.333586	-0.643077
C	0.388419	2.552094	-0.664417
0	-0.137926	3.025857	-1.639959
0	-0.021509	2.855106	0.578197
Н	-0.784331	3.451666	0.509825
С	2.283356	-1.865019	-1.699896
0	2.851676	-0.992893	-2.204782
0	1.817337	-2.805025	-1.213540

С	-2.748428	-2.497514	0.886508
С	-1.691387	-2.527353	-0.015781
С	-0.902104	-1.400756	-0.252131
С	-1.178462	-0.213459	0.453087
С	-2.279729	-0.179494	1.324680
С	-3.053185	-1.308993	1.548831
Н	-3.344886	-3.387733	1.054265
Н	-1.484491	-3.437580	-0.571019
Н	-2.509423	0.748105	1.839467
Н	-3.889089	-1.265225	2.238911
С	-0.392276	1.017944	0.292751
С	1.735856	2.263991	0.101779
C	3.109544	2.337478	0.265824
C	3.824545	1.262179	0.801536
C	3.135653	0.110197	1.185882
C	1.761733	0.023611	1.026530
C	1.025385	1.092698	0.462801
Н	1,191606	3.101376	-0.319285
Н	3.634928	3.240547	-0.028070
Н	4.899730	1.326255	0.926515
Н	3 674721	-0 724790	1 622422
Н	1 240122	-0.864927	1 365389
0	-1.060731	2.179002	0.172541
C	0.126150	-1.443516	-1.356514
Н	0.348868	-0.444090	-1.729251
Н	-0.295333	-2.000061	-2.202626
C	1 446657	-2 125310	-1 084380
0	2 443810	-1 938950	-1 734122
0	1.396917	-3.028862	-0.095176
н	2 272029	-3 443826	-0.017242
C	-2 099917	2 279782	-0 877467
0	-1 971348	1 480879	-1 800578
0	-2 891022	3 183312	-0.638050
U	2.071022	0.100012	0.000000
im5			
C	1.884414	-3.389253	-0.623292
C	0.714969	-3.042815	0.046831
C	0.301482	-1.719790	0.208464
C	1.067945	-0.653772	-0.364359
C	2.309544	-1.033985	-0.959173
C	2.697428	-2.353324	-1.099027
Н	2.177558	-4.427718	-0.729761
Н	0.113974	-3.826600	0.503027
Н	2 951012	-0.246769	-1 339682
Н	3 640269	-2.582000	-1.588242
C	0.736915	0.740620	-0.300061
Č	-0.709295	2.747050	-0.185528
Ĉ	-1.951941	3.350398	-0.276696
Ĉ	-3,103107	2.624537	-0.616272
č	-2.945317	1.262036	-0.906126
č	-1.712659	0.639288	-0.821300
-			

С	-0.531328	1.339162	-0.405852
Н	0.156119	3.342679	0.083835
Н	-2.031752	4.416103	-0.075044
Н	-4.072464	3.105459	-0.682753
Н	-3.805338	0.676227	-1.223721
Н	-1.625103	-0.395362	-1.132139
0	1.823511	1.618439	-0.400987
0	-0.828556	-1.463600	1.177079
Н	-0.859191	-0.418161	1.487106
Н	-0.637160	-2.039020	2.091364
С	-2.242801	-1.849596	0.809076
0	-3.202288	-1.609079	1.501109
0	-2.353397	-2.564859	-0.321443
Н	-3.290979	-2.784661	-0.447157
С	2.635624	1.851924	0.737283
0	2.244063	1.412565	1.827302
0	3.656004	2.503750	0.459881
im6			
С	3.083531	2.361164	1.396134
С	2.158458	2.568623	0.377342
С	1.375383	1.542564	-0.152739
С	1.474990	0.215459	0.379255
С	2.500355	0.015733	1.354789
С	3.264993	1.051278	1.857416
Н	3.677616	3.181222	1.783804
Н	2.064417	3.561090	-0.058690
Н	2.656015	-0.990863	1.727503
Н	4.011053	0.842738	2.619484
С	0.714517	-0.918653	-0.054753
С	-1.216112	-2.163225	-0.980137
С	-2.550826	-2.235606	-1.338068
C	-3.420813	-1.147702	-1.170003
С	-2.895912	0.015631	-0.592623
C	-1.564643	0.106852	-0.223639
C	-0.640825	-0.967174	-0.434218
Η	-0.574901	-3.026575	-1.122963
Н	-2.930030	-3.162875	-1.761582
Н	-4.463963	-1.211109	-1.458849
Н	-3.548471	0.865329	-0.404154
Н	-1.225585	0.992462	0.301087
0	1.305964	-2.166030	0.179182
C	0.619077	1.844390	-1.424704
H	0.321539	0.930596	-1.941091
Н	1.295502	2.365900	-2.113121
С	-0.598928	2.739226	-1.387777
0	-1.274930	2.985852	-2.357421
0	-0.834761	3.320289	-0.200976
Н	-1.615904	3.889360	-0.295651
С	2.354713	-2.614356	-0.660937
0	2.610069	-1.952430	-1.676675

С	-2.952009	-0.495653	2.498049
0	-3.281844	0.610114	2.573210
0	-2.640814	-1.607557	2.478452
im7			
С	-1.702240	3.454403	-0.664448
С	-0.759015	3.062828	0.273648
С	-0.390327	1.721036	0.428571
С	-0.996391	0.735464	-0.372192
С	-1.959326	1.145170	-1.300430
С	-2.307611	2.481023	-1.455631
Н	-1.969039	4.500910	-0.769494
Н	-0.289254	3.809405	0.907745
Н	-2.440390	0.392487	-1.907048
Н	-3.061406	2.760115	-2.185239
С	-0.643134	-0.749124	-0.170782
C	1.520594	-1.943994	0.423728
C	2 870720	-2 213116	0.216823
C	3 584438	-1.524637	-0 761477
C	2 931843	-0 567125	-1 532995
C	1 581005	-0 300961	-1 326841
C C	0.859652	-0 980491	-0 342427
с н	0.057052	-0.900491	1 187446
н	3 367760	-2.470309	0.824632
и П	4 637812	1 731467	0.024052
и П	4.037812	-1.731407	-0.919000
11 11	1.092662	-0.022345	-2.290970
П	1.063662	0.443723	-1.930174
0	-0.953544	-1.139413	1.155///
C	0.642529	1.414313	1.492067
H	0.533700	0.412493	1.900896
H	0.504723	2.112179	2.326949
C	2.091428	1.583421	1.096274
0	3.011998	1.059111	1.671291
0	2.284217	2.451295	0.091939
Н	3.238021	2.500135	-0.082836
C	-2.313394	-1.241039	1.537554
0	-3.159258	-0.776019	0.764008
0	-2.445288	-1.764876	2.655514
С	-1.252494	-1.771456	-1.230566
0	-1.240287	-1.394673	-2.422175
0	-1.572495	-2.882244	-0.780515
im8			
С	-1.938372	3.254456	-0.869758
С	-0.978380	2.992551	0.097261
С	-0.508354	1.697373	0.333099
С	-1.031755	0.630686	-0.420320
С	-2.015814	0.902600	-1.374182
С	-2.460826	2.198165	-1.607833
Н	-2.283697	4.269389	-1.034925

O 2.878443 -3.658809 -0.237784

Н	-0.575949	3.808052	0.690589
Н	-2.454521	0.091930	-1.936147
Н	-3.226185	2.374318	-2.356142
С	-0.560445	-0.798838	-0.122356
С	1.701712	-1.741498	0.589109
С	3.068735	-1.911907	0.392589
С	3.708243	-1.288393	-0.675135
C	2.972225	-0.494311	-1.550053
C	1.604699	-0.325313	-1.357957
C	0.962790	-0 940944	-0.282912
н	1 212751	-2 219579	1 429627
н	3 636331	-2 529365	1 080667
н	4 774966	-1 418804	-0.823540
н	3 462251	-0.001123	-2 382906
н	1 036908	0 296258	-2.002000
$\hat{\mathbf{O}}$	0.880434	1 162059	1 207946
C C	0.528210	1 528101	1.207.940
С u	0.336519	0.555026	1.412293
п	0.490934	0.333936	1.097422
н	0.358666	2.2/4245	2.195011
C	1.973569	1.755677	0.992816
0	2.924838	1.349394	1.609869
0	2.103678	2.531762	-0.091987
Н	3.051086	2.632794	-0.280013
C	-2.290589	-1.080364	1.588696
0	-3.083127	-1.158614	0.648389
0	-2.427359	-0.982733	2.802315
С	-1.083731	-1.886375	-1.096347
0	-1.210879	-1.745616	-2.282279
0	-1.216132	-3.091889	-0.538843
Н	-1.140414	-3.006014	0.425505
im9			
С	-2.740535	1.637960	-1.855055
С	-1.879644	2.062481	-0.849346
С	-0.972191	1.188377	-0.247404
С	-0.945796	-0.161109	-0.648158
С	-1.814354	-0.574561	-1.660938
С	-2.700885	0.310980	-2.266512
Н	-3.436245	2.336847	-2.307295
Н	-1.905408	3.097495	-0.520576
Н	-1.801887	-1.608396	-1.984657
Н	-3.365662	-0.042220	-3.047802
С	-0.062550	-1.166106	0.100987
C	2.238275	-1.047145	1.150886
C	3 602830	-0 776975	1 090241
C	4 165111	-0 259713	-0.073655
C	3 350813	-0 019177	-1 177787
C	1 987782	-0 292632	-1 116452
C	1 415804	-0 805448	0 049529
ч	1 801754	-1 439887	2 061961
Н	4,227094	-0.968206	1.957344
	/ U/ I	000000	1., J, U I I

Н	5.227270	-0.042988	-0.119178
Н	3.776427	0.386804	-2.090068
Н	1.362254	-0.099747	-1.981269
0	-0.515171	-1.212819	1.447850
С	-0.069970	1.741775	0.832440
Н	0.169167	1.002122	1.593685
Н	-0.589762	2.558215	1.346148
С	1.233326	2.351890	0.367916
0	2.184896	2.527505	1.085625
0	1.213109	2.768297	-0.906320
Н	2.081390	3.151867	-1.111417
С	-2.945576	0.082393	1.947932
0	-3.527497	-0.690595	1.316318
0	-2 430749	0.873242	2 615942
C	-0 201541	-2 631451	-0 492892
0	0 228231	-2 828283	-1 636167
0	-0 737707	-3 443192	0 296648
U Ц	-0.737707	2 12/260	1 522562
11	-0.052071	-2.104007	1.555505
dicarb	oxvlated produ	uct	
C	3 450341	-1 654037	-0.606739
C	2 353578	-2 081836	0 133784
C	1 333143	-1 206230	0.502512
C C	1 430858	0.146058	0.122892
C	2 539280	0.140000	-0.612422
C	3 544130	0.307049	-0.012422
с ц	4 228227	-0.521029	-0.980908
и П	4.220227	-2.338133	-0.0000000
11 Ц	2.204037	-3.121070	0.438130
п	2.047023	1.000932	-0.909497
п	4.394910	0.033943	-1.551667
C	0.341180	1.13/658	0.559546
C	-2.182474	1.116344	0.743514
C	-3.442679	0.836901	0.228764
C	-3.575229	0.217496	-1.012683
C	-2.439666	-0.124029	-1.737435
С	-1.174042	0.144598	-1.220097
С	-1.038988	0.764547	0.023895
Н	-2.080197	1.598497	1.708106
Η	-4.325604	1.105053	0.798888
Н	-4.560763	0.001861	-1.410745
Н	-2.531751	-0.611035	-2.702151
Н	-0.294762	-0.153562	-1.784412
0	0.278751	1.211192	1.967444
С	0.179115	-1.758119	1.309428
Н	-0.253043	-1.021357	1.982038
Н	0.552575	-2.573607	1.939571
С	-0.960459	-2.369339	0.524077
0	-2.085172	-2.469330	0.941854
0	-0.588130	-2.868260	-0.662454
Н	-1.371974	-3.250992	-1.090086
С	0.700827	2.563022	0.058371

0	0.410737	2.880577	-1.199507
0	1.244330	3.351945	0.781440
Н	0.964343	1.829306	2.260513
Н	-0.091936	2.179478	-1.646897
ts1			
С	-2.436760	2.677843	-0.877389
С	-1.336135	2.621919	-0.031234
С	-0.635768	1.433476	0.192147
С	-1.051553	0.253199	-0.462907
С	-2.198469	0.318206	-1.280029
С	-2.876463	1.507125	-1.497678
Н	-2.958828	3.615794	-1.032404
Н	-1.020888	3.518999	0.494650
Н	-2.538085	-0.595478	-1.756922
Н	-3.745442	1.524579	-2.147742
C	-0 436317	-1 083996	-0.283889
C	1 551869	-2 539304	-0.020938
C	2 91 3990	-2 770192	-0.121631
C	3 778894	-1 779258	-0.602125
C	3 237575	-0.552030	-0.002123
C	1 876781	-0.332030	-0.999134
C	0.088400	-0.306393	-0.900383
с u	0.900409	-1.207002	-0.363737
п	0.090094	-3.313103	0.552272
п	3.314231	-3.733800	0.180136
н	4.844569	-1.964437	-0.677545
H	3.887535	0.220869	-1.399495
Н	1.481451	0.634540	-1.262050
0	-1.223312	-2.099122	-0.157098
C	0.444909	1.438118	1.247324
Н	0.687776	0.430557	1.585572
Η	0.070274	1.971550	2.129413
С	1.758162	2.120313	0.937729
0	2.732980	2.036685	1.642227
0	1.735918	2.896813	-0.154902
Н	2.608025	3.315008	-0.247461
С	-2.904080	-1.856378	0.974958
0	-2.527533	-1.154584	1.837214
0	-3.664523	-2.528010	0.386942
ts2			
С	-2.934305	2.836207	0.290000
С	-3.162053	1.473242	0.471141
С	-2.156338	0.514014	0.341901
С	-0.828965	0.919044	0.002229
С	-0.629450	2.309497	-0.181124
С	-1.643638	3.245518	-0.037432
Н	-3.741182	3.552265	0.401981
Н	-4.161146	1.139444	0.740218
Н	0.346195	2.651216	-0.498568
Н	-1.426743	4.297198	-0.201684

С	0.282134	0.003017	-0.179219
С	2.506987	-0.905871	0.411848
С	3.762682	-0.799798	0.989052
С	4.165352	0.359652	1.661450
С	3.240345	1.403998	1.754324
С	1.980395	1.316638	1.179789
С	1.557272	0.163151	0.449349
Н	2.229309	-1.814741	-0.105920
Н	4.446142	-1.642267	0.915613
Н	5.150146	0.439644	2.108363
Н	3.501352	2.307066	2.300438
Н	1.301610	2.148427	1.318908
0	-0.033602	-1.346301	-0.405336
С	-2.563660	-0.918718	0.605973
Н	-2.525378	-1.542512	-0.288569
Н	-3.609742	-0.931281	0.932367
С	-1.822861	-1.674888	1.679290
0	-1.939615	-2.860916	1.871605
0	-1.089987	-0.898630	2.488876
Н	-0.672781	-1.469080	3.153863
С	-0.597851	-1.744696	-1.637956
0	-0.991711	-0.852756	-2.405837
0	-0.654083	-2.978393	-1.757754
С	1.275889	0.484868	-2.414879
0	0.924186	1.580357	-2.636665
0	1.856139	-0.523940	-2.541319
ts3			
С	-2.456320	2.460334	-1.490248
С	-1.549620	2.564406	-0.441627
С	-0.820861	1.460950	0.005577
С	-1.019828	0.208417	-0.605117
С	-1.935678	0.116105	-1.655586
С	-2.646372	1.226737	-2.101936
Η	-3.011099	3.332462	-1.819685
Н	-1.398488	3.524089	0.044408
Н	-2.110401	-0.838033	-2.136982
Н	-3.354543	1.120544	-2.916927
С	-0.300608	-1.026217	-0.029216
С	2.042006	-1.405966	0.854639
С	3.428336	-1.336003	0.751783
С	4.019002	-0.741318	-0.360455
С	3.212812	-0.224145	-1.371414
С	1.826154	-0.302474	-1.270314
С	1.228978	-0.887511	-0.152992
Н	1.572385	-1.849001	1.725229
Н	4.049440	-1.738468	1.545670
Н	5.099569	-0.678659	-0.437798
Η	3.663653	0.244648	-2.240292
Н	1.206845	0.106442	-2.062060
0	-0.688287	-1.275099	1.274199

С	0.149149	1.658747	1.147009
Н	0.256211	0.753290	1.741957
Н	-0.238510	2.433124	1.818861
С	1.534921	2.130364	0.769499
0	2.495966	2.033932	1.490501
0	1.597897	2.750537	-0.417907
Н	2.519796	3.015445	-0.568921
С	-2.508194	-0.523291	1.901006
0	-3.260667	-1.067615	1.184141
0	-2.160114	0.163885	2.783518
С	-0.631977	-2.322211	-0.851304
0	-0.421955	-2.497483	-2.028859
0	-1.131208	-3.238950	-0.050425
Н	-1.139307	-2.721076	0.829357

References

- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Taroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J., Gaussian 09 (Revision D.01), I. Gaussian, Wallingford, CT, **2013**.
- 2. Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. *Accounts Chem. Res.* **2008**, *41*, 157-167.
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molcular-orbital Methods .20. Basis Set for Correlated Wave-functions. J. Chem. Phys. 1980, 72, 650-654.
- 4. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- Gonzalez, C.; Schlegel, H.B. An Improved Algorithm for Reaction-path Following. J. Chem. Phys. 1989, 90, 2154-2161.
- 6. Markovic, Z.; Tosovic, J.; Milenkovic, D.; Markovic, S. Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. *Comput. Theor. Chem.* **2016**, *1077*, 11-17.
- 7. Fifen, J.J.; Dhaouadi, Z.; Nsangou, M. Revision of the Thermodynamics of the Proton in Gas Phase. *J. Phys. Chem. A* **2014**, *118*, 11090-11097.
- Fifen, J.J. Thermodynamics of the Electron Revisited and Generalized. J. Chem. Theory Comput. 2013, 9, 3165-3169.