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Abstract: Volatile organic compounds (VOCs) are the most harmful contaminants that have been
identified, most of which are gaseous organic pollutants. In this study, TiO2@diatomite catalysts
with various loading amounts of TiO2 were fabricated using a facile solvothermal method with
anhydrous ethanol as a solvent for the removal of VOCs. X-ray diffraction analysis revealed that TiO2

has an anatase phase and the introduction of diatomite has no negative effect. The catalysts were
characterized using scanning electron microscopy and transmittance electron microscopy techniques.
The results indicate that after introducing diatomite, TiO2 nanoparticles are mostly square-like and
intact, and are uniformly immobilized in the diatomite. Finally, their photocatalytic performance
was investigated using liquid ultraviolet spectrometry and gas chromatography-mass spectrometry.
Among the catalysts tested, 0.35TiO2@diatomite (with a mass ratio of TiO2 to diatomite of 0.35)
exhibited higher photocatalytic activity than the other samples, i.e., pure TiO2 and diatomite, and
could effectively remove acetone and benzene, demonstrating its potential market application and
practical significance.

Keywords: gaseous organic pollutants; titanium dioxide; diatomite; photocatalysis; volatile
organic compounds

1. Introduction

Volatile organic compounds (VOCs) are dominant components of indoor air pollutants. Mainly
originating from decorative materials, such as carpets, paints, wallpapers, or PVC, they are also
emitted or generated during human activities such as cooking or smoking tobacco [1–4]. Their harm to
human health can thus not be ignored. The main problems resulting from VOCs have been reported
by numerous researchers, such as Dai et al., who reported the characteristics and inhalation health
risks of VOCs in newly renovated homes in Shanghai, China, and concluded that the concentrations
of some VOCs present a mean cancer risk above the acceptable level [5]. Data on the respiratory
effects of indoor air pollution among the elderly have been scarce. Therefore, Bentayeb et al. reported
the effects of indoor air pollution on the respiratory health of the elderly, and found certain links
between a variety of diseases, including respiratory diseases, and indoor air pollution [6]. In addition,
Ye et al. estimated the acute cardiorespiratory effects of ambient volatile organic compounds, and
their findings further support a link between incomplete combustion and cardiovascular health, as
well as a link between atmospheric oxidation products and respiratory health [7]. The above studies
have commonly concluded that VOCs are extremely harmful to human health. In addition, according
to a survey conducted by the World Health Organization (WHO), the number of premature deaths
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caused by indoor pollution globally has reached 4 million per year, and the number of deaths from
indoor pollution in China is as high as 111,000, or approximately 304 per day. In addition, a 2002 report
published by the WHO clearly listed indoor air pollution as one of the top causes of harm to human
health [8].

Therefore, it is extremely important to study technologies regarding the removal of VOCs,
and VOC removal has recently been considered by numerous researchers [9–17]. The materials used
in such studies are variable, and mainly include TiO2, ZnO, SnO2, CdS, WO3, and numerous other
metal oxides. Among them, TiO2 has been widely applied owing to its low-cost, non-toxicity, and high
photo-catalytic activity. For instance, Šuligoj et al. reported the use of TiO2-SiO2 films from organic-free
colloidal TiO2 anatase nanoparticles as a photocatalyst for the removal of VOCs from air indoors [18].
In addition, Weon et al. studied an active {001} facet-exposed TiO2 nanotube photocatalyst filter for the
removal of VOCs [19]. Haghighatmamaghani, Haghighat, and Lee studied the performance of various
types of commercial TiO2 in the photocatalytic degradation of a mixture of indoor air pollutants,
and adopted various alcohols, ketones, aromatics, and alkanes as the target pollutants [20].

Numerous other studies have been conducted on VOC removal using TiO2 [21–27], and have
made significant contributions to the photocatalytic degradation of such compounds. However, most
of these studies have reported the use of pure TiO2 for achieving the photo-catalytic degradation
of gaseous organic pollutants. The aggregation of pure TiO2 often limits its practical application.
In addition, pure nanomaterials have their own defects, and it is therefore difficult to apply them to
interior decorative materials. To solve this problem, numerous researchers are looking for a carrier
for the loading of TiO2, including porous carbon materials, Metal-OrganicFrameworks, a synthetic
molecular sieve, activated carbon, and many other types of artificial materials [28–31]. Not only can
such materials prevent the aggregation of TiO2, they can also improve its photodegradability.

However, the above materials must be manufactured for carrier use, and a certain cost is accrued
during their synthesis. Therefore, in terms of energy efficiency, it would be better to apply natural
materials, such as diatomite, which is one of the most important natural materials on Earth. With rich
reserves, diatomite has abundant advantages, including non-toxicity, a stable and porous structure,
strong surface adsorption, and a high heat resistance. The specific metal compounds of the material
and their content are shown in Table 1 [32]. The main component is silicon dioxide, the surface of which
has abundant hydroxyl and silanol groups, in which the silicon element on the surface can be bonded
to TiO2 with synergistic degradation of the gaseous organic pollutants [33–35]. In addition, Niu et al.
prepared a novel diatomite-supported MnCeOx composite (MnCeOx/diatomite) characterized based
on its activation of persulfate for the degradation of organic pollutants [36]. He, Luo, and Yu
synthesized microdisk-like g-C3N4/diatomite composites utilized for the removal of methylene blue
(MB) from MB/MO or MB/RhB mixed dyes [37]. Numerous other studies in this area have also been
conducted [38–41]. The present study focuses on the removal of organic pollutants, the results of which
will provide an exciting reference in the area of pollutant degradation.

Table 1. Chemical analyses of diatomite [32].

Composition% SiO2 Al2O3 Fe2O3 K2O CaO MgO Na2O TiO2 Other

Diatomite 86.82 3.21 1.60 0.56 0.46 0.43 0.25 0.15 6.52

Thus far, TiO2 supported by diatomite has not been utilized in the degradation of gaseous
organic pollutants. Herein, we report the successful application of well-designed TiO2@diatomite
as a photo-catalytic agent for the removal of gaseous organic pollutants. In addition, diatomite was
selected as a carrier, and diatomite loaded with different ratios of TiO2 was used as a catalyst for the
degradation of VOCs at room temperature under UV-Vis illumination. This catalyst is inexpensive and
easy to prepare, and is thus a promising application for use in the field of interior decoration.
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2. Results and Discussion

2.1. XRD Analysis

Figure 1 shows the XRD patterns of the as-prepared catalysts. Both TiO2 and XTiO2@diatomite
show the coexistence of an anatase phase with no additional peak, implying that no impurity appears
in TiO2 when TiO2 is supported on diatomite. As indicated in Figure 1, the intensity of the peak at
25.27◦ decreases with an increase in the amount of diatomite. The diffraction peaks at 25.27◦, 37.82◦,
47.94◦, 53.79◦, 54.96◦, 62.65◦, 70.22◦, and 75.08◦ correspond to the crystal faces (101), (004), (200), (105),
(211), (204), (220), and (215) of anatase TiO2, respectively [42–44]. The peaks at 21.8◦ and 36.5◦ are
attributed to the SiO2 features in diatomite [44]. The reflection peak of diatomite becomes relatively
low compared with that of TiO2, and the pure diatomite peak is not too weak, as shown in Figure 2
below. Therefore, the introduction of diatomite cannot affect the crystal structure of the catalyst. This
result is consistent with the scanning electron microscopy (SEM) and transmittance electron microscopy
(TEM) characterizations.
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2.2. SEM and TEM Investigations

SEM, TEM, and high-resolution transmission electron microscopy (HRTEM) images of the catalysts
are shown in Figure 3. As can be seen from Figure 3(A1,A2) in the figure, diatomite without the
loading of TiO2 nanoparticles looks like a sunflower with a smooth surface and numerous pores.
The SEM images of pure TiO2 displayed in Figure 3(B1,B2) indicate that the TiO2 nanoparticles are
square-like and approximately 10–15 nm in size, corresponding to the results of the TEM images
(Figure 3(E1–E8)). As shown in Figure 3(C1–C6), the TiO2 nanoparticles of 0.35TiO2@diatomite are not
only uniformly loaded on the surface of the diatomite, but also adhered to the pores. This indicates
that TiO2 can be firmly and evenly loaded on the surface of the diatomite. Figure 3(C1–C6) also
show that the size of the TiO2 nanoparticles loaded on the surface of the diatomite is approximately
10–15 nm, which is congruent with the TEM results shown in Figure 3(E1–E8). In addition, the other
load catalysts shown in Figure 3(D1–D6) were also analyzed. As indicated in D1 and D2, the load of
0.30TiO2@diatomite is quite small, and the surface of the diatomite is thus not completely filled with
TiO2, as opposed to 0.40TiO2@diatomite (Figure 3(D3,D4)), 0.45TiO2@diatomite (Figure 3(D5,D6)),
and 0.50TiO2@diatomite (Figure 3(D7,D8)). For the latter, as the load mass increases, the degree of
aggregation increases significantly, and the aggregation of 0.50TiO2@diatomite thus becomes the most
serious. There is no doubt that aggregation will cause a reduction in the photocatalytic efficiency.
However, the 0.35TiO2@diatomite load mass was moderate and evenly distributed across the diatomite
surface. Therefore, the catalyst of 0.35TiO2@diatomite may perform better than other catalysts in terms
of the photocatalytic efficiency for the following two reasons: First, the proportion of TiO2 is full on the
surface of the diatomite. Second, TiO2 is evenly distributed and relatively less clustered. In addition,
as shown in Figure 3(E2), the lattice distance of TiO2 is approximately 0.35 nm, corresponding to the
(101) plane of anatase TiO2. As clearly shown above, the size of the TiO2 nanoparticles loaded on
the diatomite is nearly the same as that of pure TiO2, indicating that the introduction of diatomite
has almost no influence on the size and morphology of the TiO2. From the HRTEM images shown in
Figure 3(E1–E4), it can be clearly seen that the specific shape of TiO2 is square-like.
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Figure 3. Scanning electron microscopy (SEM) images with different magnifications of (A1,A2) diatomite,
(B1,B2) TiO2, (C1–C6) 0.35TiO2@diatomite, (D1,D2) 0.30TiO2@diatomite, (D3,D4) 0.40TiO2@diatomite,
(D5,D6) 0.45TiO2@diatomite, and (D7,D8) 0.50TiO2@diatomite. (E1–E4) High-resolution transmission
electron microscopy (HRTEM) images of 0.35TiO2@diatomite and (E5–E8) transmittance electron
microscopy (TEM) images of 0.35TiO2@diatomite.

2.3. UV-Vis Diffuse Reflectance Spectra

As shown in Figure 4, the UV-vis diffuse reflectance spectra of the catalysts were measured to study
the optical properties of the samples [45]. Clearly, for pure TiO2, there is no absorption at above 400 nm.
However, the absorption intensity at approximately 400 nm is stronger for XTiO2@diatomite than for
pure TiO2 and diatomite, and the absorption (at above 400 nm) of 0.35TiO2@diatomite is the strongest
among the XTiO2@diatomites considered. It can also be seen that the catalyst of TiO2@diatomite shows
a slight red shift, suggesting that the catalyst of TiO2@diatomite can be excited by the visible light and
thus an increase in the photocatalytic activity of the catalyst.
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It can be seen from Figure 4 that pure XTiO2@diatomite achieves absorption at 200–400 nm,
although, according to previous studies [46], pure SiO2 has no absorption at 200–400 nm. Therefore,
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the composite formed through a combination of the two with Si-O-Ti, which shows a red shift, may be
attributed to the formation of this chemical bond, which reduces the energy and causes a slight red shift.

2.4. BET Analysis

The specific surface area and pore size distribution of the different catalysts were analyzed based
on the nitrogen adsorption and desorption. The results are summarized in Table 2. The pure TiO2

nanoparticles have the largest specific surface area of approximately 115.74 m2g−1. However, the
specific surface area and pore volume of the pure diatomite are quite small, and thus the diatomite
contributes less to the specific surface area of the XTiO2@diatomites. In other words, the specific
surface areas of the catalysts were not related to the TiO2 loadings. Therefore, the specific surface
area and pore volume of the catalysts contribute little to their catalytic activity. As can be seen from
Figure 5, the pure TiO2 exhibits type-IV adsorption curves with hysteresis loops between the H1 and
H2 types; the diatomite shows IUPAC type-II isotherms, indicating the presence of micropores in the
diatomite [47]; and the TiO2@diatomite composites display type-IV isotherms with an overlap of the
H2 and H3 hysteresis loops, which is related to the deposition of TiO2 nanoparticles on the surface of
the diatomite.

Table 2. Surface and structural characterization of the catalysts.

Sample BET Specific Surface
Area (m2/g) Pore Volume (cm3/g) Average Pore Size (nm)

Diatomite 0.3202 0.002 -
Pure TiO2 115.7 0.257 8.8

0.3TiO2@diatomite 20.6 0.044 8.5
0.35TiO2@diatomite 19.6 0.051 10.3
0.4TiO2@diatomite 22.3 0.058 10.5

0.45TiO2@diatomite 21.7 0.056 10.4
0.5TiO2@diatomite 21.0 0.050 9.5Catalysts 2020, 10, x FOR PEER REVIEW 11 of 19 
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2.5. Photoluminescence (PL) Spectra

For the photocatalysts, apart from the surface area, the nanoparticle size, and the light absorption
range, the electron-hole recombination property is also significant. PL can be used to evaluate the
electron-hole recombination property. In other words, fluorescence will occur when electron-hole
recombination arises [48]. Therefore, the rate of electron-hole recombination is inversely proportional
to the fluorescence intensity, and thus a lower fluorescence intensity represents a lower electron and
hole recombination rate and a higher photocatalytic activity [49,50]. As shown in Figure 6, the PL of
different catalysts was measured at an excitation wavelength of 300 nm. The strongest peaks of different
catalysts all appear within approximately 400 nm; however, their emission intensity varies significantly.
For photocatalytic reactions, reducing the electron-hole recombination rate is an important goal. In
other words, a low electron-hole recombination rate is favorable for a photocatalytic reaction. Among
the catalysts applied, 0.35TiO2@diatomite has the lowest emission intensity, indicating that it has
the lowest electron-hole recombination rate and thus possesses a better photocatalytic performance.
The reduction of the luminescence intensity may be related to the Ti-O-Si band and ascribed to the
increased electron capture centering on the surface of the TiO2 nanoparticles, or an enhancement of the
non-radiation-decay channels because of the SiO2 around the TiO2 nanoparticles.Catalysts 2020, 10, x FOR PEER REVIEW 12 of 19 
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Therefore, it can be concluded that the photocatalytic performance of 0.35TiO2@diatomite may
be better than that of the other catalysts. This result is consistent with that obtained from the UV-vis
diffuse reflectance spectra, confirming that 0.35TiO2@diatomite is the optimal catalyst.

2.6. Photocatalytic Performance of Different Catalysts

The TiO2 photocatalyst has a wide range of applications, such as air purification and sewage
treatment. To evaluate the photocatalytic performance of different catalysts, a 5 W ultraviolet
light source was used. Methylene blue (MB) was selected as the target pollutant to determine the
optimal catalyst, and the optimal catalyst was then selected as the degradation catalyst for gaseous
organic pollutants, such as acetone, benzene, methanol, and ethanol. Compared with pure TiO2,
the XTiO2@diatomite composite shows a relatively larger adsorption capacity for MB in spite of its
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lower specific surface area and pore volume. As shown in Figure 8a, minor differences appeared in
different catalysts. With the catalyst of 0.35TiO2@diatomite, the concentration of MB was nearly close
to 0 within 90 min under UV light irradiation, and thus the degradation rate was faster than in the other
similar photocatalysts. Clearly, 0.35TiO2@diatomite (recorded as the optimal catalyst) showed the
highest degradation rate for the photocatalytic degradation of MB. The MB degradation efficiency of
pure diatomite is shown in Figure 8a, in which the concentration of MB remains almost unchanged as
the irradiation time increases, indicating that the photocatalytic activity of TiO2@diatomite is weak in
the absence of TiO2, and that the photocatalytic activity of XTiO2@diatomite is better than that of pure
TiO2, suggesting a synergy effect between TiO2 and diatomite (which may benefit from the formation
of Si-O-Ti bonds). Because a Si-O-Ti bond can be formed when the surface of diatomite is covered with
hydroxyl and silanol, this special structure allows TiO2 to laboriously combine with diatomite, and
further enhances its dispersibility, thereby significantly increasing its photocatalytic performance [46].
Among the types of XTiO2@diatomite applied, the photocatalytic activity of 0.35TiO2@diatomite was
better than that of the other catalysts. In addition, the photocatalytic activity of TiO2@diatomite
is not simply promoted by the increasing load ratio of TiO2 to diatomite. By contrast, excessive
loading amounts of TiO2 can in turn reduce the photocatalytic capability. This was confirmed through
0.35TiO2@diatomite, which exhibited the highest performance. This can be explained by the fact that
excessive TiO2 causes an agglomeration of TiO2 on the surface of the diatomite, and thus reduces the
photocatalytic performance of TiO2@diatomite. This result agrees with the results obtained from the
UV-vis diffuse reflectance spectra, PL spectra, and degree of aggregation shown on the SEM images.
Therefore, 0.35TiO2@diatomite was selected for the degradation experiment of the following gaseous
organic pollutants.

Figure 8b,c show the degradation results of gaseous acetone and gaseous benzene, respectively.
The gas concentration was controlled by adding 1 mL of saturated gas at room temperature to each
of the six headspace bottles with three capacities (100, 200, and 500 mL), which were labeled as 100
mL(1), 100 mL(2), 200 mL(1), 200 mL(2), 500 mL(1), and 500 mL(2). In this experiment, bottles with the
volumes shown in Figure 8c were used to degrade the gases, bottles of the same volume were used in
repeated experiments three times, and the data were averaged to verify the accuracy. As can be seen
from Figure 8b, under UV-Vis light irradiation, the optimal catalyst showed an excellent photocatalytic
performance for gaseous acetone at different concentrations. In the experiment on the degradation
of gaseous acetone, the concentration of gaseous acetone reached close to 0 in 90 min under UV-Vis
light irradiation. This means that gaseous acetone can be completely decomposed in only 90 min at a
fast rate, and slow decomposition can be completely achieved within 120 min. This is because the
concentration of acetone is so high that it cannot be completely degraded within 90 min. In other
words, after 90 min of irradiation, the degradation rate of 0.35TiO2@diatomite for gaseous acetone
reaches up to 100%, which is greater than in most other studies [51]. From Figure 8c, it can be seen that
gaseous benzene is degraded within 90 min. However, most of the gaseous benzene with different
concentrations cannot be completely degraded. One possible reason for this is that the structure of
a benzene molecule is extremely stable and difficult to break. Another possible reason is that the
concentration of gaseous benzene is too high to be completely degraded. In this study, only two
gaseous organic pollutants were investigated. In the future, we will study the degradation of the
catalyst under other gaseous organic pollutants (such as methanol, ethanol, propanol, formaldehyde,
and acetaldehyde) and summarize whether the effects on the polar and non-polar organics are identical.



Catalysts 2020, 10, 380 13 of 18
Catalysts 2020, 10, x FOR PEER REVIEW 14 of 19 

 

 

 
(a) 

 
(b) 

 
(c) 
 

Figure 7. (a) Plots of the methylene blue (MB) photodegradation over various catalysts under UV 
irradiation. (b) Plots of the photodegradation of various concentrations of gaseous acetone over 
0.35TiO2@diatomite under UV-Vis light irradiation. (c) Plots of the photodegradation of benzene at 
various concentrations over 0.35TiO2@diatomite under UV-Vis light irradiation. 

3. Experimental Section 

3.1. Chemicals and Materials 

Diatomite (Macklin, Shanghai, China), titanium tetrachloride (TiCl4, analytical reagent, Adamas, 
Beijing, China), absolute ethanol (analytical reagent, Tianjin Damao Chemical Reagents Factory, 
Tianjin, China), benzene (analytical reagent, Tianjin Damao Chemical Reagents Factory, Tianjin, 
China), acetone (analytical reagent, Tianjin Damao Chemical Reagents Factory, Tianjin, China), and 
deionized water were used for the synthesis of TiO2 and diatomite/TiO2. During the process of 
synthesizing diatomite/TiO2, the only difference from TiO2 is that a certain amount of diatomite is 
added to the synthetic process for TiO2. All the reagents listed were used as purchased and without 
further treatment. 

3.2. Catalyst Preparation 

Figure 7. (a) Plots of the methylene blue (MB) photodegradation over various catalysts under UV
irradiation. (b) Plots of the photodegradation of various concentrations of gaseous acetone over
0.35TiO2@diatomite under UV-Vis light irradiation. (c) Plots of the photodegradation of benzene at
various concentrations over 0.35TiO2@diatomite under UV-Vis light irradiation.

3. Experimental Section

3.1. Chemicals and Materials

Diatomite (Macklin, Shanghai, China), titanium tetrachloride (TiCl4, analytical reagent, Adamas,
Beijing, China), absolute ethanol (analytical reagent, Tianjin Damao Chemical Reagents Factory,
Tianjin, China), benzene (analytical reagent, Tianjin Damao Chemical Reagents Factory, Tianjin, China),
acetone (analytical reagent, Tianjin Damao Chemical Reagents Factory, Tianjin, China), and deionized
water were used for the synthesis of TiO2 and diatomite/TiO2. During the process of synthesizing
diatomite/TiO2, the only difference from TiO2 is that a certain amount of diatomite is added to the
synthetic process for TiO2. All the reagents listed were used as purchased and without further treatment.

3.2. Catalyst Preparation

The TiO2@diatomite was prepared using a facile solvothermal method applying absolute ethanol
as a solvent. Pure ethanol (50 mL) was transferred into a three-necked flask (250 mL) placed in an ice
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bath and stirred for 30 min. Then, 0.5 mL of deionized water (0.5 mL) was added. After 5 min, TiCl4 (2
mL) was added dropwise. The mixture was stirred until it became a transparent light-yellow solution.
This solution was transferred to a dry Teflon-lined stainless-steel autoclave (100 mL) containing a
certain amount of diatomite, and stirred evenly. The resulting mixture was then kept at 200 ◦C for 12 h
in an oven. After cooling to room temperature, the white precipitates were filtered off, and washed with
ethanol and deionized water several times until the pH of the filtrate reached approximately 7. The
chlorine was also removed through the washing process. The collected precipitates were dried at 80 ◦C
for 10 h in the oven to afford TiO2@diatomite. Detailed steps regarding the synthesis of TiO2@diatomite
are also shown in Figure ??. For convenience, the catalysts are denoted as XTiO2@diatomite, where X
represents the mass ratio of TiO2 to diatomite (because diatomite cannot be expressed in moles). The
pure TiO2 was prepared according to the above procedure, except with the addition of diatomite steps.Catalysts 2020, 10, x FOR PEER REVIEW 15 of 19 
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3.3. Characterization

The catalysts were characterized based on X-ray diffraction patterns (XRD, Ultiam IV) recorded
using Cu Kα radiation at a scan rate of 5◦/min. Their microstructures were observed using field-emission
SEM (JEOL-JSM-7800F (Tokyo, Japan) with an energy dispersive spectrometer and S-4700 at an
acceleration voltage of 20 KV), TEM (Hitachi-HT7700 (Tokyo, Japan) at an acceleration voltage of 120 KV
and JEM-ARM-200F), and HRTEM (JEOL, JEM-ARM200F, Tokyo, Japan). The specific surface area and
pore size distribution of the different catalysts were determined using a Brunauer–Emmett–Teller (BET)
instrument with nitrogen adsorption at 77 K (Micrometrics ASAP 2020, Georgia, USA). In addition,
the ultraviolet-visible spectrophotometer (Shimadzu UV-3600, Tokyo, Japan) was used to analyze the
UV-vis diffuse reflectance spectra of the prepared catalysts. Moreover, the electron hole recombination
rate was measured using a photoluminescence spectrometer (FL-7000, Hitachi, Tokyo, Japan) to
evaluate the photocatalytic activity.

3.4. Evaluation of Photocatalytic Activity

The photocatalytic activities of different catalysts were initially evaluated based on the degradation
of MB under UV-light irradiation at ambient temperature [52]. During this process, the catalyst (0.05
g) was dispersed in an MB solution (10 of MB (50 mg/mL, 30 mL)) in a Petri dish. A portion of MB
solution was taken every 30 min for measurements using an ultraviolet-visible spectrophotometer.
The degradation rate was determined by monitoring the change in concentration of the MB over time
using an ultraviolet-visible spectrophotometer (Shimadzu UV-3600). The catalyst with the highest
degradation rate was chosen for degradation of the different gaseous organic pollutants, including
acetone and benzene. These degradation processes were carried out in sealed headspace bottles with
different volumes (100, 200, and 500 mL). The concentration of gas was controlled by adding equal
volumes of saturated gas to different volumes of sealed headspace bottles (to the best of our knowledge,
at the same temperature, the concentration of saturated gas is constant). The specific experimental
details are similar to those of the process of MB degradation described above [52], except that the MB
solution was replaced with gaseous phase organic pollutants. The details of the experiment are as
follows: A catalyst (0.05 g) was added to each of the headspace bottles, and 1 mL of saturated gaseous
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phase pollutants at room temperature was transferred to the sealed headspace bottles using a gas
chromatography syringe with a capacity of 2.5 mL. In addition, the initial concentrations of gaseous
acetone and benzene in the 100, 200, and 500 mL headspace bottles were approximately 2.95 × 10−3,
1.63 × 10−3, and 6.85 × 10−4 mol/L, respectively. A xenon lamp (30 W) was adopted as a light source
during the photocatalytic degradation process. The headspace bottle was placed under the light, and
the bottle was directly irradiated. The whole process was degraded at room temperature. Throughout
the degradation process, no heating and any agitation were used. Simultaneously, gases were taken
every 30 min and the corresponding concentrations of organic gaseous pollutants were determined
using gas chromatography-mass spectrometry (GC-MS). In addition, the degradation reaction of the
organic gaseous pollutants was kept at ambient temperature. Four sealed headspace bottles of each
gas were used for gaseous pollutant degradation. All reactions were repeated three times in parallel.

4. Conclusions

In conclusion, we successfully prepared a series of TiO2@diatomite catalysts using a facile
solvothermal method applying anhydrous ethanol as a solvent for the removal of VOCs. The XRD
patterns showed that TiO2 in the catalyst is in an anatase phase, and the introduction of diatomite has
no effect on the crystal structure of TiO2. SEM and TEM images indicated that the size of the TiO2

nanoparticles is approximately 10–15 nm, and the morphologies of most of the TiO2 nanoparticles are
square-like. In addition, for the TiO2@diatomite, the TiO2 nanoparticles are uniformly immobilized on
the diatomite. Based on photocatalytic activity tests, 0.35TiO2@diatomite (with a TiO2 to diatomite
mass ratio of 0.35) displayed higher photocatalytic activity compared with that at other ratios, pure
TiO2, and pure diatomite. This result is consistent with the characterization results of the UV-vis
diffuse reflectance spectra and PL spectra. The photocatalytic performance and GC-MS test results
showed that 0.35TiO2@diatomite can be used to effectively remove acetone and benzene. In addition,
both TiO2 and diatomite are low-cost, non-toxic, harmless, and stable. Therefore, a TiO2@diatomite
catalyst could potentially be applied in the area of building construction and interior decoration.
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