Supplementary Materials

Effects of modifying acidity and reducibility on the activity of NaY zeolite in the oxidative dehydrogenation of octane

Siyabonga S. Ndlela¹, Holger B. Friedrich^{1*}, Mduduzi N. Cele²

¹School of Chemistry and Physics, Westville Campus, University of KwaZulu–Natal, Private Bag X 54001, Durban, 4000, South Africa, e-mail: <u>friedric@ukzn.ac.za</u>
²School of Physical and Chemical Sciences, Mafikeng Campus, North-West University, Private Bag X 2046, Mmabatho, 2745, South Africa, e-mail: <u>Nicolas.Cele@nwu.ac.za</u>
*Correspondance: <u>friedric@ukzn.ac.za</u>

Degree of crystallinity calculation:

 $Crystallinity = \frac{\text{Sum total of relative intensities of NaY observed}}{\text{Sum total of relative intensities of NaY standard}} X \ 100 \ \%$

Where the sum total of relative intensities taken were for the characteristic peaks ($2\emptyset$ 6.2°, 15,6° and 22,1°), Parent NaY was taken as the standard.

Catalyst	Peak Temperature (°C)	Mol of Hydrogen consumed (mol/g)
Ga-NaY	349	2,76
MgGa-NaY	383	1.31
CaGa-NaY	378	1,41
SrGa-NaY	388	0.13
BaGa-NaY	377	0.86

Table S1: Temperature programmed reduction results for the Ga-NaY zeolites

Figure S-1. SEM micrographs of (A) NaY, (B) Ga-NaY, (C) 0.02BaGa-NaY, (D) MgGa-NaY, (E) CaGa-NaY, (F) SrGa-NaY, (G) BaGa-NaY, (H) 0.08BaGa-NaY

Figure S-2. SEM-EDX micrographs of (A) 0.02BaGa-NaY, (B) BaGa-NaY, (C) 0.08BaGa-NaY

Figure S-3. NH3-TPD Profiles of (A) NaY, (B) Ga-NaY, (C) MgGa-NaY, (D) SrGa-NaY, (E) BaGa-NaY, (F) CaGa-NaY,