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Abstract: We herein report the preparation and characterization of an inexpensive polymer supported
1,3-bis(benzimidazolyl)benzeneCo(II) complex [PS-Co(BBZN)Cl2] as a catalyst by using the polymer
(divinylbenzene cross-linked chloromethylated polystyrene), on which 1,3-bis(benzimidazolyl)
benzeneCo(II) complex (PS-Co(BBZN)Cl2) has been immobilized. This‘catalyst was employed to
develop arylamination reaction and robustness of the same reaction was demonstrated by synthesizing
various bioactive adamantanyl-tethered-biphenylamines. Our synthetic methodology was much
improved than reported methods due to the use of an inexpensive and recyclable catalyst.

Keywords: arylamination reactions; adamantanyl-tethered-biphenylamines; polymer-supported
catalyst; cobalt complex; Buchwald–Hartwig reaction

1. Introduction

Transition metal-catalyzed cross-coupling reactions between aryl halides and primary/secondary
amines to obtain aminated aryl compounds has been an area of interest due to the wide applications
of arylamines in the synthetics and pharmaceutical industries [1–5]. In this direction, the Buchwald–
Hartwig cross-coupling reaction was performed by using transition metal catalysts, ligands and bases
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with substrates to obtain the desired arylamine products [6–8]. The disadvantage of this reaction is
the use of expensive catalysts, which offers the chemist the opportunity to discover cheaper, reusable
catalysts to drive the arylamination reactions. Inspired by major developments in cobalt-catalyzed
arylamination reactions, we developed a complementary method to perform an arylamination reaction
using cobalt as a metal catalyst [9–11]

In addition, benzimidazole ligand coordinated metal complexes are widely used as catalysts in
arylamination reactions [12]. Since these catalysts were found to be less hydrophobic, immobilization
of such metal complexes with polymer support was observed to be stable, selective, and recyclable,
attributed to the steric, electrostatic, hydrophobic and conformational effects of the polymer
support [13]. Hence, several reports pertaining to the synthesis of arylamines using polymer-supported
transition metal complexes are found [14–16]. Specifically, chloromethylated polystyrene cross-linked
with divinyl-benzene was employed as a macromolecular support to perform the arylamination
reactions [17–22].

In medicinal chemistry, an adamantane-coupled bicyclical core structure was used as an
important pharmacophore, which was inserted in many drugs [23]. Hence, the adamantane
structure was recognized as a readily available “liphophilic bullet” for providing critical liphophilicity
to known pharmacophoric units. Given the remarkable importance of adamantane chemistry,
we recently reported the synthesis and biology of adamantyl-tethered biphenylic compounds as
potent anticancer agents [24]. In our continued efforts to synthesize newer bioactive agents [25–31],
we herein report a practical, economically feasible and efficient arylamination reaction using
polymer-supported 1,3-bis(benzimidazolyl)benzeneCo(II) complex (PS-Co(BBZN)Cl2) as a catalyst.
Interestingly, the recovered (PS-Co(BBZN)Cl2) could be reused three times without a significant loss
of activity.

2. Results

2.1. Chemistry of Catalyst Design and Method Development

We initially synthesized polymer-supported 1,3-bis(benzimidazolyl)benzeneCo(II) complex
[PS-Co(BBZN)Cl2] as shown in Scheme 1.
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Scheme 1. Schematic representation to show synthesis of PS-Co(BBZN)Cl2. 

For this, 1, 3-bis(benzimidazolyl)benzene was treated with chloromethylated polystyrene 
divinylbenzene and followed by the addition of cobalt chloride. The obtained PS-Co (BBZN)Cl2 was 
characterized by analytical techniques including CHNS, UV-Vis, FT-IR, SEM-EDX and TGA as 
presented in supporting information (Figure 1, Supplementary SI-02). Based on N% and Co% 
obtained through elemental and metal ion analysis, the complex formed on the polymer support 
was about 0.0053 moles per 1 g of the polymer support which corresponded to 7.16% of Co intake. 
This further confirmed the formation of the complex on the polymer support. 

Scheme 1. Schematic representation to show synthesis of PS-Co(BBZN)Cl2.

For this, 1, 3-bis(benzimidazolyl)benzene was treated with chloromethylated polystyrene
divinylbenzene and followed by the addition of cobalt chloride. The obtained PS-Co (BBZN)Cl2
was characterized by analytical techniques including CHNS, UV-Vis, FT-IR, SEM-EDX and TGA as
presented in supporting information (Figure 1, Supplementary SI-02). Based on N% and Co% obtained
through elemental and metal ion analysis, the complex formed on the polymer support was about
0.0053 moles per 1 g of the polymer support which corresponded to 7.16% of Co intake. This further
confirmed the formation of the complex on the polymer support.



Catalysts 2020, 10, 1315 3 of 15

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. Structure of (A) PS-Co (BBZN)Cl2 and (B) unbound Co(BBZN)Cl2. 

Motivated by the increased understanding of the Co-catalyzed amination reaction, we next 
investigated the applicability of (PS-Co (BBZN)Cl2) in the arylamination reaction. To examine this 
hypothesis, 1-(5-bromo-2-methoxyphenyl)adamantine (1a) and 4-chloro aniline (2a) were selected as 
model substrates and reagents for the reaction in 1,4-dioxane media and Cs2CO3 as a base (Scheme 
2).  

 
Scheme 2. General scheme of arylamination reaction between adamantane bromide and various 
amines using PS-Co(BBZN)Cl2 as a catalyst. 

Control experiments established the importance of both PS-Co(BBZN)Cl2 and ligand, as no 
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various classes of ligands (Figure 2) to improve the yield revealed that the use of phosphine based 
ligand BINAP (L3) or Xphose (L4) gave improved yields at different catalyst concentrations (Table 1, 
entry 10, 11, 14, 15), whereas the other ligands such as bidentate ligands (L1, L2) and N-heterocyclic 
carbine ligands (L5, L6) yielded no products indicating the high role of selectivity of ligands in the 
forward reaction. The most robust reaction was achieved by the use of 12 mol% of PS-Co(BBZN)Cl2 
in the presence of BINAP with an 86% yield at 10 h reaction condition (Table 1, entry 14). Further 
investigation revealed that there was no considerable improvement in yield when the catalyst load 
was increased to 15 mol% (Table 1, entry 18, 19) whereas the yield dropped to 69% when the reaction 
time was reduced to 6 h with 15 mol% catalyst (Table 1, entry 20). Using the above better protocol, 
we further synthesized ABTAs by reacting adamantine bromo compounds (1a) and various amines 
(Table 2). It was observed that all amine partners productively coupled with good yields of around 
70–86%.  

Table 1. PS-Co(BBZN)Cl2-catalyzed coupling of 1-(5-bromo-2-methoxyphenyl)adamantane with 
4-Chloro aniline a. 

Entry PS-Co(BBZN)Cl2 Ligand b Time Yield (%) c 
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Figure 1. Structure of (A) PS-Co (BBZN)Cl2 and (B) unbound Co(BBZN)Cl2.

Motivated by the increased understanding of the Co-catalyzed amination reaction, we next
investigated the applicability of (PS-Co (BBZN)Cl2) in the arylamination reaction. To examine this
hypothesis, 1-(5-bromo-2-methoxyphenyl)adamantine (1a) and 4-chloro aniline (2a) were selected as
model substrates and reagents for the reaction in 1,4-dioxane media and Cs2CO3 as a base (Scheme 2).
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Scheme 2. General scheme of arylamination reaction between adamantane bromide and various
amines using PS-Co(BBZN)Cl2 as a catalyst.

Control experiments established the importance of both PS-Co(BBZN)Cl2 and ligand, as no
product was obtained (Table 1, entry 1). Gratifyingly, the substrate was transformed into the desired
product 3-(adamantan-1-yl)-N-(4-chlorophenyl)-4-methoxyaniline (3a) with 51% yield in the presence
of catalyst (PS-Co(BBZN)Cl2) (10 mol%) and ligand L3 (Table 2, entry 10). Screening of various classes
of ligands (Figure 2) to improve the yield revealed that the use of phosphine based ligand BINAP
(L3) or Xphose (L4) gave improved yields at different catalyst concentrations (Table 1, entry 10, 11, 14,
15), whereas the other ligands such as bidentate ligands (L1, L2) and N-heterocyclic carbine ligands
(L5, L6) yielded no products indicating the high role of selectivity of ligands in the forward reaction.
The most robust reaction was achieved by the use of 12 mol% of PS-Co(BBZN)Cl2 in the presence of
BINAP with an 86% yield at 10 h reaction condition (Table 1, entry 14). Further investigation revealed
that there was no considerable improvement in yield when the catalyst load was increased to 15 mol%
(Table 1, entry 18, 19) whereas the yield dropped to 69% when the reaction time was reduced to 6 h
with 15 mol% catalyst (Table 1, entry 20). Using the above better protocol, we further synthesized
ABTAs by reacting adamantine bromo compounds (1a) and various amines (Table 2). It was observed
that all amine partners productively coupled with good yields of around 70–86%.

All novel compounds exhibited spectral properties consistent with the assigned structures and
were fully characterized by their spectroscopic data (mass, elemental, 1H and 13C NMR analysis).

The majority of reactions were done by keeping time point for 16 h and when the concentration
of the catalyst was increased to 12%, the reaction was completed in 12 h and in many cases pure
product was produced with excellent yield. The above developed method tolerated the presence of
substituent in the aromatic amino-compounds. Specifically, we observed that the electron-donating
para-substituted aromatic amine partners were well-tolerated to produce corresponding products in
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good to excellent yields (Table 2, entries 1–12). However, ortho-substituted and electron-withdrawing
group bearing compounds were not productive giving lower yields (Table 2, entries 5, 11, 12, 13).

Table 1. PS-Co(BBZN)Cl2-catalyzed coupling of 1-(5-bromo-2-methoxyphenyl)adamantane with
4-Chloro aniline a.

Entry PS-Co(BBZN)Cl2 Ligand b Time Yield (%) c

1 5 mol% — 16 NR
2 5 mol% L1 16 NR
3 5 mol% L2 16 NR
4 5 mol% L3 16 NR
5 5 mol% L4 16 NR
6 5 mol% L5 16 NR
7 5 mol% L6 16 NR
8 10 mol% L1 16 NR
9 10 mol% L2 16 NR
10 10 mol% L3 16 51
11 10 mol% L4 16 42
12 10 mol% L5 16 20
13 10 mol% L6 16 26
14 12 mol% L3 10 86
15 12 mol% L4 12 78
16 12 mol% L5 16 36
17 12 mol% L6 16 41
18 15 mol% L3 10 86
19 15 mol% L4 12 79
20 15 mol% L3 6 69

a Conditions: admantane-bromo compounds (1 mmol), 4-chloro aniline (1 mmol) (PS-Co (BBZN)Cl2) (12 mol%); Cs2CO3
(3 eq); 1, 4 dioxane (10 mL); N2 atmosphere: 100 ◦C. b ligands (15 mol%): L1 = 2, 2′-bipyridine, L2 = 1,10-phenanthroline;
L3 = 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene, L4 = dicyclohexyl(2-(2,4,6-trisopropylphenyl)cycohexyl)phosphine,
L5 = 2,6-bis(3-methylimidazoline-1yl)pyridine, L6 = 1,3-dimessityl-4,5-dihydro-1H-imidazole-3-ium chloride; c isolated
yield; NR = no reaction.

Table 2. PS-Co(BBZN)Cl2 composite-catalyzed coupling of various substituted halo aromatic
compounds with various substituted aromatic amines a.

Entry Amine Product b and Yield (%) c

1
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a Reaction conditions—Aromatic halo compounds (1 mmol), aromatic amine (1 mmol), BINAP(15 
mol%), PS-Co(BBZN)Cl2 (12 mol%), CS2CO3(3 mmol), 1,4-dioxane (5 mL), N2 atmosphere 10 h, 100 
°C. b All new compounds were characterized by their spectroscopic data shown in supporting 
information; c isolated yield. 

 
Figure 2. Various classes of ligands used in this study. 

Catalysts 2020, 10, x FOR PEER REVIEW 6 of 16 

 

10  
2n 

3j(76) 

11 
 

2o 
3k(64) 

12 

 
2p 

3l(61) 

13 
 

2q 

3m (64) 
a Reaction conditions—Aromatic halo compounds (1 mmol), aromatic amine (1 mmol), BINAP(15 
mol%), PS-Co(BBZN)Cl2 (12 mol%), CS2CO3(3 mmol), 1,4-dioxane (5 mL), N2 atmosphere 10 h, 100 
°C. b All new compounds were characterized by their spectroscopic data shown in supporting 
information; c isolated yield. 

 
Figure 2. Various classes of ligands used in this study. 

11

Catalysts 2020, 10, x FOR PEER REVIEW 6 of 16 

 

10  
2n 

3j(76) 

11 
 

2o 
3k(64) 

12 

 
2p 

3l(61) 

13 
 

2q 

3m (64) 
a Reaction conditions—Aromatic halo compounds (1 mmol), aromatic amine (1 mmol), BINAP(15 
mol%), PS-Co(BBZN)Cl2 (12 mol%), CS2CO3(3 mmol), 1,4-dioxane (5 mL), N2 atmosphere 10 h, 100 
°C. b All new compounds were characterized by their spectroscopic data shown in supporting 
information; c isolated yield. 

 
Figure 2. Various classes of ligands used in this study. 

Catalysts 2020, 10, x FOR PEER REVIEW 6 of 16 

 

10  
2n 

3j(76) 

11 
 

2o 
3k(64) 

12 

 
2p 

3l(61) 

13 
 

2q 

3m (64) 
a Reaction conditions—Aromatic halo compounds (1 mmol), aromatic amine (1 mmol), BINAP(15 
mol%), PS-Co(BBZN)Cl2 (12 mol%), CS2CO3(3 mmol), 1,4-dioxane (5 mL), N2 atmosphere 10 h, 100 
°C. b All new compounds were characterized by their spectroscopic data shown in supporting 
information; c isolated yield. 

 
Figure 2. Various classes of ligands used in this study. 



Catalysts 2020, 10, 1315 6 of 15

Table 2. Cont.

Entry Amine Product b and Yield (%) c
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With the reaction conditions established we tried to investigate the scope of the new protocol
on different substituted aromatic bromo compounds by treating with various amines (Table 3).
We found that electron donating para-substituted on aromatic halo partner was tolerated well to give
corresponding products in good to excellent yields (entries 1, 2, 3 and 5), but with ortho-substituted
and electron-withdrawing group bearing aromatic bromo compounds observed a loss in yield (entries
4, 6 and 7) with no improvement in the reaction conversion on prolonged reaction.
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Table 3. Various substrates and reagents used to optimization of arylamination reaction.

Entry Aromatic Halo
Compounds Amine Product a and Yield (%)

1
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a Reported compounds.

All novel compounds exhibited spectral properties consistent with the assigned structures
and were fully characterized by their spectroscopic data (mass, elemental, 1H and 13C NMR
analysis). It was found that the use of a catalyst PS-Co(BBZN)Cl2, in combination with some ligands
provided a robust catalytic system. On the basis of previous mechanistic studies in cobalt-catalyzed
C−N bond formation reactions, it was possible to propose a mechanism for the conversion of
3-(adamantan-1-yl)-N-(4-chlorophenyl)-4-methoxyaniline (3 a) as shown in Figure 3 [32–34].
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Initially, the catalyst makes a complex with amine to form a catalyst-amine complex A,
which undergoes an oxidative addition reaction with 1-(5-bromo-2-methoxyphenyl)adamantane
and complex B formation occurs. Complex B reacts with cesium carbonate base and undergoes
metathesis step, which gave complex C. Finally, the reductive elimination reaction complex C takes
place and thereby catalyst regeneration and the desired product formation occur in the last step
(Figure 3).

Further, we performed density-functional theory calculations using dispersion corrected CAM-B3
LYP functional and 6–31+G method [35]. All electron basis set as implemented in the Gaussian
09 package [36]. The minima nature of the structures has been confirmed based on computed real
harmonic vibrational analysis at the same level of theory. Gibbs free energy calculations for four
intermediate cobalt complexes were chosen for our mechanistic elucidation. Initially CoCl2 makes the
coordination complex with the ligand and reacts with aromatic amine and forms Co-NH bond quickly
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[intermediate (a); ∆E = −6.03 kcal/mole], which in turn gets stabilized by releasing HCl and attains a
lower energy intermediate with a ∆E of −9.62 kcal/mole. Alkyl bromide adds to the intermediate (b)
quickly and attains still lower energy of ∆E of−17.18 kcal/mole where the bindentate ligand detachment
takes place and immediate loss of HCl takes place and again attains lowest energy intermediate (d)
of ∆E = −19.62 kcal/mole, which gives the product immediately. The optimized geometries and the
energy profile diagram of intermediates (a–d) are shown in Figures 4 and 5, respectively. On the basis
of lower Gibbs free energy of intermediates across (a) to (d), we can conclude that the reaction occurs
naturally upon cobalt chloride coordination complex formation occurring with the bidentate ligands.
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2.2. Recyclability of the Catalyst

Further, the superiority of PS-Co(BBZN)Cl2 catalyst was its recyclability, which was investigated
by using the compound 1 a and 2 b as a model reaction. After each run, the catalyst was filtered off and
washed with water followed by methanol, it was then dried in an oven at 120 ◦C for 15 min and used
directly for the next reaction. The results were summarized (Table 4). We recorded that the catalyst
could be used thrice and isolated yields achieved were above 70%.

Table 4. The recycling of the catalyst a.
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3. Materials and Methods

3.1. Procedure for the Synthesis of PS-Co(BBZN)Cl2 Complex

3.1.1. Preparation of BBZN Functionalized Polymer Support

The chloromethylated polystyrene beads cross-linked with 6.5% divinylbenzene were first washed
with a mixture of THF and water in the ratio 4:1 using Soxhlet extractor for 48 h. The beads were then
vacuum dried. The chloromethylated polystyrene beads (3 g) were allowed to swell in DMF solution
of BBZN ligand (5.2 g) was added to the above suspension followed by the addition of triethylamine
(12 mL) in ethylacetate (105 mL) and was heated at 60 ◦C for 45 h in a water bath. It was cooled to room
temperature, filtered, and washed with DMF. The beads were then Soxhlet extracted with ethanol to
remove any unreacted BBZN and dried in an oven at 60 ◦C overnight.
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3.1.2. Preparation of PS-Co(BBZN)Cl2 Complex

The functionalized beads (1.0 g) were allowed to swell in 50 mL acetonitrile and toluene mixture
in the ratio 1:1 for 1 h. Then the solvent was decanted. To this, 1.426 g of CoCl2.6 H2 O dissolved
in methanol (100 mL) was added at intervals (4 times) and heated at 60 ◦C for 48 h. It was filtered,
washed with alcohol and Soxhlet extracted to remove any unreacted CoCl2.6 H2 O. It was filtered and
dried in an oven at 60 ◦C for 10 h and vacuum dried.

3.2. General Procedure for (PS-Co(BBZN)Cl2) Complex Catalyzed C−N Bond-Formation Reaction

A dried Schlenk tube was charged with substrate 1 a (320 mg, 1 mmol), 2 a (127.6 mg, 1 mmol), BINAP
(48 mg, 15 mol%), (PS-Co(BBZN)Cl2](38 mg, 12 mol%). The tube was evacuated and backfilled with N2,
and Cs2 CO3 (975 mg, 3 mmol) followed by reagent grade 1, 4-dioxane (5 mL). The reaction mixture was
heated to 100 ◦C for 10 h. After completion of reaction the mass was cooled to room temperature, filtered
off the catalyst, the solvent quenched with water and diluted with ethyl acetate (10 mL). The layers
were separated, and the aqueous layer was extracted with (5 mL) ethyl acetate. The combined organic
layer was washed with water (10 mL), dried over anhydrous sodium sulphate and the solvent was
removed in vacuum. The crude product was purified using silica gel column chromatography.

3.2.1. 3-(Adamantan-1-yl)-N-(4-chlorophenyl)-4-methoxyaniline (3 a)

Pale Yellow colored solid; mp 140–142 ◦C: 1H NMR (400 MHz,CDCl3) 7.14–7.12 (d, J = 8.0 Hz,
2 H), 6.95–6.91 (m, 2 H), 6.81–6.78 (m, 3 H), 5.46 (s, 1 H), 3.80 (s, 3 H), 2.05 (m, 9 H), 1.74 (m, 6 H);
13C NMR (100 MHz,CDCl3) 155.0, 144.2, 139.9, 134.8, 129.2, 123.6, 120.6, 119.1, 116.4, 112.6, 55.4, 40.6,
37.1, 29.1; LCMS (MM : ES + APCI) 368.4 (M + H)+; Anal.Calcd for C23 H26 ClNO: C, 75.08; H, 7.12; N,
3.81. Found: C, 75.01; H, 7.15; N, 3.88.

3.2.2. 3-(Adamantan-1-yl)-4-methoxy-N-(4-methoxyphenyl)aniline (3 b)

Brown colored solid; mp 117–119 ◦C: 1H NMR (400 MHz,CDCl3) 7.48–7.46 (d, J = 8.0 Hz, 2 H),
7.24 (m, 1 H), 6.88–6.86 (d, J = 8.0 Hz, 2 H), 6.72–6.70 (d, J = 8.0 Hz, 2 H), 5.39 (s, 1 H), 3.89 (s, 3 H),
3.83 (s, 3 H), 2.06–2.03 (m, 9 H), 1.75 (m, 6 H); 13C NMR (100 MHz, CDCl3) 153.8, 142.2, 138.9, 130.4,
128.2, 122.5, 118.1, 115.5, 111.8, 55.0, 53.7, 40.3, 36.96, 28.9; LCMS (MM : ES + APCI) 364.4 (M + H)+;
Anal.Calcd for C24 H29 NO2: C, 79.30; H, 8.04; N, 3.85. Found: C, 79.26; H, 8.11; N, 3.79.

3.2.3. 3-(Adamantan-1-yl)-4-methoxy-N-(4-(trifluoromethyl)phenyl)aniline (3 c)

Off-white colored solid; mp 124–126 ◦C: 1H NMR (400 MHz,CDCl3) 7.64–7.61 (m, 2 H), 7.45–7.39
(m, 3 H), 7.24 (s, 1 H), 6.96–6.94 (d, J = 8.0 Hz, 1 H), 5.36 (s, 1 H), 3.87 (s, 3 H), 2.13–2.04 (m, 9 H), 1.77
(m, 6 H); 13C NMR (100 MHz,CDCl3) 159.1, 145.1, 139.1, 131.8, 127.0, 125.7 (JCF = 25.7 Hz), 112.1, 55.2,
40.6, 37.2 (JCF = 7.6 Hz), 29.7, 29.1; LCMS (MM : ES + APCI) 402.2 (M + H)+; Anal.Calcd for C24 H26 F3

NO: C, 71.80; H, 6.53; N, 3.49. Found: C, 71.76; H, 6.59; N, 3.41.

3.2.4. 3-((3-(Adamantan-1-yl)-4-methoxyphenyl)amino)phenol (3 d)

Off-white colored solid; mp 98–100 ◦C; 1H NMR (400 MHz,CDCl3) 7.43 (s, 1 H), 7.08 (s, 1 H),
6.99–6.96 (m, 4 H), 6.84–6.82 (d, J = 8.0 Hz, 1 H), 5.62 (s, 1 H), 4.80(s, 1 H), 3.82 (s, 3 H), 2.05 (m, 9 H),
1.74 (m, 6 H); 13C NMR (100 MHz,CDCl3) 159.2, 154.3, 146.2, 139.9, 129.7, 121.3, 119.9, 117.7, 115.3,
112.6, 111.2, 55.4, 40.6, 37.1, 29.1; HRMS Calcd 372.1934 Found: 372.1938 (M + H)+; Anal.Calcd for C24

H29 NO2: C, 79.30; H, 8.04; N, 3.85. Found: C, 79.26; H, 8.11; N, 3.79.

3.2.5. 3-(Adamantan-1-yl)-N-(2-fluorophenyl)-4-methoxyaniline (3 e)

Yellow colored solid; mp 106–108 ◦C: 1H NMR (400 MHz, CDCl3) 7.10–7.06 (m, 1 H), 6.98–6.96
(dd, J1 = 2.7 Hz, J2 = 2.2 Hz, 2 H), 6.84–6.83 (d, J = 4.0 Hz, 1 H), 6.81 (s, 1 H), 5.50 (s, 1 H), 3.81 (s, 3 H),
2.05 (m, 9 H), 1.75 (m, 6 H); 13C NMR (100 MHz,CDCl3) 158.4, 155.4, 147.1, 139.9, 134.1, 130.3, 121.5,
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120.0, 118.8, 114.6, 112.8 (JCF = 53.4 Hz), 55.4, 40.5, 37.2, 29.0; LCMS (MM : ES + APCI) 352.4 (M + H)+;
Anal.Calcd for C23 H26 FNO: C, 78.60; H, 7.46; N, 3.99. Found: C, 78.71; H, 7.39; N, 3.91.

3.2.6. 3-(Adamantan-1-yl)-4-methoxy-N-(p-tolyl)aniline (3 f)

Off-white colored solid; mp 108–110 ◦C: 1H NMR (400 MHz,CDCl3) 7.03–7.01 (d, J = 8.0 Hz, 2 H),
6.95–6.89 (dd, J1 = 4.0 Hz, J2 = 4.0 Hz, 2 H), 6.85–6.83 (d, J = 8.0 Hz, 2 H), 6.80–6.78(d, J = 8.0 Hz, 1 H), 5.39
(s, 1 H), 3.80 (s, 3 H), 2.26 (s, 3 H), 2.05 (m, 9 H), 1.74 (m, 6 H); 13C NMR (100 MHz,CDCl3) 154.2, 142.6,
139.7, 129.8, 128.9, 119.4, 117.6, 116.3, 112.7, 55.5, 40.6, 37.1, 37.0, 29.1, 20.6; LCMS (MM : ES + APCI) 348.4
(M + H)+; Anal. Calcd for C24 H29 NO: C, 82.95; H, 8.41; N, 4.03. Found: C, 82.90; H, 8.46; N, 3.99.

3.2.7. N-(3-Adamantan-1-yl)-4-methoxyphenyl)pyridin-3-amine (3 g)

Pale yellow colored solid; mp 103–104 ◦C; 1H NMR (400 MHz, CDCl3) 8.42–8.41 (d, J = 4.0 Hz,
1 H), 7.47–7.43 (m, 2 H), 7.29–7.27 (m, 2 H), 7.23–7.22 (m, 2 H), 5.58 (s, 1 H), 3.85 (s, 3 H), 2.14–207 (m,
9 H), 1.79–1.73 (m, 6 H); 13C NMR (100 MHz, CDCl3) 161.9, 153.0, 143.7, 136.1, 126.8, 125.9, 124.0, 123.0,
121.9, 117.6, 115.1, 56.1, 40.8, 38.0, 28.6; LCMS (MM : ES + APCI) 335.4 (M + H)+; Anal. Calcd for C22

H26 N2 O: C, 79.00; H, 7.84; N, 8.38. Found: C, 79.08; H, 7.79; N, 8.33.

3.2.8. N-(3-Adamantan-1-yl)-4-methoxyphenyl)-5-methylpyridin-2-amine (3 h)

Off-white colored solid; mp 101–102 ◦C: 1H NMR (400 MHz, CDCl3); 8.42 (s, 1 H), 7.53–7.47 (m,
3 H), 7.03–7.01 (d, J = 8.0 Hz, 2 H), 5.60 (s, 1 H), 3.83 (s, 3 H), 2.30 (s, 3 H), 2.09 (m, 9 H), 1.78 (m, 6 H);
13C NMR (100 MHz, CDCl3) 160.2, 155.2, 145.0, 139.2, 128.9, 126.4, 121.4, 119.5, 117.4, 115.7, 54.8, 39.9,
36.4, 27.5, 27.0, 21.9; HRMS Calcd: 371.2094; Found: 371.2098 (M + H)+; Anal. Calcd for C23 H28 N2 O:
C, 79.27; H, 8.10; N, 8.04. Found: C, 79.32; H, 7.99; N, 8.09.

3.2.9. N-(3-Adamantan-1-yl)-4-methoxyphenyl)naphthalen-1-amine (3 i)

Pale yellow colored solid; mp 105–106 ◦C; 1H NMR (400 MHz, CDCl3) 8.09–8.07 (d, J = 8.0 Hz, 1 H),
8.03–8.01 (d, J = 8.0 Hz, 1 H), 7.96–7.94 (d, J= 8 Hz, 1 H), 7.60–7.28 (m, 6 H), 5.51 (s, 1 H), 3.83 (s, 3 H),
2.13–2.05 (m, 9 H), 1.76–1.73 (m, 6 H); 13C NMR (100 MHz,CDCl3) 153.9, 145.7, 138.3, 133.9, 132.7, 131.9,
128.7, 128.3, 128.2, 127.1, 126.9, 126.3, 125.9, 125.5, 111.4, 55.2, 40.4, 37.2, 29.2; LCMS (MM : ES + APCI)
384.4 (M + H)+; Anal.Calcd for C27 H29 NO: C, 84.55; H, 7.62; N, 3.65. Found: C, 84.61; H, 7.59; N, 3.69.

3.2.10. N-(3-Adamantan-1-yl)-4-methoxyphenyl)-1 H-inden-2-amine (3 j)

Pale yellow colored solid; mp 116–118 ◦C: 1H NMR (400 MHz, CDCl3) 7.64–7.61 (m, 2 H), 7.45–7.39
(m, 3 H), 6.96–7.94 (d, J = 8 Hz, 2 H), 6.19 (s, 1 H), 5.34 (s, 1 H), 3.83 (s, 3 H), 3.29 (s, 2 H), 2.13–2.07 (m,
9 H), 1.77 (m, 6 H); 13C NMR (100 MHz, CDCl3) 154.0, 144.4, 138.9, 132.0, 130.0, 126.0, 125.9, 120.1,
119.9, 115.5, 104.4, 55.4, 44.3, 40.8, 37.3, 29.7, 29.2; LCMS (MM : ES + APCI) 372.2 (M + H)+ Anal.Calcd
for C27 H29 NO: C, 84.06; H, 7.87; N, 3.77. Found: C, 84.11; H, 7.94; N, 3.72.

3.2.11. 4.((3-(Adamantan-1-yl)-4-methoxyphenyl)amino)phenyl)(piperidin-1-yl)methanone (3 k)

Off-white colored solid; mp 121–122 ◦C; 1H NMR (400 MHz, CDCl3) 7.65–7.62 (m, 2 H), 7.45–7.39
(m, 3 H), 6.97–6.95 (d, J = 8.0 Hz, 1 H), 5.37 (s, 1 H), 3.87 (s, 3 H), 3.47–3.39 (m, 4 H), 2.14–2.13 (m, 9 H),
2.08–2.04 (m, 3 H), 1.78 (m, 6 H), 1.45 (m, 6 H); 13C NMR (100 MHz, CDCl3) 170.4, 155.2, 145.6, 138.9,
131.8, 127.0, 125.8, 125.6, 112.5, 55.5, 46.2, 40.5, 37.2, 37.1, 29.7, 29.1, 24.4; LCMS (MM : ES + APCI) 445.2
(M + H)+; Anal.Calcd for C29 H36 N2 O2: C 78.34; H 8.16; N 6.30; Found: C 78.39; H 8.10; N 6.24.

3.2.12. 2.(4-((3-Adamantan-1-yl)-4-methoxyphenyl)amino)-2-chloro-5-methylphenyl)-2-(4-
chlorophenyl)acetonitrile (3 l)

Yellow colored solid; mp 129–132 ◦C; 1H NMR (300 MHz, CDCl3) 7.62–7.51 (m, 3 H), 7.32–7.26 (m,
2 H), 6.84–6.81 (d, J = 12.0 Hz, 2 H), 6.35–6.25 (m, 2 H), 5.66 (s, 1 H), 5.27 (s, 1 H), 3.82 (s, 3 H), 2.16–1.66
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(m, 18 H); 13C NMR (75 MHz,CDCl3) 156.0, 1139.8, 136.6, 133.3, 126.8, 125.8, 125.6, 123.3, 121.7, 117.6,
55.3, 42.5, 41.6, 41.1, 40.9, 36.9, 36.5, 36.1, 35.6, 28.5, 27.9, 18.13; HRMS Calcd: 553.1784; Found: 553.1892
(M + H)+; Anal.Calcd for C32 H32 Cl2 N2 O: C 72.31; H 6.07; N 5.27; Found: C 72.39; H 6.01; N 5.24.

Off-white colored solid; mp 118–120 ◦C; 3-(adamantan-1-yl)-4-methoxy-N-(o-tolyl)aniline (3 m):
1H NMR (400 MHz, CDCl3) 7.40 (s, 1 H), 7.36 (d, 1 H), 7.17–7.10 (m, 4 H), 6.94 (d, 1 H), 5.37 (s, 1 H),
3.87 (s, 3 H), 2.41 (s, 3 H), 2.14 (m, 6 H), 2.06 (m, 3 H), 1.77 (m, 6 H); HRMS Calcd 370.214. Found:
370.212 (M + H)+.

6-Chloro-N-(p-tolyl)-9 H-fluoren-2-amine (5 b)

Yellow colored solid; mp 131–132 ◦C 1H NMR (400 MHz, DMSO-d6); 8.10 (s, 1 H), 8.05–8.03 (d,
J = 8 Hz, 1 H), 7.76 (s, 1 H), 7.53–7.51 (d, J = 8.0 Hz, 1 H), 7.38–7.21 (m, 4 H), 7.16–7.12 (m, 2 H), 5.36 (s,
1 H), 4,37 (s, 2 H), 2.39 (s, 3 H); 13C NMR (100 MHz, DMSO-d6); 140.7, 140.5, 137.8, 135.5, 129.1, 127.8,
127.5, 127.0, 125.4, 123.2, 121.4, 119.9, 112.1, 110.6, 41.20, 23.5; HRMS Calcd 328.0863; Found: 328.0866
(M + Na)+; Anal.Calcd for C20 H16 ClN: C, 78.55; H, 5.27; N, 4.58; Found: C, 78.58; H, 5.21; N, 4.55.

N-(4-Methoxyphenyl)benzo[d]isoxazol-3-amine (5 c)

White colored solid; mp 98–100 ◦C: 1H NMR (400 MHz, DMSO-d6); 8.44–8.42 (d, J = 8.0 Hz, 1 H),
8.08–8.06 (d, J = 8.0 Hz, 1 H), 8.02–8.00 (d, J = 8.0 Hz, 1 H), 7.95–7.91 (m, J = 8.0 Hz, 2 H), 7.71–7.67 (m,
1 H), 7.26–7.24 (d, J = 8.0 Hz, 2 H), 5.32 (s, 1 H), 3.88 (s, 3 H); 13C NMR (100 MHz, DMSO-d6); 164.1,
159.7, 152.0, 147.4, 132.2, 127.2,125.6, 123.4, 121.7, 118.9, 114.4, 113.8, 55.2; HRMS Calcd 263.0791; Found:
263.0794 (M + Na+); Anal.Calcd for C14 H12 N2 O2: C, 69.99; H, 5.03; N, 11.66; Found: C, 70.05; H, 5.08;
N, 11.59.

2-(2-Chloro-4-((4-methoxyphenyl)amino)-5-methylphenyl)-2-(4-chlorophenyl)acetonitrile (5 e)

Off-white colored solid; mp 111–112 ◦C: 1H NMR (400 MHz, DMSO-d6); 7.57–7.53 (m, 3 H),
7.51–7.42 (m, 3 H), 7.35–7.31 (m, 2 H), 7.08–7.02 (m, 2 H), 5.72 (s, 1 H), 5.32 (s, 1 H), 3.83 (s, 3 H), 2.13 (s,
3 H); 13C NMR (100 MHz, DMSO-d6); 152.0, 149.8, 141.1, 140.0, 137.1, 132.4, 132.3, 132.1, 129.1, 128.6,
123.1, 120.8, 116.1, 54.99, 36.6, 17.9; HRMS Calcd 419.0688; Found: 419.0692 (M + Na+); Anal.Calcd for
C22 H18 Cl2 N2 O: C, 66.51; H, 4.57; N, 7.05; Found: C, 66.59; H, 4.52; N, 7.11.

4. Conclusions

In conclusion, we prepared PS-Co (BBZN)Cl2 catalyst and used it for the C−N bond formation
reaction. A series of adamantyl-tethered-amino biphenylic compounds were synthesized by new
protocol. Our synthetic methodology is much improved compared to existing methodologies as the
catalyst is effective, inexpensive and recyclable.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1315/s1,
SI-01: Experiment Section, SI-02: Spectral characterization Co(BBZN)Cl2, SI-03 to14: Spectral characterization of
compounds 4 a-4 l.
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