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Abstract: The metallopeptidases thimet oligopeptidase (THOP, EC 3.4.24.25) and neurolysin (NEL,
EC 3.4.24.26) are enzymes that belong to the zinc endopeptidase M13 family. Numerous studies
suggest that these peptidases participate in the processing of bioactive peptides such as angiotensins
and bradykinin. Efforts have been conducted to develop biotechnological tools to make possible
the use of both proteases to regulate blood pressure in mice, mainly limited by the low plasmatic
stability of the enzymes. In the present study, it was investigated the use of nanotechnology as an
efficient strategy for to circumvent the low stability of the proteases. Recombinant THOP and NEL
were immobilized in gold nanoparticles (GNPs) synthesized in situ using HEPES and the enzymes as
reducing and stabilizing agents. The formation of rTHOP-GNP and rNEL-GNP was characterized by
the surface plasmon resonance band, zeta potential and atomic force microscopy. The gain of structural
stability and activity of rTHOP and rNEL immobilized on GNPs was demonstrated by assays using
fluorogenic substrates. The enzymes were also efficiently immobilized on GNPs fabricated with
sodium borohydride. The efficient immobilization of the oligopeptidases in gold nanoparticles with
gain of stability may facilitate the use of the enzymes in therapies related to pressure regulation and
stroke, and as a tool for studying the physiological and pathological roles of both proteases.
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1. Introduction

Gold nanoparticles (GNPs) are attractive for biological applications because of the stability,
biocompatibility, facile functionalization and compatibility with organic molecules containing thiol
groups [1]. GNPs encompass both the intrinsic properties of nanoscale, surface effects and quantum
confinement and the capacity to undergo surface functionalization that can increase stability and
provide specific targeting [2]. Surface functionalization of gold nanoparticles has opened new frontiers
for the delivery of drugs such as anticancer and antimicrobial drugs as well as functional studies
of biomolecules such as enzymes and antibodies [3–6]. GNPs can also be synthesized by one-pot,
rapid processes, including the in-situ synthesis using the organic functionalizing agent as the reducing
compound to convert gold ions (Au3+) to the metallic form [7–9]. A diversity of biomolecules and their
mimetics has been used for in-situ synthesis of GNPs, but the use of proteins is particularly attractive
because these biomolecules act as a template and reducing agents for GNP fabrication [10–13].

Several enzymes have the potential for therapeutic applications that can be limited by their
stability, and this is the case of the enzymes thimet oligopeptidase (THOP; EC 3.4.24.15) and neurolysin
(NEL; EC 3.4.24.16). THOP and NEL promise as hypotensive therapeutics despite their low structural
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and functional stability. THOP and NEL are members of the thermolysin-like mammalian zinc
endopeptidase family [14], which is maximally active at neutral pH and is among the most studied
groups of peptidases responsible for hydrolytic processing of bioactive peptides in both intra and
extracellular environment [15]. These enzymes are found in animals and plants, showing distinctive
functions [16]. Biochemical and pharmacological features have been well characterized in vivo and
in vitro [14,15,17,18] with well-known endogenous substrates such as hemopressin, bradykinin,
angiotensins I and II, neurotensin, substance P, dynorphin A (1–8), somatostatin and Aβ peptide
(amyloid peptide). The processing of these substrates is related to the regulation of a myriad of
physiological processes [19]. Despite the capacity to process a variety of endogenous substrates,
the functional significance of THOP and NEL in pathophysiological conditions is poorly understood,
linking their function to neurotensin-dependent nociception, bradykinin-mediated hypotension,
microvascular permeability and hyperalgesia [20,21].

Neurotensin (NT) is a tridecapeptide that exerts a broad range of cardiovascular and endocrine
effects when administered intravenously, including hypotension, analgesia and hypothermia [22–24].
The roles of THOP and NEL in the inactivation of neurotensin in vitro were determined by several
studies. NEL was the only peptidase ubiquitously contributing to its inactivation, being present in
all tissue and established cell lineages where NT receptors are located [23,25]. THOP, on the other
hand, cleaves NT at the Arg–Arg bond and reduces NT in rat brain synaptosomes [26]. The use of
specific inhibitors also increases the evidence for the involvement of both enzymes in the physiological
degradation of NT, as the dipeptide Pro-Ile [27] and phosphinic peptides [28].

In addition to possible functions within the brain, THOP may also play a role in the periphery.
The potent vasodilatory peptide bradykinin (BK) is a powerful influence in stimulating extravascular
smooth muscle contraction, inducing hypotension, dilating blood vessels and increasing vascular
permeability [29,30]. THOP has been shown to efficiently degrade BK in vitro at the Phe–Ser bond [31,32].
The use of the THOP specific inhibitor JA2 was shown to potentiate BK-induced hypotension, without
affecting the hypertensive effects of angiotensins I and II, strongly suggesting its role in blood pressure
control [22]. THOP also significantly affects BK in the kidney, having a role in blood flow, glomerular
filtration rate, urinary sodium and potassium excretion and urine volume [33–36]. Furthermore, THOP
also converts angiotensin I in vitro to the biologically active peptide angiotensin 1–7 [37] synergizing
with the effects of bradykinin in vascular smooth muscle cells culture [38,39] and in rat hindlimb
perfusate ex vivo [40]. Thus, THOP may participate in cardiovascular homeostasis via the activation
(angiotensin 1–7) and inactivation (bradykinin) of vasodilatory peptides.

Therefore it is necessary, both in vivo and in cell culture approaches, to perform functional
studies of these enzymes when administered as exogenous agents [41,42]. The lack of cytotoxicity,
low blood stability, systemic bioavailability and pharmacokinetics of intraperitoneally administered
recombinant neurolysin, and its effects on critical physiological parameters in mice have already been
demonstrated [43]. These studies suggest that NEL can serve as a research tool and could contribute to
a better comprehension of the functional significance of this peptidase in diseases [44,45]. The potential
for the therapeutic application of THOP and NEL allied to the necessity of prolonged structural stability
motivated the present study to develop THOP, and NEL capped GNPs. The results demonstrate a
significant gain of stability necessary for therapeutic applications. In fact, the redox balance is closed
related to the mitochondrial permeability transition. Furthermore, it was demonstrated that THOP
activity can be regulated by peroxide concentrations in cells that in turn are modulated by the cellular
thiol oxidation status [46–48].

2. Results and Discussion

2.1. Enzyme Expression and Purification

The optimum growth of Escherichia coli BL21-DE3 containing the pET28a (+) constructs for
expression of both recombinant thimet oligopeptidase and neurolysin (rTHOP and rNEL) was achieved
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using LB broth medium at 20 ◦C, 180 rpm, induced by 1 mM IPTG for 24 h. Active proteases were
isolated from lysed bacteria culture using affinity-based HisTrap FF column (GE) eluted in a 50 mM
Tris-buffer 100 mM NaCl pH 7.4 and 250 mM imidazole (rTHOP) or 200 mM imidazole (rNEL) resulting
in protein purity greater than 90% (Figure 1a). Purified proteases were observed as single bands on
SDS-PAGE with apparent molecular weights as 78 kDa for THOP and NEL. The structural profile was
confirmed using the circular dichroism (CD; Figure 1b), consistent with previous literature data [49].
The far-UV CD spectra of rTHOP and rNEL show that the recombinant enzymes are folded with high
α-helix content and consequently suitable for activity-based assays that are described herein.
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Figure 1. Purification of recombinant oligopeptidases THOP (EC 3.4.24.15) and NEL (EC 3.4.24.16).
(a) Twelve percent SDS-Page of purified recombinant THOP and NEL followed by Coomassie Blue
staining, indicating the purification homogeneity. (b) Circular dichroism profile of rTHOP and rNEL,
demonstrating a proper fold after purification. All samples were prepared, and the spectra obtained,
as described in Materials and Methods.

2.2. Enzyme Thermostability

The thermostability of THOP and NEL were assessed by previous incubation in defined
temperature in buffered aqueous solutions (not immobilized) and immobilized in a 1% agarose
matrix. Activity assays were performed by measurement at 37 ◦C on the fluorogenic substrate
Abz-GFSPFRQ-EDDnp after each step of enzyme challenging to a temperature ramp of 5 ◦C per
20 min (Figure 2). Figure 2a shows that in solution, rTHOP and rNEL have the turning point
(half-activity) of temperature-induced denaturation and loss of activity at 60 ◦C. When immobilized in
a 1% agarose matrix, the half-activities of THOP and NEL increased to 75 ◦C (Figure 2b). A plausible
explanation for the gain of thermal stability in an agarose matrix, at least in the case of THOP, is a
probable impairment of inactivating enzyme oligomerization that is observed after a few hours of
incubation in solution. Considering that oligomerization involves the formation of intermolecular
disulfide [50,51], the reducing agent DTT was also used as control. It also used the THOP cysteine
mutant 6 M, where all six surface-exposed cysteine residues were mutated to serine (Figure 2c).
DTT preincubation and THOP mutations promoted a small increase of rTHOP and rNEL thermal
resistance. This result can be rationalized considering that the oligomerization promoted by heating
is preceded by unfolding, which exposes internal cysteine residues and results in an intermolecular
reaction. The better thermal resistance obtained for the peptidases in the agarose matrix demonstrates
the importance of immobilization for the gain of stability. The aspects of THOP and NEL stability
regulation by reducing agents are already well discussed in the literature, and they were the result of a
combined effect of mixed forms of inactive oligomerized enzymes and oxidation as post-translational
modification [47,50].
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Figure 2. Thermostability of in solution and agarose-immobilized rTHOP and rNEL. Recombinant
enzymes were preincubated for 20 min at each temperature in activity buffer (a) in solution or (b)
immobilized in 1% agarose, indicating the positive effect of agarose in enzyme stability. The effect
of the reducing agent DTT and THOP cysteine mutant (6 M) was also observed in solution (without
immobilization) at the fixed temperature of 65 ◦C (c), suggesting that the increase in stability observable
in (b) is mainly due to immobilization and not to enzyme oligomerization or other protein–protein
interactions. Activities of both THOP and NEL were accessed by using the fluorogenic substrate
Abz-GFSPFRQ-EDDnp (5 µM) in Tris-NaCl buffer at 37 ◦C in a spectrofluorimeter Hitachi F7000.

2.3. In-Situ Synthesis of rTHOP-GNPs and rNEL-GNPs

The temperature for the synthesis of GNPs in situ using rTHOP and rNEL as reducing agents was
established at 40 ◦C in which the enzymes had 100% of activity. The preservation of enzyme activity
is associated with the native folded structure of the enzymes that assures that the proteins can also
act as a template for GNP growing. rTHOP- and rNEL-assisted synthesis of GNPs was performed
at different enzyme concentrations (Figures 3 and 4, respectively). Considering that both THOP and
NEL have different exposed cysteine content, different protein concentration implicates in variable
reductive power of the system, which may affect the physicochemical properties of the nanoparticles
generated. We considered the reductive capacity of the system as the molar concentration of exposed
cysteine residues and protein concentration during protein-GNP synthesis. The spectra of rTHOP-
and rNEL-GNPs, synthesized at 40 ◦C, using protein concentrations at 2, 8, 40 and 200 nM are shown
in Figure 3 (rTHOP-GNP) and Figure 4 (rNEL-GNP), respectively as well as appropriated controls.
In order to guarantee any unbounded enzymes in protein-GNP preparations, the synthesized GNPs
were three times washed by ultracentrifugation (50.000 g, 5 min at 4 ◦C) followed by resuspension. GNP
synthesis was successful in all tested protein concentrations, evidenced by the appearance of surface
plasmon resonance (SPR) spectral bands peaking around 535 nm in the UV-vis spectra. The spectra of
THOP1 (200 nM) and THOP2 (40 nM) generate broader SPR bands, possibly indicating polydispersed
particles. The same observation was suggested for NEL1 (200 nM). However, the relatively low-intensity
rNEL-GNP spectrum obtained from the synthesis using 200 nmol.L−1 of protein reflects colloidal
instability, as observable in the stability assay (Figure 5).
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Figure 3. UV-vis spectra of rTHOP-gold nanoparticles (GNPs) synthesized with different THOP 
concentrations. Spectra of THOP-GNPs were obtained from synthesis using 200, 40, 8 and 2 nM of 
recombinant THOP. These values correspond to 1200, 240, 48 and 12 nM of exposed sulfhydryls. 
Red: THOP-GNP 2 nM. Green: THOP-GNP 8 nM. Blue: THOP-GNP 40 nM. Orange: THOP-GNP, 200 
nM. Gray dashed line: GNP-HEPES (without protein). Black: THOP protein. Pink: reaction without 
HEPES. The wavelength of 300 nm corresponds mainly to Au-protein complexes absorption and 535 
nm to the surface plasmonic resonance (SPR) band of the nanoparticle. The samples were prepared, 
and the spectra obtained as described in Materials and Methods. 

  
Figure 4. UV-vis spectra of rNEL-GNP synthesized with different NEL concentrations. Spectra of 
NEL-GNPs were obtained from the synthesis using NEL at 200, 40, 8 and 2 nM, corresponding to 
1000, 200, 40 and 10 nM of exposed sulfhydryls. Red: NEL-GNP (2 nM). Green: NEL-GNP (8 nM). 
Blue: NEL-GNP (40 nM). Orange: NEL-GNP (200 nM). Gray dashed line: GNP-HEPES without 
Protein. Black: NEL protein. Pink: reaction without HEPES. The wavelength of 300 nm corresponds 
mainly to Au-protein complex absorption and 535 nm to the plasmonic band of the nanoparticle. 
Spectra were obtained in a spectrophotometer Evolution 200 (Thermo Scientific) at room 
temperature. 

The position of SPR bands of GNPs between 525 and 535 nm that was obtained for all THOP- 
and NEL-GNPs synthesized it was possible an estimative of the GNP diameter between 20 and 60 
nm based in literature data [52]. The stoichiometry protein/nanoparticles can also be calculated. 
Considering the mean diameter of 40 nm, in atomic spherical metal clusters [53,54], the 
concentration of protein-GNPs obtained in our synthesis is 1 nM, resulting in a THOP/NEL:GNP 
ratio of 2:1 rTHOP and rNEL GNPs synthesized in the presence of 2 nmol.L−1 of the proteins. The 
spherical shape of rTHOP and rNEL GNPs with a mean diameter of 40 nm was corroborated by 
atomic force microscopy (AFM) measurements (Figure 5a,b). Figure 5a depicts a 2D representation 
of rTHOP-GNP, while Figure 5a, inset, depicts a 3D representation of the same bio-functionalized 
nanoparticle, indicating monodispersed GNPs and suggesting spherical shapes of the particles. 
Similarly, Figure 5b, inset, represent rNEL-GNP in 2D and 3D perspectives, respectively. 

Figure 3. UV-vis spectra of rTHOP-gold nanoparticles (GNPs) synthesized with different THOP
concentrations. Spectra of THOP-GNPs were obtained from synthesis using 200, 40, 8 and 2 nM of
recombinant THOP. These values correspond to 1200, 240, 48 and 12 nM of exposed sulfhydryls. Red:
THOP-GNP 2 nM. Green: THOP-GNP 8 nM. Blue: THOP-GNP 40 nM. Orange: THOP-GNP, 200 nM.
Gray dashed line: GNP-HEPES (without protein). Black: THOP protein. Pink: reaction without HEPES.
The wavelength of 300 nm corresponds mainly to Au-protein complexes absorption and 535 nm to
the surface plasmonic resonance (SPR) band of the nanoparticle. The samples were prepared, and the
spectra obtained as described in Materials and Methods.
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temperature. 

The position of SPR bands of GNPs between 525 and 535 nm that was obtained for all THOP- 
and NEL-GNPs synthesized it was possible an estimative of the GNP diameter between 20 and 60 
nm based in literature data [52]. The stoichiometry protein/nanoparticles can also be calculated. 
Considering the mean diameter of 40 nm, in atomic spherical metal clusters [53,54], the 
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ratio of 2:1 rTHOP and rNEL GNPs synthesized in the presence of 2 nmol.L−1 of the proteins. The 
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Figure 4. UV-vis spectra of rNEL-GNP synthesized with different NEL concentrations. Spectra of
NEL-GNPs were obtained from the synthesis using NEL at 200, 40, 8 and 2 nM, corresponding to 1000,
200, 40 and 10 nM of exposed sulfhydryls. Red: NEL-GNP (2 nM). Green: NEL-GNP (8 nM). Blue:
NEL-GNP (40 nM). Orange: NEL-GNP (200 nM). Gray dashed line: GNP-HEPES without Protein.
Black: NEL protein. Pink: reaction without HEPES. The wavelength of 300 nm corresponds mainly to
Au-protein complex absorption and 535 nm to the plasmonic band of the nanoparticle. Spectra were
obtained in a spectrophotometer Evolution 200 (Thermo Scientific) at room temperature.

The position of SPR bands of GNPs between 525 and 535 nm that was obtained for all THOP-
and NEL-GNPs synthesized it was possible an estimative of the GNP diameter between 20 and
60 nm based in literature data [52]. The stoichiometry protein/nanoparticles can also be calculated.
Considering the mean diameter of 40 nm, in atomic spherical metal clusters [53,54], the concentration
of protein-GNPs obtained in our synthesis is 1 nM, resulting in a THOP/NEL:GNP ratio of 2:1 rTHOP
and rNEL GNPs synthesized in the presence of 2 nmol.L−1 of the proteins. The spherical shape of
rTHOP and rNEL GNPs with a mean diameter of 40 nm was corroborated by atomic force microscopy
(AFM) measurements (Figure 5a,b). Figure 5a depicts a 2D representation of rTHOP-GNP, while
Figure 5a, inset, depicts a 3D representation of the same bio-functionalized nanoparticle, indicating
monodispersed GNPs and suggesting spherical shapes of the particles. Similarly, Figure 5b, inset,
represent rNEL-GNP in 2D and 3D perspectives, respectively.
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as the central figure and 3D rendering of as insets of (a,b) for rTHOP-GNP and rNEL-GNP, respectively.

Despite the significant differences observed in the UV region, the SPR bands of GNP synthesized in
the absence and presence of the enzymes are very similar as well as the zeta potential values that were
determined for GNPs synthesized with HEPES and HEPES assisted by 2 nmol.L−1 of THOP and NEL
(−25.4 +/− 5.48, −25.9 +/− 4.97 and −22.2 +/− 5.18 V, respectively). Therefore, some experiments were
carried out to check the binding capacity of THOP and NEL on the surface of GNPs. Bare GNPs were
synthesized using sodium borohydride, and the changes in the UV-vis spectrum and zeta potential
values were determined after the addition of 2 nmol.L−1 of the enzymes at pH 3.5, which is below
their pI (isoelectric point) values. Bare gold nanoparticles presented spectral changes consistent with
nanoparticle aggregation by changing the pH from 6.0 to 3.5 that is accompanied by change of the zeta
potential from 46.9 +/− 2.45 to 23.5 +/− 0.72 mV (Table S1 in Supplemental Material). The addition of
THOP for a final concentration of 2 nmol.L−1 promoted significant spectral changes that are compatible
with nanoparticle disaggregation (Figure S1 in Supplemental Material). The enzyme immobilization
on bare GNPs was also corroborated by zeta potential measurements of bare gold nanoparticles in the
same conditions used for the UV-visible spectral measurements at pH 3.5. The addition of THOP for a
final concentration of 2 nmol.L−1 changed the zeta potential of bare GNPs at pH 3.5 from −23.5 +/−

0.72 mV to 34.2 +/− 1.85 mV (Table S1 in Supplemental Material). However, bare gold nanoparticles
synthesized with sodium borohydride had a diameter of 5.7 +/− 1.7 nm (Figure S2 in Supplemental
Material) while the gold nanoparticles fabricated using HEPES were ca. six-fold larger. Therefore,
considering the low protein concentration that was compatible with a mean of two proteins/gold
nanoparticles (Figure 6), it was expected that the protein adsorption on gold nanoparticles produced
using HEPES is unable to promote significant changes in zeta values because of the low superficial
area of GNPs covered by the enzymes.
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Figure 6. Cartoon representative of a putative effect of nanoparticle size on the zeta potential promoted
by the adsorption of the proteases.

The immobilization of THOP and NEL on the GNPs fabricated with HEPES and assisted by the
enzymes was also corroborated by differences in the kinetics of synthesis, colloidal stability, and the
presence of proteolytic activity in the GNPs produced with HEPES and assisted by the enzymes.

2.4. Kinetics of rTHOP-GNP and rNEL-GNP Formation

Considering the interest in the use of THOP- and NEL-GNPs as catalysts, it is essential to have
effective enzyme immobilization and activity in the same conditions in which free enzymes are active.
Therefore, the kinetics of HEPES-GNP synthesis assisted by the enzymes were compared with the
kinetics of GNPs synthesized with HEPES alone. Figure 7a shows the kinetic of GNP synthesis by
using 30 mM HEPES as a reducing and stabilizing agent in the absence of THOP and NEL that is
compared with the respective synthesis kinetics of GNP formation assisted by 2 nmol.L−1 THOP
and NEL (Figure 7b,c respectively). In all the conditions used, it was observed that the kinetics of
GNP synthesis in the presence of HEPES had three essential observable steps: progressive spectral
changes in the UV region that corresponded to the occurrence of gold ion reduction and formation of
nanoclusters (step 1), SPR band formation (step 2) and the progressive increase of a broad band at the
spectral range of 700–800 nm. Considering the three steps of synthesis that involves changes in the UV
region, followed successively by increasing of SPR bands and a band around 750 nm, Figure 7a–c show
the kinetics of synthesis monitored at 310 nm, 532–535 nm and around 750 nm and the insets with
the corresponding spectra obtained in the course of the synthesis. The kinetics of GNP formation in
the processes assisted by the enzymes was significantly different of that promoted by HEPES alone,
especially at the steps of involving changes in the visible region. Considering the high concentration of
HEPES relative to the enzymes, it was expected that the buffering agent is the principal agent for gold
ion reduction and nanoclusters nucleation in step 1. After the formation of nanoclusters, the association
with the enzymes at some nanoclusters facets drives the nanoparticles growing and consequently the
kinetics of SPR and the 700–800 nm band increasing. It is important to note that for GNPs synthesized
in the absence of enzymes the band in the red region of the spectrum that appeared in the third step
peaks at 715 nm whereas in the synthesis assisted by the enzymes the peak was found at 765 nm.
The nature of this band remains to be determined but it is suggestive of the formation of elongated
nanostructures or aggregates.
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Figure 7. Kinetics of GNP synthesis with HEPES in the absence and presence of enzymes. (a), (b) and (c)
represent the kinetics of the three steps of the GNP synthesis using HEPES alone, and HEPES assisted
by THOP and NEL, respectively. In each spectra the blue lines represent kinetic and corresponding
spectra (inset) of HAuCl4 immediately after addition to solution (time zero) and the formation of the
complex HEPES/gold ions and protein with subsequent reduction of Au3+ to the atomic form before the
appearance of Surface Plasmon Resonance (SPR, first-step), red lines represents the represent kinetic
and corresponding spectra (inset) obtained during the GNP formation evidenced by SPR peaking at
535 nm (second-step) and the black lines represent kinetic and corresponding spectra (inset) GNP
aggregation and modification evidenced by a progressive increase of an additional band at 750 nm
(third-step). All samples were prepared, and the spectra carried out as described in Materials and
Methods. The appearance of SRP bands during GNP synthesis assisted by rTHOP and rNEL was
earlier than in the synthesis by HEPES in the absence of enzymes but the absorbance increasing is
slower. The kinetics difference observed in the presence of the enzymes is consistent with these proteins
participating in the GNP growing step as reducing agent and template.
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The association of GNPs with the enzymes THOP and NEL was also crucial for the colloidal
stability of the nanoparticles as described herein.

2.5. Colloidal Stability of rTHOP-GNP and rNEL-GNP

The colloidal stability of GNPs associated with enzymes is essential for catalytic and therapeutic
applications. Therefore, rTHOP- and rNEL-GNP suspensions were analyzed by naked eyes for 10 days
of resting at room temperature (Figure 8, left panel). All the purple-red suspensions remained stable on
the day of synthesis. Gradually, colloidal suspensions produced with 40 and 8 nmol.L−1 of rTHOP and
200 and 8 nmol.L−1 of rNEL lost colloidal stability and resulted in the formation of visually detectable
precipitates after 10 days of resting. In contrast, GNPs suspensions produced with 2 nmol.L−1 of rTHOP,
as well as with 40 and 8 nmol.L−1 of rNEL, showed exceptional colloidal stability. The protein-GNPs
suspension with colloidal stability after 10 days (produced with THOP 2 nmol.L−1 and NEL 2 nmol.L−1)
are also evidenced by UV-vis spectra (Figure 8, right panel) and were elected for the determination of
the synthesis kinetics that are depicted in the next section.
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Figure 8. Colloidal stability of THOP-GNP and NEL-GNP. The stability of GNPs produced by HEPES
assisted by proteases at the four tested concentrations was followed for 10 days. The left panel
depicts the visual aspects of fresh synthesized (day 0) and protein-GNP after 10 days. The UV-vis
spectra of rTHOP (2 nmol. L−1) and rNEL (2 nmol.L−1) nanoparticles after 10 days (black lines)
indicate the colloidal stability of both rTHOP-GNP and rNEL-GNP preparations compared to freshly
synthesized protein-GNPs (day 0, blue line). The lower stability of rTHOP-GNP produced with 200, 40
and 8 n nmol.L−1, and rNEL-GNP produced with rNEL at 200 nmol.L−1 and 8 nmol.L−1 leading to
nanoparticle precipitation is noteworthy.

It is interesting to relate the differential colloidal stability of THOP-GNP and NEL-GNP when
we consider their structures. Figure 9 shows the Protein Data Bank structure of THOP (1S4B) and
NEL (1I1I) in which is evident a highly similar structure of these enzymes. However, it is well-known
that free THOP and NEL have different stability. Contrary to NEL, THOP loses activity due to
interchain disulfide bonds oligomerization or post-translational modifications of oxidative nature in its
surface-exposed cysteine residues. These changes have been associated with the reactivity of three
acidic cysteine residues (low pKa of lateral chain thiol group) that are in proximity to the basic amino
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acid residues, arginine, and lysine. In NEL structure, however, there is only a solvent-exposed acidic
cysteine residue Cys247 that, similarly to Cys246 of THOP, is sided by arginine and lysine residues.
The difference of colloidal stability between THOP- and NEL-capped gold nanoparticles is one more
evidence of protein immobilization.
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Figure 9. Comparative cartoon of Protein Databank (PDB) structure of THOP and NEL highlighting
cysteine and basic amino acid residues of each enzyme. In THOP structure, there are three exposed
acidic cysteine residues: C246, C248 and C253, whereas NEL has only one exposed acidic cysteine
residue that is C247. In the cartoon structures, cysteines are highlighted in red while the neighbor basic
amino acids R and K are highlighted in blue.

For the application of rTHOP- and rNEL-GNPs for catalysis and therapeutics it is fundamental
that the enzymes adsorbed on the GNPs retains and preferentially improved the catalytic properties
and activity. The activity of GNP-immobilized rTHOP and rNEL was compared with the respective
soluble forms of the enzymes.

2.6. Increased Stability-Activity of Immobilized rTHOP and rNEL in GNPs

The temporal activity preservation of both free and immobilized proteases was compared. Free
enzymes showed higher activity than the immobilized ones, but the stability of in solution rTHOP
and rNEL at room temperature decreased until complete loss of activity in a few hours (Figure 10).
However, gold nanoparticles-enzymes preparations of rTHOP-GNP and rNEL-GNP maintained their
proteolytic activity even after 24 h (retaining 8.1% and 7.3% of their activity, respectively). We also
tested the possibility that HEPES-based GNP (without protein) could also be capable of stabilizing
THOP activity. As observed, it resulted in a retention of 22% of its activity at the time of 6 h, indicating
the presence of in solution free GNPs are capable of stabilizing THOP activity. The extension of stability,
however, was not comparable to GNP-immobilized THOP, still active after 24 h.
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Figure 10. Increased activity based on stability of rTHOP-GNP and rNEL-GNP. Both THOP and NEL
enzyme ultimately lose their activity after 6 h in solution at room temperature. When immobilized in
the gold nanoparticles, the maintenance of activity is notable. GNP synthesized without any protease
(HEPES-GNP) and incubated with in solution THOP was also capable of retaining THOP proteolytic
activity. Samples were prepared and data obtained as described in the Material and Methods section.

Recently, there has been a growing interest in protein-driven nanoparticles synthesis for a variety
of applications due to their unique properties of controllable morphology and size dispersion [55,56].
Proteins and amino acids are considered safe, non-toxic compounds and the production of gold
nanoparticles GNPs using these materials are categorized as green and biocompatible materials and
techniques. These systems can be used both for newly nanoparticle synthesis as well as immobilization
techniques in order to increase protein stability and conduct functional studies. Enzymes are relevant
and useful targets for selective cancer drugs and imaging probe delivery due to their substrate
specificity the as well as the ability to perform biological catalysis. A wide variety of enzyme classes
are overexpressed in tumors and other pathological microenvironments acting as potential targets for
therapy and imaging studies [57–60]. Responsive drugs involving proteases can be designed for a target
to increase selectivity and efficacy in a specific physiological process. In the case of the mammalian
oligopeptidases THOP and NEL, their ability to regulate bioactive peptides, as the processing of the pro-
and anti-angiogenic derived peptides angiotensin and bradykinin, may be used in relevant approaches
in order to better comprehend these systems and their biology. A significant limitation to study THOP
and NEL functions resides in their low stability in biological systems, which makes it challenging
to study their physiology and biotechnological uses. One possibility to surpass these problems is to
immobilize these enzymes in order to conduct these studies. Here we defined conditions capable
of generating stable nanometric gold nanoparticle immobilized to both THOP and NEL proteases;
and, importantly, retaining their proteolytic activity. The observed positive effects of immobilization
in the proteolytic activity of THOP and NEL may be in part due to the impossibility to generate
high molecular weight inactive forms, whose reversibility depends on specific cysteine residues that
compose the disulfide. In addition, and noteworthy, the retention of activity indicates a gain of stability
in the structure-function of both THOP and NEL, showing that immobilization on gold nanoparticles
can be used as a valuable approach to different applications of both enzymes, from functional studies
to therapeutic uses.

3. Material and Methods

3.1. Chemicals

Culture medium supplies were purchased from Thermo Fisher DTT (dithiothreitol), HEPES, Tris,
NaCl, IPTG (Isopropyl-β-d-thiogalactoside), sodium borohydride and metallic gold salt (tetrachloro
auric acid trihydrate-HAuCl4) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
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3.2. Enzyme Production

THOP and NEL expression and purification were conducted as already described with few
adaptations [47,61]. Briefly, the liquid culture of E. coli BL21-DE3 containing the pET28a (+) constructs
for expression of wild type thimet oligopeptidase and neurolysin (rTHOP and rNEL) and THOP
mutant 6 M were induced by IPTG. Sonicated soluble extracts of bacteria culture were filtered and
purified using affinity-based HisTrap FF column (GE) in an AKta system (GE) and eluted in a 50 mM
Tris-buffer 100 mM NaCl pH 7.4 using increasing concentrations of imidazole. Purity was followed
by SDS-PAGE. The specific activity of both proteases was measured using the fluorogenic substrate
Abz-GFSPFRQ-EDDnp, in a 50 mM Tris, 100 mM NaCl buffer (pH 7.4) at 37 ◦C using the specific
inhibitor JA2 for THOP [22]. Fluorescent products were followed at the excitation wavelength of
420 nm and an emission wavelength of 320 nm in a spectrofluorimeter Hitachi F7000 (Tokyo, Japan).
After 5 min pre-incubation, enzymes (0.1 nM) were added to the assay buffer with or without DTT
(1 mM), and the fluorescence kinetic recorded for 10 min. The concentration of the substrate was
determined colorimetrically by absorbance of the 2, 4-dinitrophenyl group (ε365 = 17,300 M−1.cm−1).
Enzyme concentration for initial rate determination was chosen for hydrolyzing less than 5% of the
substrate present. All the obtained data were fitted by nonlinear least-squares equations, using GRAFIT
v.5.03 software [62].

3.3. Gold Nanoparticle Synthesis

All syntheses were performed in a laminar flow cabinet using small lab glass vials clear with a
black screw cap. The glassware for synthesis was previously cleaned to avoid undesired nucleation
aggregation of colloidal gold solutions [56]. The addition of reagents was performed as follows: Milli-Q
deionized water, 0.2 mM sodium phosphate buffer plus HEPES, pH 9.0, 100 µL of protein solution per
mL and tetrachloroauric acid solution (400 µM). GNPs were synthesized at 40 ◦C for 2 h on a vat dry
bath and let stabilize at room temperature. After 24 h of synthesis, the GNP colloidal suspensions
were centrifuged and resuspended in 0.2 mM sodium phosphate buffer plus HEPES, pH 7.0 and stored
at 4 ◦C. Several syntheses were performed and characterized by UV-vis to guarantee reproducibility.
GNPs synthesized with sodium borohydride (GNP-BH) were prepared by a reaction between sodium
borohydride (2 mM) in water and tetrachloroauric acid solution (0.25 mM) at 0 ◦C and maintained
under agitation (200 rpm) for 15 min [63,64]. This solution was maintained for 24 h at 4 ◦C, and enzymes
were added and incubated for 4 h before UV-vis, dynamic light scattering (DLS) and Zeta potential
measurements [65].

3.4. Zeta Potential and DLS Measurements

The Zeta potential (ζ) of GNPs were all measured at 25 ◦C using a Zetasizer NanoZS (Malvern
instruments Ltd., Worcestershire, UK). All GNPs solution was diluted in Milli-Q deionized water by
50% immediately before measurement. Three repeats for each sample were conducted to estimate the
error in the measurements. Each measurement was taken by conducting 30 runs [66]. DLS (dynamic
light scattering) measurements were acquired using the same instrument operating in the backward
(a scattering angle of 173◦) [67].

3.5. UV-vis Spectra

This spectroscopy was used to quantify proteins and characterize nanoparticles. UV-vis also
characterized the optical properties of metallic nanoparticles, including absorbed radiation (σabs)
and scattered radiation (σsca), where σtotal = σabs + σsca. Samples were analyzed in quartz cuvettes
with optical path 1.0 or 0.5 cm. A UV-visible Photodiode Array Spectrophotometer MultiSpec-1501
spectrophotometer (Shimadzu Co, Kyoto, Japan) was used. The synthesis temperature of the GNPs
was controlled by a thermal bath coupled to the spectrophotometer.
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3.6. Circular Dichroism

The CD measurements were carried out in a J-815 Circular Dichroism Spectrometer equipped
with Peltier single cell holder (Jasco International Co Ltd., Tokyo, Japan) using quartz cuvettes with a
1.0 or 0.5 optical path; bandwidth, 1.0 nm; scanning speed, 50 nm/min and four accumulations.

3.7. Atomic Force Microscopy

Samples were prepared by spreading the protein-GNP solution onto a freshly cleaved mica
substrate and solvent dried using a nitrogen stream. AFM in the intermittent contact mode was
performed using a scanning probe microscope equipped with a controller instruments and tip in an
AFM XE7 Park System, Korea, using adjustable resonance frequency.

4. Conclusions

In the present study, it was reported the synthesis of gold nanoparticles in situ using HEPES as
reducing agent assisted by the presence of the recombinant proteolytic enzymes THOP and NEL that
remained immobilized on the gold nanoparticles based on the following evidences: (i) The presence
of significant spectral differences observed in the UV region that is consistent with different organic
ligands on the GNP surfaces; (ii) proteolytic activity of GNPs produced using HEPES and assisted by
THOP and NEL that is absent in GNPs produced exclusively by HEPES and (iii) significant gain of
structural and catalytic stability of rTHOP and rNEL associated with GNP relative to the free enzymes.
Free enzymes lost 70% and 95% after 2 and 6 h, respectively whereas the dropping of activity decreased
to 30% and 60% after the same times of aging. Important to note that THOP gained stability even
when it was added to gold nanoparticles previously fabricated with HEPES that was consistent with
a binding capacity on gold nanoparticles; (iv) the significant gain of colloidal stability exhibited by
gold nanoparticles produced with HEPES assisted by the enzymes and (v) in addition, the binding
capacity of THOP on gold nanoparticles was also corroborated in bare GNPs synthesized with sodium
borohydride that was evidenced by UV-visible spectroscopy and zeta potential.
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