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Abstract: We consider the problem of how to apply a generalized second price (GSP) auction to a
buyer–seller network. GSP auctions are often used to sell online ads where buyers care about the
position or placement of the ad. GSP auctions can also be applied to wireless data transmissions with
congestion where buyers care about the speed of data transmission; however, such an auction would
take place over a network as a buyer could only purchase from a seller (or cell tower) that he was
linked to (or was close to). Two GSP auctions over a network are considered: separate GSP auctions,
and integrated GSP auctions with pauses. The efficiency of these auctions is examined with efficiency
favoring the integrated auction with pauses.
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1. Introduction

Generalized second price (GSP) auctions are known for their use in online search advertising.
Here, advertisers announce bids for keywords and then the ads are displayed in ranked positions
where the advertiser who bids the most receives the top position and thus should receive the most
clicks per ad. (For an empirical analysis of click through rates and the monetary value of a click, see
Ghose and Yang [1]). These GSP auctions can be interpreted as taking place over a network where
different advertisers are interested in (or linked to) different keyword-category searches. GSP auctions
over a network can also be applied to the problem of radio spectrum pricing with congestion due to
limited bandwidth; see Chen, Jana and Kannan [2]. Here, wireless consumers would submit a bid for
cellular data and a cell tower would prioritize its transmission of data based on bids. Thus, the highest
bidder would receive the fastest transmission of data. Wireless data transmission takes place over a
network of consumers and cell phone towers where a consumer can only purchase a unit of data from
a tower that he is close (or connected) to and such a consumer may be close (or connected) to multiple
towers. As a final example, consider an auction for water where multiple farmers bid for water from
different government-owned sources and the supply can be given on different days some of which are
preferred to others because of the farming season; see Alevy, Cristi, and Melo [3]. However, due to
location, not all farmers can receive water from all sources.

We consider the problem of how to apply a GSP auction to such a network framework and then
examine auction efficiency. Two GSP auctions are considered over a network where a buyer can only
enter a seller’s auction if the two are linked. The first considered is separate GSP auctions where
each seller holds their own GSP auction and each buyer can enter only one auction even if such a
buyer is linked to multiple sellers. (Buyers are assumed to be profit maximizers. For an analysis of
GSP auctions where buyers can be value maximizers, see Wilkens, Cavallo, and Niazadeh [4]). We
show that there exists a feasible assignment of buyers to sellers which respects the graph such that
the separate auctions result in an efficient allocation of goods. However, if a buyer chooses to enter
an auction where he does not displace another buyer instead of choosing an auction where he does
displace another buyer, then the separate auctions may result in an inefficient allocation of goods.
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The second auction considered is an integrated GSP auction with pauses. Here, each seller
holds a separate auction and any buyers with links to multiple sellers participates in all of his linked
seller’s auctions. Each auction is paused after the first multiple linked buyer reaches his drop out
price (or maximum bid) which enables such a buyer to compare his final payoffs in each auction and
then choose the one that gives him the highest payoff. (Note that if the auction with pauses were
computerized, then each pause would occur quite briefly and thus would not disrupt service or slow
the auction down). Auctions then continue and are paused again as the next multiple linked buyer
reaches her drop out price. We show that such an auction has a unique equilibrium which is efficient.

There is a large and growing literature which examines generalized second price auctions and
online advertising where advertisers care about the position that their ad is displayed in; see Varian [5],
Varian and Harris [6], Edelman, Ostrovsky, and Schwarz [7], and Aggarwal, Goel, and Motwani [8].
Recent work has focused on efficiency of GSP auctions (see Gomes and Sweeney [9]), inefficiency
under uncertainty (see Caragiannis, et al. [10]), as well as on seller’s revenue (see Yenmez [11]). For a
model where some advertisers have limited information regarding the value of the display ads, see
Arnosti, Beck, and Milgrom [12]. Athey and Ellison [13] consider auction design questions when
advertising consumers search optimally. Lastly, competing ad auctions are modeled as Cournot-style
competition in Ashlagi, Edelman, and Lee [14]. We add to this literature by allowing a GSP auction to
occur over a network.

The current paper is also related to the market design literature and specifically to the auction
design literature. For two recent surveys of this literature, see Abdulkadiroglu and Ausubel [15] and
Loertscher, Marx, and Wilkening [16], and an overview of the issues addressed in this literature can be
found in Klemperer [17]. The auction design literature is concerned with designing auctions that are
implementable given the real-world context as well as designing auctions with desirable properties
such as encouraging optimal allocation of goods. Our results are in the same vein as this genre since
we are concerned with the efficiency of different GSP auctions over a network.

2. Model

Consider a generalized second price auction that takes place over a network.
Let M = {1, 2, ..., i, ..., m} represent the set of sellers and N = {1, 2, ..., j, ..., n} represent the number

of buyers. Each seller i has Mi = {1, 2, ..., mi} goods for sale. The good in the set Mi labeled k represents
the kth position (or priority) of the goods i has available. In the case of radio spectrum, this priority
represents the speed of data transmission where a cell tower gives priority to certain users who receive
faster data transmission resulting in more data packets received in a given time. In the online search
auction, the priority represents the ad’s position on the page where the top ranked ads receive more
clicks per ad. In the water auction example, the priority represents the timing of the water received
where farms prefer water at certain times.

A good in the position labeled 1 will have priority over other goods and will have the fastest
data transmission or the most data packets received in a given time. The expected number of data
packets received for a buyer whose good has priority k is sk. If k < k′, then sk > sk′ for all k ≤ mi and
k′ ≤ mi + 1. Assume that sk = 0 for all k > mi.

The value of a data packet to buyer j is vj. Buyer j’s payoff from receiving a good with priority
k is sk · vj minus the price paid. It is assumed that each vj is a random variable independently and
identically distributed on [v, v] with continuous distribution F, where v ≥ 0. We assume that vj 6= vj′

for all j 6= j′. Additionally, we assume that buyer j would like to purchase at most one good (or one ad
or one cell tower connection). Let v ≡ {v1, v2, ..., vn}.

Buyer j can purchase from seller i only if i and j are linked. We let g represent the set of links
between sellers and buyers and G represents the set of all possible such graphs. Assume g consists
of a single connected component. If there are multiple unconnected components, all analysis can
be done separately. Let ij ∈ g represent a link between i and j. In the radio spectrum example,
this network represents connections between cell phone customers and cell towers where customers
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can only purchase data from towers they are physically close to. Note that we assume for simplicity
that each customer wants to purchase data from at most one cell tower; thus, if a cell phone customer
is in the proximity of multiple towers and so has multiple network ties, then he may participate in
two or more auctions, but he only wants to purchase data from the tower that offers him the best deal.
In the online search example, the network is made up of links between keywords and advertisers
where a link is only present if an advertiser wants to place an ad in a particular keyword search.

An allocation A(g) of goods is feasible in network g if (i) each buyer j receives at most one good;
if the good received has priority k and is from seller i, then it must be that ij ∈ g and if (ii) each seller i
sells at most one good with priority k ≤ mi. Let Â(g) represent the set of all feasible allocations over g.

An allocation A∗(g) ∈ Â(g) is efficient if A∗(g) solves maxA(g)∈Â(g) ∑n
j=1 s

kA(g)
j
· vj where kA(g)

j is

the priority j is assigned in allocation A(g). Thus, we assume that the seller does not consume the
good if there is no sale.

Let the social welfare of allocation A(g) be SWA(g) = ∑n
j=1 s

kA(g)
j
· vj. Thus, an efficient allocation

maximizes social welfare.
We consider two possible generalized second price (GSP) ascending-bid auctions: separate

auctions and integrated auctions with pauses. These auctions are based on the GSP ascending-bid
auction of Edelman, Ostrovsky, and Schwarz [7].

In the separate auctions, each seller holds his own GSP ascending-bid auction and buyers linked to
multiple sellers can choose one auction to compete in. This choice results in a feasible assignment of
buyers to sellers in graph g. Thus, there would be m GSP ascending-bid auctions. In seller i’s auction,
the buyers with the top mi bids would receive a good. As in Edelman, Ostrovsky, and Schwarz [7],
the price in seller i’s auction starts at zero and rises with a clock. Each buyer then decides when to
drop out. Let buyer j drop out at bid bj. Let b(j) denote the bid (or drop out price) of the jth highest
bidder, let n(j) denote the identity of this bidder, and let v(j) denote his valuation. The auction ends
when there is only one bidder left. Let this top bidder n(1) receive the good with priority position 1
and let him pay s1 · b(2). The awarding of goods continues in this fashion; thus, a buyer who drops out
at bid b(j) would receive a good with priority position j and would pay price sj · b(j+1); if there is no
agent (j + 1), then set price b(j+1) = 0. Let any bidders who do not receive a good pay price 0. Let the
number of bidders participating in seller i’s auction be ni.

The second auction we consider is the integrated auction with pauses. The goods are auctioned off
in separate auctions where at first any buyer with links to multiple sellers participates in all of his
linked seller’s auctions. Auctions will be paused so that the buyers with multiple links can compare
payoffs across auctions and use this information to drop out of low payoff auctions. Specifically, pause
each auction after the multiple linked buyer with the lowest drop out price reaches this price. Keep
these auctions paused until any other auction with multiple linked buyers is paused; if there is an
auction with no multiple linked bidders, then this auction will not pause. Let any buyer who has
announced drop out bids in all of his linked sellers’ auctions compare his final payoffs in each auction
and keep the highest such payoff. Assign this buyer to the auction with the highest payoff and remove
him from the other auctions; if there is a tie for the highest payoff assign the buyer randomly to one
of the corresponding auctions. If there is a paused auction where no buyer has dropped out, then
keep this auction paused. Let all paused auctions with a buyer who has dropped out continue until
the multiple linked buyer with the next lowest drop out price reaches this price. When all auctions
with remaining multiple linked bidders are paused, let any buyer who has announced drop out bids
in all of his auctions compare his payoffs and remove him from the auctions with the lowest payoffs.
Continue this process until all multiple linked bidders have been assigned to only one auction. Let all
auctions continue. Assign prices and goods as in the separate auctions case.
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Remark 1. Next, we discuss the motivation in selecting the separate auctions and the integrated auction
with pauses. The separate auctions are chosen as they are the simplest way to extend the GSP auctions to
a network environment, and they would be fairly easy to implement. For instance, in the radio spectrum
example, the separate auctions are perhaps the most straightforward way to extend the spectrum auction
of Chen, Jana and Kannan [2] to a network of towers and cell phone owners. The integrated auctions with
pauses were selected as a way to extend the auction used in Kranton and Minehart [18] to a GSP framework;
the Kranton and Minehart [18] auction is quite desirable as it provides a way to efficiently allocate goods over
a network. However, in Kranton and Minehart [18], the goods auctioned off are all identical and there are
no differences in priorities. In a GSP framework, items are not identical and it matters which seller a buyer
purchases from because different sellers can give the same buyer a different priority. Thus, in order to achieve
efficiency, we need to let a buyer compare what he would get from different sellers, whereas, in Kranton and
Minehart [18], this comparison is not necessary as all sellers give a buyer the same payoff. The integrated
auction with pauses is a natural way to let a buyer discover on his own which auction is best in an ascending
bid framework.

3. Results

3.1. Separate GSP Auctions

We compare the efficiency of the auctions starting with the separate GSP auctions. For this auction,
we first establish the existence of an equilibrium given that each buyer has already decided which of
his connected seller’s auctions he will participate in. This Lemma is based on Theorem 2 of Edelman,
Ostrovsky, and Schwarz [7], which assumes a single seller with ni = mi + 1.

Lemma 1. In each separate auction, there is a unique Bayes–Nash equilibrium where a buyer j who receives a
good with priority position k will drop out of the auction at price bj = vj − sk

sk−1
(vj − b(k+1)) for all n(j) < mi

and for n(j) = mi when ni > mi. In all other cases, bj = vj. Any buyer j such that n(j) ≤ mi receives the good
and n(j) receives priority position j; any buyer for which n(j) > mi does not receive a good.

All proofs can be found in the Appendx A.
Lemma 1 shows the existence of a unique equilibrium in each separate auction and provides

the maximum bid a buyer will place (called the drop out bid). Notice that the agent with the largest
valuation will stay in the auction the longest and will win the top priority position.

Next, we consider the efficiency of the separate GSP auctions. First, we show by Proposition 1 that
there exists an efficient separate auction equilibrium. In Propositions 2 and 3, we give conditions under
which the separate auction B-N equilibrium is inefficient, which is the result of an incorrect assignment
of buyers to sellers’ auctions. If only one assignment of buyers to seller’s auctions is efficient and if the
number of sellers is large, then most equilibria will be inefficient.

Proposition 1. There exists a feasible assignment of buyers to sellers in graph g such that the Bayes–Nash
equilibrium of the separate auctions results in an efficient allocation of goods.

Proposition 1 ensures that there exists a separate auction equilibrium which is efficient. To see
this, note that, in a given efficient allocation of goods, each buyer purchases from one particular seller.
An efficient equilibrium is achieved in the separate auctions game, if each buyer is placed in his
“correct” seller’s auction. Notice that if only one allocation is efficient and if there are many buyers
and sellers, then it should be unlikely that each buyer is assigned to the correct auction. Although
efficiency is always possible, it may be difficult to achieve in the separate auctions case.

Consider a buyer j with links to multiple sellers in g. Let all buyers in g have already decided
which auctions to participate in except for buyer j. We say that j displaces j′ if ij, ij′ ∈ g and if j′ would
win a unit in i’s auction if j does not participate in this auction and j′ would not win a unit in i’s auction
if j does participate in the auction.
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Proposition 2. Let there exist a buyer j with multiple links in graph g and let all other buyers have already
decided which auctions to participate in. Assume mi < ni for all i ∈ M. Assume if j chooses to participate in î’s
auction, then j displaces another buyer but j does not displace a buyer if he chooses any other auction. If j does
not participate in î’s auction, the resulting B-N equilibrium of the separate auctions will result in an inefficient
allocation of goods.

Proposition 2 gives conditions under which the separate auctions result in an inefficient
equilibrium. Specifically, Proposition 2 considers the case where all items are sold. Here, efficiency
requires that a buyer join an auction where he displaces another buyer rather than join an auction
where he does not displace a buyer. If a buyer displaces another buyer, then, by Lemma 1, he must
value the good more than the other bidders and efficiency requires that he ends up with the good,
while if a buyer does not displace another buyer then he must value the good less and there is no
efficiency gain from him joining this auction.

Proposition 3. Let there exist a buyer j with multiple seller links such that j displaces another buyer if he
participates in any of these separate auctions. Assume that all other buyers have already decided efficiently which
auctions to participate in. The resulting B-N equilibrium allocation will be efficient for j joining at least one
seller’s auction and will be inefficient for j joining the remaining auctions.

Proposition 3 also gives conditions under which the separate auctions result in an inefficient
equilibrium. Proposition 3 assumes that there is a buyer who always displaces another buyer no matter
which auction he chooses. Efficiency requires that he choose the auction that will maximize social
welfare, otherwise the resulting equilibrium will be inefficient. If the number of such sellers is large,
then again it should be unlikely that efficiency is achieved.

Note that we assumed in Proposition 3 that all other buyers have already made the efficient choice
of which auction to participate in. We could instead assume that some of these buyers had chosen
to participate in an auction such that the resulting B-N equilibrium allocation would not be efficient
regardless of j’s choice. Then, buyer j’s choice of which auction to join would still affect social welfare
given the choices already made by the other buyers. It would still be the case that j’s joining at least
one seller’s auction would maximize social welfare given the constraint of the choices made by the
other buyers and joining any other auctions would not.

We consider an environment where a buyer is not able to accurately estimate which auction would
be best and thus a buyer chooses which auction to participate in at random or with limited information.
In the radio spectrum example, a cell phone customer may not know which other customers are
currently in the proximity of a given tower and so does not know what his payoff would be from
participating in a given auction.

Next, we formalize this by incorporating random first-stage assignments of auction participation
into our analysis. Define the two-stage separate auction game as follows. In the first stage, each buyer
randomly chooses to participate in one of his linked seller’s auctions. In the second stage, the separate
auctions take place as described in Section 2.

Corollary 1. In the two-stage separate auction game, there is a positive probability that the separate auctions
results in an efficient allocation of goods.

Corollary 2. In the two-stage separate auction game, let there be a buyer j with multiple seller links such that j
displaces another buyer if he participates in any of these separate auctions. There is a positive probability that the
separate auctions results in an inefficient allocation of goods.

These corollaries follow directly from Propositions 1 and 3.
Note that one could extend this analysis to the repeated game case which would allow buyers to

learn information regarding past payoffs from different sellers or auctions. Buyers could then use past
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payoffs to guide their decision of which auction to participate in. However, in such a repeated game,
one would expect for the network to change over time which would make the analysis quite complex.
For instance, in the radio spectrum example, buyers would continually change locations and so past
payoff success may not guarantee future payoff success. For simplicity, we consider a fixed network
and a one-shot game. Additional discussion of such a repeated game can be found in the conclusion.

Remark 2. In Corollaries 1 and 2, buyers randomly decide which seller’s auction to participate in. Alternatively,
one could allow buyers to choose sellers by best responding to the choices of other buyers. Here, each buyer
would have full information about everything except for other buyers’ valuations. Instead, each buyer would
simply know the distribution from which other buyers’ valuations were drawn from. One could then ask if
inefficient equilibria resist to reasonable equilibrium selection criteria. Example 1 below illustrates that in fact
such inefficient equilibria would resist reasonable equilibrium selection criteria. In this example, there is one
buyer who is linked to two different sellers. Each seller has the same number of goods for sale and the same
number of additional buyer links. Thus, a priori there is no way for the multiple linked buyers to distinguish
between the two sellers. Thus, if he is given the opportunity to choose which seller he will purchase from, he
can do no better than to choose at random. However, such a random choice would be inefficient half of the
time as, given the other buyers actual valuations, one auction is clearly more efficient for him to participate in.
Thus, the separate auctions do not provide the buyer with the information needed to make an efficient choice.

The following example illustrates Proposition 3 and Corollary 2.

Example 1. Let M = {1, 2}, N = {1, 2, 3, 4, 5}, v = {1, 6, 5, 4, 3}, Mi = {2, 2}, s1 = 2, s2 = 1,
and g = {11, 12, 13, 23, 24, 25}; this graph is represented by Figure 1. In Figure 1, the nodes and numbers on
the bottom represent buyers and their corresponding valuations. The nodes and numbers on the top represent
sellers and the s1, s2 values; both s1 and s2 appear above each seller as each has two goods for sale which are of
two different priorities.

Efficiency requires that buyer 3 participate in seller 1’s auction. Such an allocation results in the sum of the
payoffs to all buyers and sellers equal to 6 · 2 + 5 · 1 + 4 · 2 + 3 · 1 = 28, while, if 3 chooses seller 2’s auction,
the sum of payoffs equals 27. Here, if 3 chooses seller 1’s auction, then he displaces buyer 1 who has quite a
low valuation while, if 3 chooses seller 2’s auction, then he displaces buyer 5 whose valuation is much higher.
Thus, it would only be efficient if he chooses auction 1.

Figure 1. Buyer–seller graph.

3.2. Integrated Auction with Pauses

Next, we consider the integrated auction with pauses and show that its unique Bayes–Nash
equilibrium allocation is efficient. We assume here that sk · vj is unique for all k and j.

Proposition 4. In the integrated auction with pauses, there is a unique Bayes–Nash equilibrium in bids.
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In the integrated auction with pauses, buyers with multiple links will participate in all of their
linked sellers’ auctions. These buyers will eventually have their auctions paused at their corresponding
drop out prices or bids. These buyers can then choose to participate in the auction which is best. As we
have assumed that sk · vj is unique, this choice will also be unique as will be the corresponding bids,
thus resulting in a unique Bayes–Nash equilibrium.

Proposition 5. The Bayes–Nash equilibrium of the integrated auction with pauses is efficient.

The proof proceeds by induction showing that if all other buyers have made the efficient decision,
then the buyer with the highest valuation will also make the correct decision of which auction to
participate in when his auctions are paused at his drop out prices. Inductively, the buyer with the
second highest valuation will also have incentive to make the correct or efficient decision of which
auction to join. Thus, the integrated auction with pauses has an efficient equilibrium.

Next, we consider an example in which one buyer is linked to or in range of two different sellers
and efficiency requires that he buy from the second seller which will result in not all goods being sold.
If the buyer makes such a decision randomly, then efficiency will result only half of the time. However,
we show that the equilibrium of the integrated auction with pauses is efficient.

Example 2. Let M = {1, 2}, N = {1, 2, 3, 4, 5, 6}, v = {7, 6, 5, 4, 3, 2.1}, Mi = {3, 3}, s1 = 3, s2 = 2,
s3 = 1, and g = {11, 12, 13, 23, 24, 25, 26}; see Figure 2. In this graph, buyer 3 can buy from either seller
1 or 2. However, it is efficient for buyer 3 to buy from seller 2 and thus not all of the goods will be sold.
To see this, we sum up the buyers’ valuations. If buyer 3 purchases from seller 1, then the buyer with the
highest valuation is assigned the top priority from each seller and this results in a sum of buyers’ valuations of
SW1 = 3 × 7 + 2 × 6 + 1 × 5 + 3 × 4 + 2 × 3 + 1 × 2.1 = 58.1. If instead buyer 3 purchases from
seller 2, then the sum of the buyers’ valuations is SW2 = 3 × 7 + 2 × 6 + 3 × 5 + 2 × 4 + 1 × 3 = 59.
Even though seller 1 is unable to sell his last unit, the sum of the payoffs is highest when buyer 3 purchases from
seller 2 and is able to receive the top priority for the good.

Consider the integrated auction with pauses. Here, the two auctions will take place separately with buyer 3
bidding in both and with both auctions paused at his corresponding drop out bids. Bidder 3 will then compare
his payoff in the two auctions. In 1’s auction, b1

3 = 2.5 and u1
3 = 5. In 2’s auction, buyer 4 will drop out at

price 4− 2
3 (4− 2.55) = 3.03. Thus, 3’s drop out price in this auction is b2

3 > 3.03 with corresponding payoff
3(5− 3.03) = 5.91. Thus, bidder 3 will choose to participate in 2’s auction, which is efficient.

Figure 2. Buyer–seller graph.
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Remark 3. We determine which auctions are efficient when people have limited information ahead of time about
others. For instance, a buyer may not know or have a good estimate of how many other buyers are linked to
each seller and also may not know or have a good estimate of what these other buyers’ valuations are. In the
wireless data example, people frequently change locations and so a buyer may not be able to accurately estimate
which other buyers are in a given cell tower’s range and may not be able to accurately estimate auction payoffs in
advance.

When information is limited, the integrated auction with pauses seems to be the best auction if
efficiency is the main goal; Proposition 5 shows that this auction’s equilibrium is efficient. Note that
this auction does not require a buyer to have information ahead of time, but rather a multiple linked
buyer will learn during the auction’s pauses which seller’s auction is best to remain in. Alternatively,
in the separate auctions case, a buyer with limited information will not know or learn which auction is
best. Such a buyer is likely to make his decision of which auction to participate in randomly, and the
resulting equilibrium may be inefficient as shown in Propositions 2 and 3.

4. Conclusions

We compared the efficiency of GSP auctions over a network. Results showed that the separate
auctions are unlikely to be efficient unless multiple-linked agents are able to correctly forecast which
auctions to join. However, the integrated auction with pauses has a unique equilibrium which is efficient
as agents have full information about link payoffs when they decide which auction to compete in.

An interesting extension of this model would be to allow the auction game to be repeated while
additionally allowing buyers to form and sever ties to sellers; such network changes could result from
a buyer changing locations in the radio spectrum example. Thus, each period, the network would
be slightly different and each period an auction would take place. One could then determine which
networks players are more likely to spend time in.

Additionally, agents with multiple ties the previous period could have a preference for a previous
seller’s auction if they received a high enough payoff. One could then analyze how such a preference
for the previous seller’s auction influences the efficiency of the equilibrium. For instance, in the
separate auctions case, a buyer with multiple links could learn which seller’s auctions on average gave
him a higher payoff and could then be more likely to choose to participate in these auctions in the
future. This choice could increase the likelihood of efficiency in the separate auctions.

Funding: Financial support from the NSF under grant SES-1343380 is gratefully acknowledged.
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Appendix A

Appendix A.1. Proof of Lemma 1

Proof. If mi < ni, then the bidders with the lowest valuations who do not win a good have incentive
to bid their own values as their price for the good equals zero and so bj = vj for these bidders. Assume
mi ≥ ni, then again the bidder with the lowest valuation pays price 0 and bids her own value. In either
case, consider the decision of when to drop out for any other bidder, say bidder j. Let the number of
bidders remaining in the auction (including j) equal k. Thus, if j is the next to drop out, then he will
win a good with priority k at a price of bk+1 giving him a payoff of sk(vj − bk+1). Or j could stay in
the auction. He will be willing to stay in the auction and win a good with priority k− 1 as long as the
price, say b, he pays gives him a payoff of at least sk(vj − bk+1). Thus, j stays in the auction as long as
sk−1(vj − b) ≥ sk(vj − bk+1) or as long as b ≤ vj − sk

sk−1
(vj − bk+1) or j will drop out of the auction at

price bj = vj − sk
sk−1

(vj − bk+1). As vj − sk
sk−1

(vj − bk+1) is increasing in vj it will always be that agents
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with larger valuations stay in the auction longer for each priority position. Thus, the agent n(j) will
receive priority position j.

Appendix A.2. Proof of Proposition 1

Proof. Let A∗(g) be an efficient allocation of goods. In this allocation, let buyer j ∈ N receive a good
from seller ij ∈ M. Next, consider the separate GSP ascending-bid auctions. Before the auctions take
place, each buyer with links to multiple sellers must decide which auction to participate in. Let buyer
j ∈ N participate in the auction of seller ij ∈ M. Thus, the buyers participating in seller i’s auction will
be the same buyers who are assigned a good from i in allocation A∗(g).

Consider seller i’s auction. From Lemma 1, we know that buyer n(j) will receive a good with
priority position j for all n(j) ≤ mi. Thus, the buyers with the largest valuations receive the best
priority levels. Thus, in seller i’s auction, it must be that the sum of the payoffs to seller i and to all
of his buyers equals ∑mi

j=1 sj · v(j) which is as large as possible. Therefore, seller i’s auction is efficient.
Recall that in the separate auctions, the buyers with multiple links were assigned to the same sellers as
in the efficient allocation, thus it must be that the sum of the payoffs to all sellers and to all buyers
is also as large as possible, which means that the Bayes–Nash equilibrium of the separate auctions is
efficient.

Appendix A.3. Proof of Proposition 2

Proof. Let there be mî buyer’s participating in î′s auction and rename these agents {1, 2, ..., mî} so
that vj > vj+1 for all j ∈ {1, 2, ..., mî − 1}. If j chooses not to participate in î’s auction, then from
Lemma 1 the sum of the payoffs to seller î and his buyers at the unique Bayes–Nash equilibrium
equals ∑

mî
k=1 sk · vk. If j enters this auction, then buyer mî is displaced; assume then that j is the k′th

highest bidder. Thus, when j enters the auction the sum of the payoffs to seller î and his buyers equals
s1 · v1 + s2 · v2 + ... + sk′−1 · vk′−1 + sk′ · vj + sk′+1 · vk′ + ... + smî

· vmî−1. As vj > vk′ , vk′ > vk′+1, ...,
vmî−1 > vmî

it must be that s1 · v1 + s2 · v2 + ... + sk′−1 · vk′−1 + sk′ · vj + sk′+1 · vk′ + ... + smî
· vmî−1 >

∑
mî
k=1 sk · vk. Therefore, the sum of payoffs to all buyers and sellers is higher if j joins î’s auction than if

he joins another auction where no one is displaced. Note that we do not consider the payoffs from the
other sellers’ auctions since the payoffs will not change regardless of î’s participation as there is no
displacement and mi < ni implies all items are always sold; thus, the only auction where j’s actions
affect payoffs is î ’s auction. If j does not join î’s auction, then the resulting B-N equilibrium allocation
is inefficient.

Appendix A.4. Proof of Proposition 3

Proof. Let the set of sellers that j is linked to be {i1, i2, ..., iγ} and assume all other buyers have already
decided which auction to participate in. Buyer j makes the efficient choice if he chooses to join the
auction such that the corresponding B-N equilibrium allocation maximizes social welfare. If j joins
iβ’s auction, then assume j is the kβ highest bidder. From Lemma 1, at the B-N equilibrium of any
separate auction the highest valuation buyer wins the highest priority good. Thus, social welfare
or the sum of all buyer and seller payoffs at the B-N equilibrium when j joins iβ’s auction equals

SW
iβ

j = ∑
kβ−1
i=1 si · v

iβ

(i) + skβ
· vj + ∑

miβ
i=kβ+1 si · v

iβ

(i−1) + ∑`∈M,` 6=iβ
(∑m`

i=1(si · v`(i))).
Buyer j makes the efficient choice if he chooses auction i∗ ∈ {i1, i2, ..., iγ} which solves

maxiβ∈{i1,i2,...,iγ}SW
iβ

j ; note that it is possible that there are multiple such i∗ which maximize social
welfare and thus multiple efficient equilibria. If j chooses any auction i 6= i∗, then the resulting
equilibrium allocation will be inefficient.

Appendix A.5. Proof of Proposition 4

Proof. Let the set of buyers with links to multiple sellers be {j1, ..., jγ}. Rename these buyers so that
vj1 > vj2 > ... > vjγ . Let all seller’s auctions start at price 0 and increase. Pause each auction when the
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first buyer with multiple links drops out. Given our assumption on valuations, buyer jγ must reach
his drop out price first in all of the auctions that he participates in. Consider buyer jγ and all of the
buyers participating in the same auctions as jγ with valuations below his. Each of these buyers will
bid according to Lemma 1 as by construction no buyer with a lower bid or valuation will be able to
exit the auction after bidding; thus jγ’s payoff will not increase from a lower ranked bidder exiting.
Buyer jγ will then compare his payoffs in his auctions and will choose the auction with the highest
payoff to participate in. He will exit the other auctions. Note that jγ’s auction with the highest payoff
will be unique as we have assumed that sk · vj is unique for all k and j; thus, jγ’s payoff will not be the
same in multiple auctions.

If there is another bidder who has also announced drop out bids in all of his auctions, then he can
also decide which auction to participate in. As no multiple linked sellers have identical valuations,
these auctions will be different from the ones that jγ was in. Next, all auctions for whom a multiple
linked bidder has dropped out or exited will continue, and any auction with multiple linked bidders
where no such bidder has made an exiting decision will remain paused. Note that if an auction has no
multiple liked bidders, it will not pause and will operate as a separate auction with bids as given by
Lemma 1.

Auctions continue until the next buyer with multiple links drops out. By analysis similar to
that above, bidder jγ−1 must reach his drop out price next in all of his auctions. Bidder jγ−1 and any
bidders who have valuations below jγ−1 will bid according to Lemma 1; bidder jγ−1 will then choose
his best auction and will exit the other auctions. This process continues until all multiple linked buyers
have been assigned to only one auction. As buyers are always removed from auctions before those
with higher valuations bid, no bidder’s payoff increases after another bidder exits and so all buyers
have incentive to bid as given by Lemma 1. Thus, the integrated auction with pauses has a unique
Bayes–Nash equilibrium in bids.

Appendix A.6. Proof of Proposition 5

Proof. Let only buyers {j1, ..., jγ} be linked to multiple sellers. Rename the buyers so that vj1 > vj2 >

... > vjγ . The proof proceeds by induction. Assume buyers j2, ..., jk have already decided which auction
to participate in and assume that they have each made the efficient choice. We show that buyer j1
will also make the efficient choice. We do this by computing j1’s payoff from two different sellers and
showing that the seller that gives j1 a higher payoff is also the seller that society prefers j1 purchase
from in terms of social welfare.

Buyer j1’s payoff from seller î’s auction is uî
j1
= sk̂(vj1 − (vî

(k̂)
− sk̂+1

sk̂
(vî

(k̂)
− (vî

(k̂+1)
− sk̂+2

sk̂+1
(vî

(k̂+1)
−

... − (vî
(mî−1) −

smî
smî−1

(vî
(mî−1) − vî

(mî)
)...) = sk̂(vj1 − vî

(k̂)
) + ∑

mî
i=k̂+1

si(vî
(i−1) − vî

(i)) where buyer j1

receives a good in î’s auction with priority k̂. Note that bids of all buyers are computed as in Lemma 1
and the bids of those who receive a good with priority position greater than k̂ are plugged into the
formula for j1’s bid. Buyer j′1s payoff from ĩ’s auction is uĩ

j1
= sk̃(vj1 − vĩ

(k̃)
) + ∑

mĩ
i=k̃+1

si(vĩ
(i−1) − vĩ

(i))

where buyer j1 receives a good in ĩ’s auction with priority k̃. Here, uî
j1
− uĩ

j1
= sk̂(vj1 − vî

(k̂)
) +

∑
mî
i=k̂+1

si(vî
(i−1) − vî

(i))− (sk̃(vj1 − vĩ
(k̃)

) + ∑
mĩ
i=k̃+1

si(vĩ
(i−1) − vĩ

(i))). Let SW î
j1

represent social welfare

when j1 participates in î’s auction and all other agents are assigned to an auction efficiently then
SW î

j1
= ∑k̂−1

i=1 si · vî
(i) + sk̂ · vj1 + ∑

mî
i=k̂+1

si · vî
(i−1) + ∑`∈M,` 6=î(∑

m`
i=1(si · v`(i))) and SW ĩ

j1
= ∑k̃−1

i=1 si · vĩ
(i) +

sk̃ · vj1 + ∑
mĩ
i=k̃+1

si · vĩ
(i−1) + ∑`∈M,` 6=ĩ(∑

m`
i=1(si · v`(i))). Thus, uî

j1
− uĩ

j1
= SW î

j1
− SW ĩ

j1
and agent j1 will

make the efficient choice.
Next, assume that agents j3, ..., jγ have already decided which auction to participate in and assume

that they have each made the efficient choice. We show that agent j2 will also make the efficient choice.
Buyer j2’s payoff from seller î′’s auction is uî

j2
= sk̂(vj2 − vî

(k̂)
) + ∑

mî
i=k̂+1

si(vî
(i−1) − vî

(i)) where buyer

j2 receives a good in î’s auction with priority k̂. Buyer j′2s payoff from ĩ’s auction is uĩ
j2
= sk̃(vj2 −
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vĩ
(k̃)

) + ∑
mĩ
i=k̃+1

si(vĩ
(i−1) − vĩ

(i)) where buyer j2 receives a good in ĩ’s auction with priority k̃. Here,

uî
j2
− uĩ

j2
= sk̂(vj2 − vî

(k̂)
)+∑

mî
i=k̂+1

si(vî
(i−1)− vî

(i))− (sk̃(vj2 − vĩ
(k̃)

)+∑
mĩ
i=k̃+1

si(vĩ
(i−1)− vĩ

(i))). Let SW î
j2

represent social welfare when j2 participates in î’s auction and all other agents are assigned to an auction
efficiently then SW î

j2
= ∑k̂−1

i=1 si · vî
(i) + sk̂ · vj2 +∑

mî
i=k̂+1

si · vî
(i−1) +∑`∈M,` 6=î(∑

m`
i=1(si · v`(i))) and SW ĩ

j2
=

∑k̃−1
i=1 si · vĩ

(i) + sk̃ · vj2 + ∑
mĩ
i=k̃+1

si · vĩ
(i−1) + ∑`∈M,` 6=ĩ(∑

m`
i=1(si · v`(i))). Thus, uî

j2
− uĩ

j2
= SW î

j2
− SW ĩ

j2
and

agent j2 will make the efficient choice. Similarly, if all agents below agent j ∈ {j3, ..., jγ} make the
efficient choice, then so will agent j. Thus, the Bayes–Nash equilibrium of the integrated auction with
pauses is efficient.
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