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Abstract: A simple expression is derived for the optimal strategy in the minimum effort game.
This maps from player beliefs to an optimal effort level. From this expression the set of Nash
equilibria in the game is fully characterized. All Nash equilibria are symmetric and involve at most
two actions being played with positive probability. We discuss how our expression for the optimal
strategy can help inform on the comparative statics of a change in the number of players and effort
cost benefit ratio.
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1. Introduction

The minimum effort game, also known as the weak link game, is a stylized way to model
the production of any good whose output depends on the weakest component of production.
Many goods have this property and so the game has been widely applied over the last thirty years
or so. For example, it has been used to look at the provision of public goods (Hirschleifer 1983 [1]),
performance within organizations (Knez and Camerer 1994 [2], Brandts and Cooper 2006 [3]) and
performance within nations (Bryant 1983 [4], Cooper and John 1988 [5]). The game is also the subject
of a large experimental literature that has primarily focused on the difficulties of achieving coordination
on the Pareto efficient outcome (e.g., Van Huyck, Battalio and Beil 1990 [6], Devetag and Ortmann 2007 [7]).

The key issue in the minimum effort game is that of equilibrium selection (Van Huyck et al.
1990 [6]). The Pareto efficient outcome is for every player to choose highest effort, and, crucially, unlike a
linear public good game (or prisoners dilemma), this outcome is a Nash equilibrium. Specifically, it is
individually rational for a player to choose high effort if all others also chose high effort. Choosing high
effort is, however, ‘risky’ because it only takes one player to choose low effort for this costly effort to
have been wasted. Play often, therefore, converges on the inefficient equilibrium in which everyone
chooses low effort (Camerer 2003 [8]), although there are exceptions (e.g., Engelmann and Normann
2010 [9]).

The equilibrium selection issue means the minimum effort game is of interest for, at least
two distinct reasons. First, from an applied perspective it gives us crucial insight on the difficulties of
maintaining cooperation in small groups. As such, it provides an ideal test-bed for interventions that
can potentially increase cooperation (e.g., Chaudhuri and Paichayontvijit 2010 [10]). Second, from a
theoretical perspective the minimum effort game provides a simple and tractable setting with which
to test theories of equilibrium selection and learning in games (e.g., Monderer and Shapley 1996 [11],
Anderson, Goeree and Holt 2001 [12], Crawford 2001 [13], Goerg, Neugebauer and Sadrieh 2016 [14]).

Given the importance of the minimum effort game it is crucial to understand individual incentives
within the game as completely as possible. The current paper adds to that understanding with two
related results—one on the set of equilibria and a second on the optimal strategy as a function of beliefs.
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The set of pure strategy Nash equilibria in the minimum effort game is trivial and well known.
Anderson et al. (2001) [12] detail the set of symmetric mixed strategy Nash equilibria in a game with
a continuum of actions (see their Appendix). In the current paper we fully characterize the set of
mixed strategy Nash equilibria in games with a finite action set. It is shown (Theorem 1) that such
equilibria take a very particular form: they are symmetric, involve players randomizing over two actions,
and the probability of choosing an action depends solely on the cost benefit ratio and the number of
players. From a technical point of view, the main value added of our result is to show that all equilibria
are symmetric.

Theorem 1 is not a surprise given the analysis of Anderson et al. (2001) [12]. We provide, however,
an independent proof which we argue can provide additional insight. In particular, our second
main result (Theorem 2) provides a general expression for the optimal strategy in the minimum
effort game. This expression maps from a player’s beliefs to an optimal strategy and provides a very
specific trade-off between optimal effort, the number of players and the cost benefit ratio. To put this
result in context we highlight that surprisingly little is known about how changes in the costs and
benefits of effort translate into behavior in the minimum effort game. This is a fundamental gap in
our understanding. We argue that our results provide a framework around which this issue can be
explored in more detail. Arguing this point makes more sense after stating the results and so we return
to this issue in Section 4.

We proceed as follows: Section 2 introduces the minimum effort game, Section 3 details the set of
equilibria, Section 4 details the optimal strategy and applications. Section 5 concludes.

2. Minimum Effort Game

In the minimum effort game there is a set of players N = {1, ..., n} who must simultaneously and
independently choose an action from set A = {1, 2, ..., K}. The choice of action is usually interpreted
as an effort level where 1 is low effort and K is high effort. Let ei denote the effort level chosen by
player i ∈ N, and let e−i = (e1, ., ei−1, ei+1, .., en) be a vector summarizing the effort levels of the other
n− 1 players. The payoff of any player i ∈ N is given by

ui(ei, e−i) = b min
j∈N

ej − cei (1)

where b > c > 0 are constants. The payoff of a player thus depends on his own effort level and on the
minimum effort level in the group. One can think of c as the cost of effort and b the benefit of effort.

A (mixed) strategy is given by a probability distribution over the set of actions A. I shall denote
by σi(k) the probability that player i ∈ N chooses effort level k if playing strategy σi. A strategy profile
is given by a vector detailing the strategy of each player σ = (σ1, ..., σn). For any i ∈ N, let σ−i =

(σ1, ., σi−1, σi+1, .., σn) be a vector summarizing the strategies of the other n − 1 players. The von
Neumann–Morgenstern expected payoff of player i ∈ N is given by

Ui(σi, σ−i) :=
K

∑
e1=1

...
K

∑
en=1

σ1(e1)...σn (en) ui (ei, e−i) . (2)

With a slight abuse of notation, we will denote by Ui(k, σ−i) the expected payoff of player i if he
chooses effort level k, i.e., if σi(k) = 1.

Strategy profile σ∗ =
(
σ∗1 , ..., σ∗n

)
is a Nash equilibrium if

Ui(σ
∗
i , σ∗−i) ≥ Ui(σi, σ∗−i)

for any σi ∈ ∆(A). Nash equilibrium σ∗ is a pure strategy Nash equilibrium if each σ∗i is degenerate
(i.e., for all i ∈ N there exists k ∈ A such that σ∗i (k) = 1). Nash equilibrium σ∗ is a symmetric Nash
equilibrium if σ∗i = σ∗j for all i, j ∈ N (i.e., σ∗i (k) = σ∗j (k) for all k ∈ A and i, j ∈ N).
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3. Nash Equilibria in the Minimum Effort Game

We begin with a useful lemma. In order to state the result more succinctly we introduce some
notation. Given any player i ∈ N, strategy σi, and effort level k ∈ A, let

Φi (k|σi) :=
K

∑
h=k

σi(h)

denote the probability player i will choose an effort level of k or above. Given any player i ∈ N,
strategy profile σ, and effort level k ∈ A, let

Mi(k|σ−i) := ∏
j∈N
j 6=i

Φi
(
k|σj

)
. (3)

In interpretation Mi(k|σ−i) is the probability that the minimum effort level chosen by players other
than i will be k or above.

Lemma 1. Consider any player i ∈ N, strategy profile σ and effort level 1 < k ≤ K,

Ui(k, σ−i) T Ui(k− 1, σ−i) if and only if Mi(k|σ−i) T
c
b

. (4)

Proof. For any effort level k < K, let

mi(k) = Mi(k|σ−i)−Mi(k + 1|σ−i).

Let mi(K) = Mi(K). Please note that mi(k) is the probability the minimum effort level chosen by
players other than i will be k. Consider any effort level k where K ≥ k > 1. The expected payoff of
player i if she chooses effort level k can be written

Ui(k, σ−i) = b

(
kMi(k|σ−i) +

k−1

∑
h=1

hmi(h)

)
− ck. (5)

The expected payoff of player i if she chooses effort level k− 1 can be written1

Ui(k− 1, σ−i) = b

(
(k− 1) Mi(k|σ−i) +

k−1

∑
h=1

hmi(h)

)
− c (k− 1) . (6)

From Equations (5) and (6) we get

Ui(k, σ−i)−Ui(k− 1, σ−i) = bMi(k|σ−i)− c. (7)

for all K ≥ k > 1. The statement of the Lemma follows immediately.

Lemma 1 provides the key ingredient with which to derive the set of Nash equilibria. This set
is detailed in our next result. Part (i) of this result is trivial and not new. Part (ii) is analogous to the
result of Anderson et al. (2001) [12] for games with a continuous actions set but our method of proof
is different. Technically, the method of Anderson et al. (2001) [12] focuses on symmetric equilibria.
We show that all equilibria are symmetric and so close that possible loophole.

1 Using Mi(k− 1|σ−i) = mi(k− 1) + Mi(k|σ−i).
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Theorem 1. Strategy profile σ∗ is a Nash equilibrium of the weak link game if and only if either:

(i) There exists effort level k ∈ A such that

σ∗i (k) = 1 for all i ∈ N.

(ii) There exist effort levels k, l ∈ A, where k > l, such that

σ∗i (k) =
( c

b

) 1
n−1 and σ∗i (l) = 1−

( c
b

) 1
n−1 for all i ∈ N.

Proof. We take as given a Nash equilibrium σ∗. Please note that, by definition, Mi(k|σ∗−i) ≥ Mi(k +
1|σ∗−i) for all i and k < K. Also, Mi(1|σ∗−i) = 1 > c

b . These observations leave us with three possibilities
to consider.

Case 1. Suppose that there exists some player i ∈ N and effort level k < K such that Mi(k|σ∗−i) >
c
b

and Mi(k + 1|σ∗−i) <
c
b .

Recursively applying relation (4) we see that Ui(k, σ∗−i) > Ui(h, σ∗−i) for any 1 ≤ h < k. Similarly,
we see that Ui(k, σ∗−i) > Ui(h, σ∗−i) for any K ≥ h > k. Given that σ∗ is a Nash equilibrium,
this implies that σ∗i (k) = 1. Consider any player j 6= i. That σ∗i (k) = 1 implies Mj(k + 1|σ∗−j) = 0.
Applying relation (4) we know Uj(k, σ∗−j) > Ui(h, σ∗−j) for any K ≥ h > k. Hence, σ∗j (h) = 0 for all
K ≥ h > k. By definition, therefore, (see Equation (3))

σ∗i (k)Mi(k|σ∗−i) = σ∗j (k)Mj(k|σ∗−j). (8)

Using σ∗i (k) = 1 gives Mj(k|σ∗−j) ≥ Mi(k|σ∗−i) >
c
b . Applying relation (4) we see that Uj(k, σ∗−j) >

Uj(h, σ∗−j) for any 1 ≤ h < k. Hence, σ∗j (k) = 1. Given that player j was chosen without loss of
generality we can see that σ∗j (k) = 1 for all j ∈ N, as given in part (i) of the statement of the Theorem.

Case 2. Suppose that there exists some player i ∈ N such that Mi(K|σ∗−i) > c
b . This is a minor

variant on case 1. Applying relation (4) we see that Ui(K, σ∗−i) > Ui(h, σ∗−i) for any 1 ≤ h < K. Thus,
σ∗i (K) = 1. Consider any player j 6= i. By definition

σ∗i (K)Mi(K|σ∗−i) = σ∗j (K)Mj(K|σ∗−j).

Using σ∗i (k) = 1 gives Mj(K|σ∗−j) ≥ Mi(K|σ∗−i) > c
b . Applying relation (4) we see that

Uj(K, σ∗−j) > Uj(h, σ∗−j) for any 1 ≤ h < K. Hence, σ∗j (K) = 1. Given that player j was chosen
without loss of generality we know that σ∗j (K) = 1 for all j ∈ N, as given in part (i) of the statement of
the Theorem.

Case 3. For every player i ∈ N there exists a non-empty set of actions Xi ⊆ A such that Mi(k|σ∗−i) =
c
b

for every k ∈ Xi (and Mi(k|σ∗−i) 6=
c
b for every k /∈ Xi).

Consider any player i ∈ N. Let k = max Xi. We know Ui(k, σ∗−i) > Ui(h, σ∗−i) for any K ≥ h > k.
Thus, σ∗i (h) = 0 for any K ≥ h > k. This implies that Mj(h|σ∗−i) = 0 for any j 6= i and any K ≥ h > k.
So, max Xj ≤ max Xi. Given, however, that players i and j were chosen without loss of generality we
obtain max Xj = k for all j ∈ N. Moreover, we know

σ∗i (k)Mi(k|σ∗−i) = σ∗j (k)Mj(k|σ∗−j) (9)

for all i, j ∈ N. We also know, Mi(k|σ∗−i) = Mj(k|σ∗−j) = c
b . Thus, σ∗i (k) = σ∗j (k) for all i, j ∈ N.

Let β := σ∗i (k). Given that Mi(k + 1|σ∗−i) 6=
c
b we know β > 0.
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For every player j ∈ N let lj = min Xj. Select a player i for which li ≤ lj for all j ∈ N. Let l = li− 1.
Given that Mi(k|σ∗−i) = Mi(l + 1|σ∗−i) = c

b it must be that σ∗j (h) = 0 for all l < h < k and j 6= i.

By assumption, Mj(h|σ∗−j) > c
b for all h ≤ l and j 6= i. Thus, applying relation (4), we know that

σ∗j (h) = 0 for all h < l and j 6= i. Putting this together tells us that σ∗j (h) = 0 for all h 6= l, k and j 6= i.

Thus, σ∗j (l) = 1− β for all j 6= i. If σ∗j (l) = 0 then β = 1 and Mi(k|σ∗−j) = 1 giving a contradiction.

Thus, σ∗j (l) > 0. Applying Lemma 1, it must be that Mj(k|σ∗−j) = Mj(l + 1|σ∗−j) =
c
b for all j 6= i. So,

repeating the previous arguments, we get σ∗i (h) = 0 for all h 6= l, k, and σ∗i (l) = 1− β.
To summarize, we know that σ∗j (k) = β and σ∗j (l) = 1− β for all j ∈ N. We also know that

Mj(k|σ∗−j) =
c
b for all j ∈ N. Putting this together gives

Mj(k|σ∗−j) = βn−1 =
c
b

.

We obtain an equilibrium as given in part (ii) of the statement of the Theorem. It is clear that k, l can
take any plausible values, where k > l.

Theorem 1 part (i) demonstrates that there are K pure strategy Nash equilibria and part (ii)
demonstrates that there are K(K − 1)/2 mixed strategy equilibria. This gives a total of K(K + 1)/2
equilibria in the minimum effort game. The three most immediate properties of the Nash equilibria are:
(a) all of the equilibria are symmetric, (b) at most two effort levels are chosen with positive probability,
and (c) the equilibrium probability of choosing an effort level depends solely on the cost benefit ratio
and the number of players (and is independent of the effort level). As Anderson et al. (2001) [12] point
out these three properties have some interesting implications that are worth briefly exploring. To focus
the discussion, for any k, l ∈ A where k > l, denote by Ek the Nash equilibrium strategy profile σ∗

where σ∗i (k) = 1 for all i, and by El,k the profile where σ∗i (k), σ∗i (l) > 0.
An important implication of properties (a) and (b), and particularly of symmetry, is that we can

easily Pareto rank the set of Nash equilibria. It is well known that the pure strategy Nash equilibria of
the weak link game are Pareto ranked (Van Huyck, Battalio and Beil 1990 [6]). Indeed, this is one of the
main reasons that the weak link game has been much studied. Theorem 1 implies that all the Nash
equilibria are Pareto ranked. Specifically, given equilibrium Ek the minimum effort level is clearly k.
Hence, Ui(Ek) = (b− c)k for all i ∈ N. Given equilibrium El,k we know (see the proof of Theorem 1)
that any player i ∈ N is indifferent between choosing effort level l and effort level k. If they choose
effort level l then the minimum effort level is l. Hence Ui(El,k) = (b− c)l = Ui(El) for all i ∈ N and
any 1 ≤ l < k ≤ K. Thus, equilibria can be Pareto ranked by ‘lowest’ effort level.

For any l ∈ A there are K + 1− l Nash equilibria with expected payoff (b− c) l. The higher the
expected payoff, therefore, the fewer Nash equilibria with that expected payoff. While the expected
payoff is determined solely by the lowest effort level, l, it is worth appreciating that the realized payoff
may depend on the higher effort level, k. Specifically, the payoff of player i if he chooses effort level
k will be either bk − ck or bl − ck. Thus, the difference between minimum and maximum possible
realized payoff is increasing in the difference between l and k. We can, thus, rank equilibria in terms of
expected payoff and ‘risk’.

Consider the comparative statics of equilibrium El,k. Anderson et al. (2001) [12] highlight the
counter-intuitive property that an increase in c

b leads to an increase in the probability of the higher
effort level k. Another counter-intuitive property concerns the number of players n. The larger is n
then the larger is the equilibrium probability of choosing the higher effort level. Indeed, as n → ∞
we have σ∗i (k) → 1. So, individual behavior ‘converges’ on a pure strategy equilibrium. Crucially,
however, equilibrium payoffs do not change with n and are equal to (b− c)l. To understand this better



Games 2018, 9, 42 6 of 11

we need to look at aggregate behavior. The probability with which a player i can expect to coordinate
with others does not depend on n

Pr (all choose k|player i chooses k) =
c
b

.

Hence an increase in n does not change expected payoffs. The probability of all players coordinating
on high effort is increasing with n but converges to c

b

Pr(all players choose k) =
( c

b

) n
n−1 .

Aggregate behavior, therefore, does not converge on a pure strategy equilibrium.
The counter-intuitive properties discussed above follow, in a technical sense, from the need to

keep a player indifferent between choosing the low and high effort levels l and k. The payoff from
the lowest effort level is fixed at (b− c)l and so if, say, the benefit from coordinating on high effort is
reduced the probability of coordinating on high effort needs to increase to compensate. Hence we see
an increased equilibrium probability of each player choosing high effort. This illustrates that incentives
to choose high effort are driven by the number of players and the cost benefit ratio. In the following
section we pick this up and move beyond equilibrium analysis.

4. Beliefs and Optimal Effort

Recall that the equilibrium probability of choosing an effort level depends solely on the cost
benefit ratio and the number of players. With this in mind, consider, for a given k ∈ A, the equilibria
E1,k, E2,k, ..., Ek−1,k. For each of these equilibria, the probability with which player i chooses effort level
k is the same. This suggests that player i’s incentives to choose k does not depend on what effort level
other players might be choosing, as long as it is less than k.2 This allows us to say something about the
optimal effort level of a player, even if play is not consistent with Nash equilibrium. We will frame
this result as a mapping from a player’s ‘beliefs about others’ to an optimal effort level. This framing
seems pertinent given the focus on beliefs in the previous literature (Crawford 1995 [15], Crawford
and Broseta 1998 [16], Crawford 2001 [13], Costa-Gomes, Crawford and Iriberri 2009 [17]).

For every player i ∈ N, assume that there is a function fi : A → [0, 1] where fi(k) is the
probability player i puts on a player j 6= i choosing effort level k. For example, if fi(1) = 0.5 then
player i expects each of the other n− 1 players to independently choose effort 1 with probability 0.5.
Implicitly, this assumes that player i expects the actions of others to be uncorrelated and symmetric.
These assumptions are very natural in the experimental lab where interaction is independent
and anonymous. Function fi will be referred to as the beliefs of player i. It will be assumed ∑K

h=1 fi(h) = 1
for all i. For any, k ∈ A, let Fi(k) = ∑k

h=1 fi(h) denote the probability that player i puts on a player
choosing effort level k or less.

Given the beliefs of a player we can calculate his expected payoff. With a slight abuse of notation
denote by Ui(k| fi) the expected payoff of player i if he chooses effort level k and his beliefs are
given by fi. Please note that if strategy profile σ satisfies σj(h) = fi(h) for all j 6= i and h ∈ A then
Ui(k| fi) = Ui (k, σ−i). In general, however, player i’s beliefs may not correspond to the actual behavior
of other players. The following result derives the optimal effort level of a player given his beliefs and
is the second main result of the paper.

2 As we have just seen, his payoff will depend on the effort level of others.
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Theorem 2. Consider any player i ∈ N. If fi denotes the beliefs of player i and

k∗ = min

{
k ∈ A

∣∣∣∣∣Fi(k) ≥ 1−
( c

b

) 1
n−1

}

then Ui(k∗| fi) ≥ Ui(k| fi) for all k ∈ A.

Proof. With a slight abuse of notation, for all K ≥ k > 1 let

Mi (k| fi) = (1− Fi(k− 1))n−1 (10)

denote the probability with which player i believes the minimum choice of others will be k or above.
Set Mi(1| fi) = 1. If strategy profile σ satisfies σj(h) = fi(h) for all j 6= i then Mi(k|σ−i) = Mi (k| fi).
This allows us to apply Lemma 1.

Consider any k < k∗. By construction3

Fi(k) < 1−
( c

b

) 1
n−1 .

Thus, using Equation (10),

Mi(k| fi) ≥ Mi (k + 1| fi) >
c
b

.

Please note that setting k = k∗ − 1 we also get

Mi(k∗| fi) >
c
b

.

Applying (4) we see that Ui(k∗| fi) ≥ Ui(k| fi) for all k < k∗. Consider next any K > k ≥ k∗.
By construction

Fi(k) ≥ 1−
( c

b

) 1
n−1 .

Thus,
Mi (k + 1| fi) ≤

c
b

.

Applying (4) we see that Ui(k∗| fi) ≥ Ui(k| fi) for all k > k∗. Thus, Ui(k∗| fi) ≥ Ui(k| fi) for all k ∈ A.

Theorem 2 provides a very simple way to work out the optimal effort level of a player given
her beliefs. It also allows us, given the observed effort level of a player, to infer something about what
her beliefs must have been. Unsurprisingly, we see that the optimal effort level is increasing in the
benefit of effort b and decreasing in the cost of effort c and the number of players n. More interesting
is that we obtain a precise prediction of the trade-off between the benefit cost ratio and the number
of players. This is something that can be applied in the experimental lab. Before we discuss that there
is one important point to clarify about Theorem 2. This result applies to a one-shot game. If the game
is repeated then a player may potentially have an incentive to choose a higher effort level than that
stated by Theorem 2 in order to ‘signal’ to others a desire for higher effort (Brandts, Cooper and Fatas
2007 [18]). To formally model this would require an understanding of how beliefs are updated over
time (e.g., Crawford 2001 [13], Goerg, Neugebauer and Sadrieh 2016 [14]).

To get some insight on how Theorem 2 can potentially be applied consider Table 1. This provides
some experimental data on the effort level chosen by subjects the first time they played the minimum
effort game. Please note that b = 2c and K = 7 for the games played in these experiments. The data

3 Please note that Fi (k + 1) ≥ Fi(k) for all k ∈ A.
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provided in Table 1 is by no means exhaustive, but it is broadly representative of what we typically
observe. There are two things to pick up here. First, we see considerable heterogeneity of choice with
every possible effort level being played by a significant proportion of subjects. Second, the distribution
of choices does not appear to systematically differ across different values of n (Camerer 2003 [8]).
Indeed, previous work has suggested that players in a minimum effort game where n > 2 may behave
‘as if’ n = 2 (Costa-Gomes, Crawford and Iriberri 2009 [17]).

Table 1. The choices of players in the first round of minimum effort game experiments. VHBB stands
for Van Huyck, Battalio and Beil (1990) [6] and CGvV stands for Cartwright, Gillet and van Vugt
(2013) [19]. The number in brackets [·] indicates the number of observations. This can be compared
with the probability a player should choose k given Nash equilibrium El,k for some l < k. Also k∗

denotes the optimal effort level given the observed distribution of choices.

Source n Proportion Choosing Effort Level El,k
k∗

1 2 3 4 5 6 7 σi(k)

VHBB [28] 2 0.29 0.04 0.04 0.07 0.21 0.00 0.36 0.5 5
CGvV [36] 3 0.03 0.11 0.25 0.19 0.14 0.08 0.19 0.71 3
CGvV [96] 4 0.23 0.08 0.16 0.16 0.14 0.07 0.17 0.79 1
VHBB [28] 14 0.04 0.04 0.04 0.25 0.25 0.11 0.29 0.95 2
VHBB [15] 15 0.00 0.00 0.00 0.07 0.53 0.00 0.40 0.95 4
VHBB [64] 16 0.02 0.06 0.06 0.16 0.30 0.11 0.30 0.95 2

Average [267] 0.13 0.07 0.11 0.16 0.22 0.07 0.25

The last column of Table 1 details the optimal strategy given the observed distribution of first
period play. Clearly most subjects were not choosing the optimal strategy. Indeed, play seemed
largely unresponsive to the different incentives as n changed. The main focus in the literature has,
thus, been on how play evolves and, in particular, whether average effort levels diminish over time.
Let e?(n, c, b, q) denote the optimal effort level given an initial distribution of choices q. It seems
reasonable to conjecture that e?(n, c, b, q) may correlate with the trend in effort levels after repeated play.
In particular, if e?(n, c, b, q) = 1 then the incentives are towards low effort and so it would seem almost
inevitable that as players become better informed the average effort level in the group falls. By contrast,
if e?(n, c, b, q) = 7 then incentives seem to be pushing towards high effort. In this case it may be
possible to sustain a higher effort level.4

If e?(n, c, b, q) does indeed inform on the likelihood of sustaining high effort we can start to make
testable predictions on the conditions that support efficiency. For instance, let us set q equal to the
weighted average distribution of effort levels given in the final row of Table 1. Then consider the most
commonly used setting of b = 2c. It is easy to calculate that e? = 5 when n = 2, e? = 3 when n = 3, 4
and e? = 1 when n > 4. This pattern would seem broadly consistent with us observing high efficiency
for n = 2, mixed results for n = 3, 4 and low efficiency beyond. Figure 1 sketches out how the optimal
effort level changes as the benefits from coordination are increased, keeping q the same.5 You can see
that the benefits from coordination have to increase considerably for it to be optimal to choose high
effort once n is 8 or above. So, we obtain a relatively pessimistic picture of the chances of obtaining
high efficiency in large groups. On the other hand Figure 1 suggests that high effort levels may be
sustainable if the benefits are sufficiently large. So, there is some positive news.

4 Let us be clear that this is a non-equilibrium story. We are asking what an informed person would do given the distribution
of choices made by ‘naive’ subjects who do not respond to incentives.

5 Clearly, q may change as incentives change. However, as regards, c
b there is simply too little evidence to make judgment

given that the vast majority of studies set b = 2c. Goeree and Holt (2005) [20] is an exception. We can also mention the work
of Brandts and Cooper (e.g., Brandts and Cooper 2006 [3]) where b = 6/5c in the first ten rounds of play (and b = 8/5c, 2c
or 14/5c in subsequent rounds). In this work b is set relatively low in order to induce coordination failure.
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Figure 1. Optimal effort level for fixed q.

To put Figure 1 and the preceding discussion in context, it is important to recognize that we
have surprisingly little understanding of what determines long run efficiency in the minimum effort
game. We know that, if b = 2c, effort levels can be sustained at a high level when n = 2 but fall
for larger n (Van Huyck, Battalio and Beil 1990 [6], Camerer 2003 [8], Engelmann and Normann
2010 [9]). Beyond this, evidence is relatively scant. This is primarily because the literature has focused
on institutions like leadership, communication and networks that may increase efficiency (Brandts,
Cooper and Weber 2014 [21], Croson et al. 2015 [22], Riedl, Rohde and Stroble 2015 [23], Sahin,
Eckel and Komai 2015 [24]). The effect of changes in the benefits and costs of effort are less well
known. Theorem 2, in providing a link between optimal effort and the strategic parameters of the
game, may provide a novel angle on this issue. In particular, e?(n, c, b, q) is easy to calculate, given q,
and so any correlation between this and efficiency would be of interest, however noisy that correlation
may be.

In deriving Figure 1 we kept the initial distribution of effort levels, q, constant. However,
we know that q will likely vary across different domains. Engelmann and Normann (2010) [9],
for instance, observe a very different distribution of effort levels in the first period with a Danish
population. There are other potential variances of framing or environment that could also influence
mood and willingness to cooperate such as synchrony or music (Wiltermuth and Heath 2009 [25],
Kniffin et al. 2017 [26]). Future work can also, therefore, explore things that may influence initial
effort levels. In particular, ‘nudges’ which change first period behavior could be effective in a way
that increasing the cost benefit ratio is not. Theorem 2 provides a way to make this comparison more
concrete. To illustrate, Figure 2 plots, as a function of the number of players, the proportion of players
(in the population) that must choose 5 or above in order that e?(n, c, b, q) ≥ 5. The jump from n = 2 to
3 and 4 can help explain why high effort is easier to sustain in small groups. However, interestingly,
we see here that an intervention which works for a group of, say, 6 players may well work for larger
groups. This provides a more optimistic prediction.
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Figure 2. Proportion of players who need to play 5 or more for 5 to be the optimal effort level.

5. Conclusions

In this paper, we have provided a simple expression for the optimal strategy in the minimum
effort game. This allowed us to fully characterize the set of Nash equilibria in the game. It also
allowed us to put forward testable hypotheses about the relationship between efficiency, the number
of players and cost benefit ratio. There is no denying that the hypotheses we propose involve some
hand-waving arguments. We require choices in the first round of play to be naive in the sense that
they are independent of strategic incentives. We also require that repeated play correlates with the
optimal effort level in the first round of play. Even so, Theorem 2 provides a specific prediction of the
trade-offs between the number of players and cost benefit ratio that can be explored.

To move beyond mere hypothesis we clearly need data. Therefore, the next step is to run
experiments to analyze how behavior responds to changes in the parameters of the game. It would
also be useful to see how responsive are effort levels to beliefs.6 The advantage of our analysis is that it
allows us to do this in a structured way. For instance, Figure 1 suggests that we would need relatively
extreme values of the benefit cost ratio, such as 50 times the current standard used in experiments, to
sustain high effort levels in large groups. No experiments have gone remotely close to these kind of
trade-offs.

Conflicts of Interest: The author declares no conflict of interest.
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