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Abstract: Buyer-seller networks where price is determined by an ascending-bid auction are
important in many economic examples such as certain real estate markets, radio spectrum sharing,
and buyer-supplier networks. However, it may be that some sellers are better off not participating in
the auction. We consider what happens if sellers can make a take it or leave it offer to one of their
linked buyers before the auction takes place and thus such a seller can choose not to participate in
the auction. We give conditions on the graph and buyers valuations under which the buyer and seller
will both agree to such a take it or leave it offer. Specifically, the buyer-seller pair will choose private
negotiation over the auction if the seller acts as a network bridge with power over the buyer and if
there are enough buyers with low valuations so that the seller does not expect to receive a high price
in the auction.
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1. Introduction

Auctions are often better for sellers than private negotiations or posted pricing when buyers
have independent private values; see Bulow and Klemperer [1], Wang [2], and Zhang [3]. However,
such negotiations and auctions generally take place in a non-network environment. We consider a
network of buyers and sellers where the price is determined by an ascending bid auction and ask
when a seller in such a network would prefer not to participate in the auction, but instead to privately
negotiate with one of his linked buyers. In a networked environment, if similar items are for sale in
adjoining neighborhoods, the seller may not expect to obtain a high price in the auction and may prefer
private negotiations especially if that seller has some degree of network power over certain buyers.

Specifically, we consider buyer-seller networks with an ascending bid auction; such an auction is
a simple way to ensure that the availability of similar items in adjoining neighborhoods will influence
the auction price. Before the auction occurs a randomly chosen seller can make a take it or leave it offer
to one of his linked buyers. The buyer can accept this price or the buyer can choose to return to the
auction that will take place without the seller; once the seller chooses to make an offer he can commit to
no longer participating in the auction perhaps because advance notification of a seller’s participation
is required. We give conditions under which the buyer and seller will both agree to such a take it or
leave it offer and thus will choose to opt out of the auction. Specifically, the seller is able to make such
an offer if (i) he acts as a bridge in the network where if he is removed then the initial graph splits1

1 For a discussion of the formation of bridges in transactions involving intermediaries see Goyal and Vega-Redondo [4],
and see Manea [5] for further implications of trading through intermediaries.
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and if (ii) buyers’ valuations are spread out so that the probability of a buyer having a low valuation
is large enough that the seller’s expected price from participating in the auction is low and/or the
probability of a buyer having a high valuation is large enough so that a buyer is willing to accept the
seller’s offer. The results are extended to the case of a seller making multiple offers to linked buyers
and it is shown that this increases the range of prices where opting out occurs. Results are given for
both the case of an allocatively complete initial graph and the case of an allocatively incomplete initial
graph and conditions are given under which opting out is more likely to occur in the second case.

There are many examples where buyer-seller networks use auctions to determine prices or
alternatively where an ascending bid auction can be used to represent the price. One well known
example is real estate auctions. Many countries such as Australia, New Zealand, Ireland, and Scotland
use auctions to determine prices in real estate markets where sellers can choose to either auction off
a property or to negotiate a private deal2; see Maher [9], Lusht [7], and Thanos and White [10].
Additionally, in the U.S. there are websites (such as hubzu.com) for non-foreclosure real estate sales
which use auctions as the price mechanism. Real estate sales can be interpreted as taking place on a
network since the seller’s property has a particular location and each buyer also has a certain location
(or locations) where he wishes to purchase property; these locations create buyer-seller links. However,
it may be the case that a seller would prefer to make an offer to a particular buyer directly rather than
go through the auction.

Another example is that of secondary spectrum sales where a primary spectrum user (such as
a cell phone provider or a TV broadcaster) holds a license to use a specific radio spectrum band in a
given area. Unlicensed secondary users would like to access the spectrum by purchasing idle spectrum
channels from primary users whose license covers their location. These locations create a buyer-seller
network where a link indicates a secondary user (or buyer) is located in a primary user’s (or seller’s)
licensed area; see Zhang and Zhou [11]. The electrical engineering literature often suggests auctions
as the best mechanism for such sales3; see Zhang, et al. [12] and Chun and La [13]. However, it may
be that the primary license holder would prefer to opt out of the auction and make an offer directly to
a certain buyer.

The model also incorporates other buyer-seller networks where a formal auction does not take
place, but where an ascending bid auction may be used to approximate prices. Blume et al. [14] shows
that the prices resulting from an ascending bid auction in a buyer-seller network can be achieved using
a game of bid and ask prices instead of using an actual auction; thus one can interpret the auction as
being a simple way to calculate prices with desirable efficiency properties in buyer-seller networks.
Additionally, Bulow and Klemperer [1] note that an ascending bid auction price is the lowest
competitive market clearing price; see also Shapley and Shubik [15]. Examples of buyer-seller
networks without a formal auction mechanism include a network of clothing assemblers and garment
manufacturers, as well as other buyer-supplier networks such as those in the Japanese electronics
industry and the Turkish automobile industry; see Lazerson [16], Nishiguchi and Anderson [17],
and Wasti et al. [18]. Finally, Niederle and Roth [19] examine the gastroenterology labor market and
show that pre-existing or network ties can affect the early exit from the market.

Kranton and Minehart [20] also examine buyer-seller networks where goods are sold in an
ascending bid auction. They show that for a given link pattern the equilibrium prices are pairwise stable
in that no linked buyer and seller can renegotiate and obtain a better deal. Corominas-Bosch [21] also
consider buyer-seller networks where prices are posted and determined through collective bargaining.

2 Sales data for Victoria, Australia from 2–8 March 2015 found 309 auctions versus 357 homes sold in private sales see
CoreLogic [6]; Thus, many sellers prefer private sales to auctions. Data obtained by Lusht [7] and Stevenson, Young, and
Gurdgiev [8] also show a significant number of private sales versus auctions in real estate auctions occurring in Melbourne
and Dublin, respectively.

3 Alternatively, Zhang and Zhou [11] consider a mechanism for sharing channels where primary users set quotas based on
secondary user’s locations in order to maximize profits.
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Note that in our model players opt out before the auction takes place which is different from the
renegotiation that takes place ex-post in Kranton and Minehart [20]. Another difference is that in our
game after the seller makes the take it or leave it offer he cannot return to the auction. To show that the
offer is credible the seller exits the auction (or simply never enters the auction) and after he makes his
offer the auction proceeds without him.

The seller prefers not to return to the auction even if his take it or leave it offer is rejected as doing
so increases his bargaining power. In Section 3.3, a seller who makes an offer can also choose to either
commit to not joining the auction if his offer is rejected or can choose to not make this commitment.
Conditions are given under which the seller is better off if he chooses to commit to not joining the
auction as his price offer can then be larger. Alternative reasons for not joining the auction can be
given as follows. For instance, it could be that the auction requires some advance notification as in
a real estate auction where a seller’s participation must be announced four to six weeks in advance.
Alternatively, consider a market with repeated sales4 such as radio spectrum sharing or a network of
clothing assemblers and garment manufacturers. Here the seller may credibly choose not to return to
the auction to gain believability as a tough negotiator in the future. If he does not return to the auction,
then if the game is repeated the buyers will know he will not return to the auction and will be more
willing to accept his current offer.

There is a large literature on buyer-seller networks. Some papers focus on cooperative approaches
to buyer-seller bargaining such as seller cooperatives or Nash bargaining; see Wang and Watts [23]
and Bayati et al. [24], respectively. While others consider de-centralized bargaining with bilateral
opportunities; see Abreu and Manea [25], de Fontenay and Gans [26], Condorelli and Galeotti [27],
and Hatfield et al. [28]. Alternatively, Elliott [29] allows buyers and sellers to invest in relationships
and shows that over-investment results when players wish to create outside options while Board and
Pycia [30] considers buyer-seller networks where the buyer has an outside option. We add to this
literature by focusing on what happens if sellers can choose to exit the market.

The current paper is also related to exchange networks in the sociology literature. There are
many papers looking at the relationship between network position and power in exchange networks;
see Markovsky, Willer, and Patton [31], Cook and Yamagishi [32], Lucas et al. [33], and Skvoretz
and Willer [34]. Here one agent may have power over another if he controls the others resources.
In the economics literature, Manea [35] considers a player’s strength in infinite horizon buyer-seller
networks with random matching. In the current paper, we find that a seller who acts as a bridge has
power over some buyers and may be able to entice such buyers to opt out of the auction.

The paper proceeds as follows. The model and results are presented in Sections 2 and 3 and
extensions to the basic model are found in Sections 3.1 and 3.2. Concluding remarks are provided
in Section 4.

2. Model

Let M = {1, 2, ..., i, ...m} represent the set of sellers and N = {1, ..., j, ..., n} the set of buyers in a
region. Assume m ≤ n. Without loss of generality, assume that each seller has one unit of the good
to sell.

Buyer j can purchase from seller i only if i and j are linked. We let g represent the set of links
between sellers and buyers and G represents the set of all possible such graphs. We use notation
ij ∈ g to represent a link between i and j. We let g− i represent the graph that would be obtained
when i and all of i’s links are removed from graph g. Let N(g) = {j|j ∈ N and ∃ i ∈ M s.t. ij ∈ g}.
Let M(g) = {i|i ∈ M and ∃ j ∈ N s.t. ij ∈ g}. A path in g connecting i to j is a set of links {ik, k`, ..., j}
such that each link is in g. We define c ⊆ g to be a component of g if for every j ∈ N(c) and i ∈ M(c)

4 Fainmesser [22] considers repeated buyer-seller games played on a network where the threat of a loss of repeated interactions
can facilitate cooperation.
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there exists a path in c connecting i to j, and for every j ∈ N(c) and i ∈ M(g) (or for every i ∈ M(c)
and j ∈ N(g)) ij ∈ g implies ij ∈ c. We let cS represent the cardinality of M(c) and cB represent the
cardinality of N(c).

Let i pay a cost kij for maintaining each of his links ij ∈ g and let j pay a cost k̃ij for maintaining
each of his links ij ∈ g.

Buyer j would like to purchase at most one unit of the good where vj represents the value that
j would receive from using the unit. Specifically, it is assumed that each vj is a random variable
independently and identically distributed on [v, v] with continuous distribution F, where v ≥ 0.
We let v`,η represent the `th highest order statistic of a given set of η values and let fv`,η represent its
density function. Additionally, let v+κ,η ≡ vκ,η if κ ≤ η and v+κ,η ≡ v if κ > η.

Next we describe the game which determines prices. First, a seller i ∈ M is picked at random.
This seller can choose to participate in the auction described below or can choose to make an offer
of pij to any buyer j such that ij ∈ g. Buyer j can either agree to pay price pij for the good, or can
refuse to pay the price and can choose to participate in the auction that takes place without seller i.
Buyer j must be linked to another seller besides i in order to participate in the auction that takes place
without i. Once seller i has decided to negotiate with j instead of participating in the auction, then this
decision is final. By exiting the auction the seller gains bargaining power and we assume the seller can
commit to not returning perhaps because advance notice of auction participation is required of sellers.
We assume all other sellers participate in the auction.

Next the auction takes place either over g or over g − i depending on whether or not seller i
chooses to opt out of the auction. In either case, the sellers participating in the auction simultaneously
hold ascending-bid auctions as in Kranton and Minehart [20]. Similar to a Walrasian auction the going
price is the same across all sellers; we assume the initial price starts at v. As the price increases each
buyer can decide to drop out of the auction with each of his linked sellers or not. The price rises until
enough buyers have dropped out so that demand equals supply for a subset of sellers; these sellers
sell at the current price. If there are remaining sellers the price continues to rise until all sellers have
sold their goods. The price that seller i receives in the auction is represented by pa

i .
Seller i receives utility ui where

ui =

{
p−∑j:ij∈g kij if i sells his good at price p

−∑j:ij∈g kij otherwise.

Buyer j receives payoff ũj where

ũj =

{
vj − p−∑i:ij∈g k̃ij if j buys a good at price p,

−∑i:ij∈g k̃ij otherwise.

Next we define an allocatively complete network. This definition is from Kranton and Minehart [20].
Network g is allocatively complete if and only if for every B ⊆ N(g) of size m, there exists a feasible
allocation such that every j ∈ B obtains a good.

Remark 1. The auction in the current paper is an ascending bid simultaneous auction. We make this assumption
because when g is allocatively complete such an assumption guarantees efficient sales in that the buyers with the
top m values are the ones who obtain the goods; see Kranton and Minehart [20]. If instead we allow the goods to
be auctioned off sequentially in separate ascending bid auctions the goods may end up being assigned inefficiently.
To see this consider the following example. Let m=3, n=4, and g=11, 13, 23, 22, 32, 34. Let vj = vj,4 for all j.
Then in a simultaneous ascending bid auction buyers 1, 2, and 3 all obtain the good at price v4,4. Next consider
a sequential auction where seller 2’s item is auctioned off first; this item will be sold to buyer 2 at price v3,4. Next
let seller 3’s item be auctioned off. Seller 3 is linked to two buyers 2 and 4, but buyer 2 has already purchased the
good. Thus seller 3 will end up selling the good to buyer 4 at a price of v. This sale is inefficient in that buyer 4
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who values the good the least ends up purchasing the good. In order to avoid this situation we model the auction
as taking place simultaneously.

3. Results

We start with the proposition which shows that a seller may gain from not participating in
the auction, but from instead just offering a price to a particular buyer that he is linked to for the good.

Assumption A1. Let g be allocatively complete and consist of a single component and let g− i consist of at
least two components for some i ∈ M. Choose a j ∈ N such that ij ∈ g and such that j is not guaranteed a good
in the auction over g− i even if vj ≥ vm−1,n. Let c ∈ g− i be the component of g− i that j is a member of and
let c be allocatively complete.

Under Assumption A1 seller i acts as a bridge in graph g in that his removal splits the graph into
two or more components. When this split occurs buyer j is no longer guaranteed a good even if he has
one of the top m− 1 values. (There are m− 1 goods for sale in the auction over g− i.) Proposition 1
gives conditions under which seller i can use his position as a bridge to entice buyer j to opt out of
the auction.

Remark 2. Next we show that such a j exists that meets Assumption A1. Note that it is not possible for a
component of g− i to consist of only sellers and not buyers as g was a single component and g− i simply
removes one seller from g and by definition sellers are not connected to each other; thus, all components of
g− i consist of either only buyers or of both buyers and sellers. As g− i consists of at least two components,
there must be at least one component that has less than m− 1 sellers; call this component c. As c has less than
m− 1 sellers it is not possible for m− 1 buyers to purchase from c. Thus, there must exist a j ∈ c such that
ij ∈ g and such that j is not guaranteed a good even if vj ≥ vm−1,n.

For simplicity, in the remainder of the paper we set the costs of maintaining links kij = k̃ij = 0
for all i and j with the understanding that adding in such costs will only strengthen our results in the
sense that it will increase the cost of staying in the auction and thus will make opting out more likely
for both agents.

Proposition 1. Let Assumption A1 be true for some i ∈ M and j ∈ N. Seller i and buyer j will choose to opt

out of the auction and exchange the good at price pij if for cS > 0,
E[v+m+1,n ]

Pr(vj≥pij)
≤ pij ≤ min{vj(1− Pr(vj ≥

v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj} and if for cS = 0,
E[v+m+1,n ]

Pr(vj≥pij)
≤ pij ≤ vj.

Note that the condition
E[v+m+1,n ]

Pr(vj≥pij)
≤ pij guarantees that seller i expects to be better off exchanging

the good at price pij given F while pij ≤ min{vj(1− Pr(vj ≥ v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj}
guarantees that buyer j expects to be better off participating in the exchange given vj.

Proposition 1 shows that the seller and buyer will prefer to opt out of the auction if the seller acts
as a bridge in the network with some power over the buyer. And if the buyer’s valuations are spread
out so that there are enough high value buyers to make the seller think his offer may be accepted
and/or enough low value buyers so that the price the seller expects to receive in the auction over g is
not too high.

Proof. Consider the case where cS > 0; we show that buyer j will choose to opt out of the auction
if the conditions of Proposition 1 are met. If j decides to opt out of the auction, then he will receive
a payoff of vj − pij. If j decides to participate in the auction over graph g− i, then by assumption
c is allocatively complete and so the items in component c will sell to the buyers in c with the top
cS values at price v+cS+1,cB . Thus j will win an item only if vj ≥ v+cS ,cB . So j’s expected payoff from



Games 2016, 7, 22 6 of 14

participation in the auction is Pr(vj ≥ v+cS ,cB)(vj)− E[v+cS+1,cB |vj ≥ v+cS ,cB ]. So j prefers to opt out of

the auction if vj − pij ≥ Pr(vj ≥ v+cS ,cB)(vj)− E[v+cS+1,cB |vj ≥ v+cS ,cB ] ≥ 0 or if pij ≤ min{vj(1− Pr(vj ≥
v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj}.

Now we show that seller i will choose to opt out of the auction if our conditions are met for the
case where cS > 0. Seller i will prefer to opt out if his expected payoff from opting out is greater than his
expected payoff from participating in the auction over g. If i participates in the auction, then he expects
for the good to be sold at the price v+m+1,n. Since g is allocatively complete, the buyers with the top m
values for the good will all win an item and the items will be sold at price v+m+1,n; thus, i expects to
receive E[v+m+1,n] from participating in the auction. If seller i decides to opt out of the auction, then his
expected payoff is pij · Pr(j accepts pij). Since pij ≤ vj(1− Pr(vj ≥ v+cS ,cB) + E[v+cS+1,cB |vj ≥ v+cS ,cB ],
we know that j accepts pij if vj ≥ pij. Thus, i’s expected payoff from opting out is pij · Pr(vj ≥ pij).
So if pij · Pr(vj ≥ pij) ≥ E[v+m+1,n], then i will choose to opt out of the auction.

Next we consider the case where cS = 0. If cS = 0, then there are no sellers in the component that
j is a member of in network g− i. Thus, if i makes an offer of pij to j, then if j rejects the offer j will not
receive a good and will end up with a payoff of 0. Thus j only rejects the offer if pij > vj and i will
only make the offer if his expected payoff from the offer, pij · Pr(vj ≥ pij), is greater than his expected
payoff from participating in the auction over g, E[v+m+1,n].

Remark 3. Next we discuss how Proposition 1 would be affected if sellers could post reserve prices. If seller i can
post a reserve price, then he will expect a higher payoff from participating in the auction over g. Note that i can
always post a reserve price of v which will guarantee him the same payoff as in the auction with no reserve price;
thus, he will only post a reserve price greater than v if he expects a higher payoff from doing so. As i’s payoff from
the auction increases i will need a larger price pij to opt out of the auction and the left hand side of the inequalities
given in Proposition 1 will increase. Alternatively, if buyer j faces a reserve price, then the probability that
he wins the auction over g − i will decrease and the expected price that he pays from winning this auction
will increase. Thus, buyer j’s expected payoff from participating in the auction over g− i will decrease. So j will
be willing to accept a lower price pij to opt out of the auction and the right hand side of the inequalities given
in Proposition 1 will increase. Thus, adding a reserve price will change Proposition 1 quantitatively but not
qualitatively. Notice too that there are different types of reserve prices that could be implemented. For instance,
there could be link-specific reserve prices, seller-specific reserve prices, or uniform reserve prices. The choice
of such a reserve price will also quantitatively affect Proposition 1. For instance, a seller-specific reserve price
or a link-specific reserve price will not affect all buyers and sellers; thus, only some buyers and sellers will see
all or part of the price range for pij increase. For example, if i uses a seller-specific reserve price then only the
auction over g will be affected not the auction over g− i. Thus, the left hand side of the inequalities given in
Proposition 1 will increase but the right hand side will not change.

Proposition 1 gives a range of pij which is acceptable to i given F and acceptable to j given vj for
opting out of the auction. This range depends on the probability of vj exceeding pij. So, we can find
the price which is best for the seller, but we must take this dependence of pij on vj into account; this is
done in the following corollary.

Let p∗ij = argmaxp p · Pr(p ≤ min{vj(1− Pr(vj ≥ v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj}) if cS > 0

and p∗ij = argmaxp p · Pr(p ≤ vj) if cS = 0.

Let E[p∗ij] = maxp p · Pr(p ≤ min{vj(1− Pr(vj ≥ v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj}) if cS > 0

and E[p∗ij] = maxp p · Pr(p ≤ vj) if cS = 0.

Corollary 1. If p∗ij ≥
E[v+m+1,n ]

Pr(vj≥pij)
, then seller i will offer p∗ij to buyer j.

By Proposition 1, buyer j will accept p∗ij if p∗ij ≤ min{vj(1− Pr(vj ≥ v+cS ,cB)) + E[v+cS+1,cB |vj ≥
v+cS ,cB ], vj} when cS > 0 and if p∗ij ≤ vj if cS = 0.
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Next we illustrate Proposition 1 with an example.

Example 1. Let m = 3, n = 4, and g = {11, 12, 22, 23, 33, 34} which is represented in Figure 1.
Let vi ∈ {1, 2, 9, 10} each with equal probability. In an ascending bid auction over g the buyers with the
top three valuations each win a good at price v4,4 where E[v4,4] = (0.68386)(1) + (0.2539)(2) + (0.0586)(9) +
(0.003906)(10) = 1.75806; note that (0.6836) is the probability that at least one of the vi’s equals 1 or
the probability that v4,4 = 1. Next we consider the graph without seller 2 and all of his ties which we
call g − 2. Seller 2 can offer price p22 to buyer 2. Buyer 2 will accept this price if doing so makes him
better off than he is from participating in the auction over g − 2. If v2 = 10, then buyer 2 expects to pay
price 1

4 (1 + 2 + 9 + 1
2 10) = 4.25 in the auction over g − 2. To see this note that the component of g − 2

that buyer 2 is a member of is c = {11, 12}. Thus, buyer 2 wins the item if buyer 1 has v1 < 10 and
expects to pay price v1. While if v1 = 10, then buyer 2 expects to win the item with probability 1

2 and pay
price v1 = 10. Thus, buyer 2 expects to win the item with probability 1− ( 1

2 )(
1
4 ) = .875. Here buyer 2’s

expected payoff from entering the auction is: (0.875)(10)− 4.25 = 4.5. If v2 = 9, then buyer 2’s expected
payoff from the auction is ( 1

2 + 1
4 (

1
2 ))(9) − ( 1

4 )(1 + 2 + 9( 1
2 )) = (0.625)9 − 1.875 = 3.75. If v2 = 2,

then E[ũ2] = ( 1
4 + 1

4 (
1
2 ))(2) − ( 1

4 )(1 + 2( 1
2 )) = 0.25. If buyer v2 = 1, then E[ũ2] = 0. Therefore,

if p22 ≤ 5.25 and if buyer 2 has valuation v2 = 9 or v2 = 10, then if 2 opts out of the auction he will receive a
payoff of v2 − p22 ≥ 4.5 if v2 = 10 and a payoff of v2 − p22 ≥ 3.75 if v2 = 9. Thus both types of high value
buyers will choose to accept p22. Seller 2 will receive a payoff greater than his payoff from the auction over g
if Pr(buyer 2 accepts)·p22 ≥ 1.75806. Given that p22 ≤ 5.25, buyer 2 will accept if he has one of the top
two valuations and this occurs with probability 1

2 . Thus if p22 ≥ 3.5172, then seller 2 prefers to opt out of
the auction. So for any 3.5172 ≤ p22 ≤ 5.25, both seller 2 and the top value buyers are better off trading the
good at price p22. Note that since the probability of buyer 2 accepting is equal to 1

2 for all 3.5172 ≤ p22 ≤ 5.25,
seller 2’s expected payoff will be maximized at the largest price in this range. Seller 2 cannot gain from raising
the price and only selling to a buyer with v2 = 10 as the most this buyer would pay is p = 10− 4.5 = 5.5,
but the probability of acceptance (or of the buyer being this type) would fall to 1

4 ; thus, seller 2’s expected payoff
from such an offer would be lower than if he set p22 = 5.25.

Figure 1. Buyer-seller graph.

Remark 4. It is assumed that if a seller makes a price offer to one of his linked buyers, then he can commit to
not participating in the auction if the offer is rejected perhaps because of institutional rules that govern auction
participation. Next, we discuss the credibility of such non-participation in the absence of institutional rules.
In Section 3.3, the game is altered so that the seller can choose participation or non-participation in the auction
if the price offer is rejected. Proposition 4 gives conditions under which the seller prefers non-participation
to participation; the seller prefers such non-participation because it allows him to make a higher price offer to
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the buyer. Thus, at the beginning of the game the seller would be willing to sign an enforceable contract with the
buyer stating that he will pay the buyer a sum of $x if he participates in the auction after his offer is rejected
(or alternatively the seller could have a neutral third party hold the $x until the end of the game). By choosing a
large x it will never be worth it for the seller to renege on the contract and the buyer can be assured that the seller
will not enter the auction after a failed negotiation. Signing such a contract would be a way that the seller could
ensure the credibility of non-participation in the absence of institutional rules that assure non-participation.

3.1. Price Offers to Multiple Buyers

Next we allow a seller to make price offers to multiple buyers that he is tied to. Specifically, seller i
can simultaneously offer price pi to all buyers j such that ij ∈ g. Each buyer j can either agree to pay
price pi for the good or can refuse to pay the price and then can participate in the auction that takes
place without seller i. If multiple buyers agree to pay price pi, then seller i picks one at random to
sell the good to and the remaining buyers can then participate in the auction that takes place without
seller i5.

Example 2. This is a continuation of Example 6 where now seller 2 can make simultaneous offers of p2 to
both buyers 2 and 3. Note that if buyer 2 has one of the top two values, then he will agree to opt out of the
auction as long as p2 ≤ 5.25 since any price lower than 5.25 will guarantee that he receives a payoff greater
than what he would get if he remains in the auction without seller 2. Similarly, if buyer 3 has one of the top two
values he will agree to opt out if p2 ≤ 5.25. We know from Example 6, that seller 2 will agree to opt out of the
auction if Pr(buyer 2 or 3 accepts o f f er p2) · p2 ≥ 1.75806. Buyer 2 or 3 will accept if he has one of the top
two values. Thus, the probability that buyer 2 or 3 accepts is equal to the probability that one or both of these
buyers has vj = 9 or vj = 10. This probability equals 1− 1

4 = 3
4 . Thus seller 2 opts out if 3

4 · p2 ≥ 1.75806
or if p2 ≥ 2.34408. So now for any 2.34408 ≤ p22 ≤ 5.25, both seller 2 and the top two buyers are better off
opting out of the auction. Notice that allowing the seller to make more offers has increased the range of prices
which support opting out of the auction as the range in Example 1 is smaller at 3.5172 ≤ p22 ≤ 5.25.

Next we generalize this example in the proposition below.

Proposition 2. Let Assumption A1 be true for seller i and for all j ∈ {j1, j2, ..., j`}. Seller i and buyers j1, ..., j`

will choose to opt out of the auction and exchange the good at price p if
E[v+m+1,n ]

Pr(vj1≥p∪vj2≥p∪...∪vj`≥p) ≤ p and if p

satisfies all of the right hand side inequality constraints listed in Proposition 1.

Comparing Propositions 1 and Remark 4 we see that the range of prices that allow for opting
out has increased. Thus, as the seller can make more offers the probability that his offer is accepted
increases and he does not need to charge as high of a price to opt out. Note that even though all
buyers j1, ..., j` choose to opt out only one of them will end up with the good and the others will rejoin
the auction.

Proof. We show that if p satisfies the inequalities given in Proposition 2, then i and j1, j2, ..., j` will all
choose to opt out of the auction. Since the right hand side inequality constraints from Proposition 1
are met, we know from the proof of Proposition 1 that all j ∈ {j1, ..., j`} will prefer to opt out of
the auction. Next we show that seller i will also prefer to opt out. Seller i prefers to opt out if his
expected payoff from opting out is greater than his expected payoff from participating in the auction
over g. Recall that the good is sold at price v+m+1,n in the auction over g. Thus, i prefers to opt out if

5 Note that when buyers make their decisions on whether to accept or reject the offer they simply compare their expected
payoff from the auction without the seller to their payoff from accepting the offer. Specifically, if seller i makes offers to
buyers j and `, then from buyer j’s perspective it does not matter if buyer ` accepts or rejects i’s offer as either way the
auction will take place over g− i. Thus, an assumption of buyers’ myopia is not necessary as buyers do not need to take
into account other buyers accepting or rejecting the offer when they make their own decisions.
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p · Pr(at least one of j1, ..., j` accepts p) ≥ E[v+m+1,n]. Since the Assumptions A1 are met for all j1, .., j`
we know that any j ∈ j1, ..., j` will accept the offer p if vj ≥ p. Thus, the probability that at least
one of j1, ..., j` accepts p equals Pr(vj1 ≥ p ∪ vj2 ≥ p ∪ ... ∪ vj` ≥ p) and so i will choose to opt out if

E[v+m+1,n ]

Pr(vj1≥p∪vj2≥p∪...∪vj`≥p) ≤ p.

Corollary 2. If the conditions of Proposition 1 are met so that each i and j ∈ {j1, ..., j`} pair choose to opt out
of the auction, then the conditions of Proposition 2 will also be met and i and j1, ..., j` will also choose to opt out
of the auction collectively.

Proof. First we show that if i and j1, j2, ..., j` meet the conditions of Proposition 1 sufficient for each i
and j ∈ {j1, ..., j`} pair to opt out of the auction, then there exists a p that meets all of the inequalities of

Proposition 1. To see this note that the left hand side inequalities are
E[v+m+1,n ]

Pr(vj≥pij)
≤ pij for j ∈ {j1, ..., j`}.

As we have assumed that each vj is identically distributed we know that Pr(vj ≥ pij) is the same for

all j ∈ {j1, ..., j`}. Thus
E[v+m+1,n ]

Pr(vj≥pij)
is the same for all j. So choosing a p =

E[v+m+1,n ]

Pr(vj≥pij)
will meet all of the

inequalities of Proposition 1.
Next we show that the conditions of Proposition 2 are met. As Pr(vj1 ≥ p ∪ vj2 ≥ p ∪ ... ∪

vj` ≥ p) ≥ Pr(vj ≥ p) it must be that
E[v+m+1,n ]

Pr(vj1≥p∪vj2≥p∪...∪vj`≥p) ≤
E[v+m+1,n ]

Pr(vj≥p) ≤ p and Proposition 2

holds true.

3.2. An Allocatively Incomplete Initial Graph

Next we consider the case where the graph g is not allocatively complete; thus, it is possible for
a buyer without a top m valuation to receive the good in an ascending bid auction. We assume here
that there is at least one seller who acts as a bridge and who does not contribute to this inefficiency,
and show that such a seller has even more to gain from exiting the auction.

Next we define an allocatively complete seller. Let Ni(g) ⊆ N(g) be the set of buyers who are linked
to seller i ∈ M in g. Then i is an allocatively complete seller if for all B ⊆ N(g) of size m such that
B ∩ Ni(g) 6= � there exists a feasible allocation such that every j ∈ B obtains a good.

Assumption A2. Let g not be allocatively complete and let g consist of a single component. Let there exist
i ∈ M(g) such that i is an allocatively complete seller in g and such that g− i consists of at least two components.
Choose a j ∈ N such that ij ∈ g and such that j is not guaranteed a good in the auction over g− i even if
vj ≥ vm−1,n. Let c ∈ g− i be the component of g− i that j is a member of and let c be allocatively complete.

Under Assumption A2, seller i acts as a bridge and i is an allocatively complete seller. Thus,
i’s removal splits the graph, but i does not contribute to the allocative incompleteness of graph g in the
sense that buyers linked to i are always guaranteed a good if they have a top valuation.

Proposition 3. Let Assumption A2 be true for some i ∈ M and j ∈ N. Seller i and buyer j will choose to
opt out of the auction and exchange the good at price pij if for cS > 0, A ≤ pij ≤ min{vj(1− Pr(vj ≥
v+cS ,cB)) + E[v+cS+1,cB |vj ≥ v+cS ,cB ], vj} and if for cS = 0, A ≤ pij ≤ vj. For some A ≤ E[vm+1,n ]

Pr(vj≥pij)
.

Proof. The assumptions of Proposition 3 differ from those of Proposition 1 in that g is no longer
allocatively complete, but i is an allocatively complete seller. Note that there have been no changes
to the assumptions on buyer j. Thus by Proposition 1, buyer j will choose to opt out of the auction
and exchange the good at price pij if for cS > 0, pij ≤ min{vj(1− Pr(vj ≥ v+cS ,cB)) + E[v+cS+1,cB |vj ≥
v+cS ,cB ], vj} and if for cS = 0, pij ≤ vj.

Next we show that seller i will also choose to opt out of the auction. First we show that i’s
expected payoff from participating in the auction is A′ ≤ E[vm+1,n]. Since i is an allocatively complete
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seller we know that if the top m value buyers include at least one buyer in Ni(g), then all top value
buyers will obtain the good at price vm+1,n. However, as g is not allocatively complete there exists
a subset of buyers of size m such that not all of them can obtain the good; additionally, as i ∈ M(g)
it must be that n ≥ m + 1. Let this subset of buyers have the top m values. As i is an allocatively
complete seller it must be that none of these buyers are linked to i. Thus, i will not sell his good to one
of these top value buyers. Instead i will sell his good to a buyer with value vm+1,n or lower and thus he
must sell the good to this buyer at a price p < vm+1,n. Thus, i will either sell the good at vm+1,n or at a
lower price and so the expected price that i receives from participating in the auction is A′ ≤ E[vm+1,n].
If i decides to opt out of the auction, his expected payoff is pij · Pr(j accepts pij). As in Remark 1,
j accepts pij if vj ≥ pij. Thus, i’s expected payoff from opting out is pij · Pr(vj ≥ pij). Therefore, i opts

out of the auction if pij · Pr(vj ≥ pij) ≤ A′ or if pij ≤ A′
Pr(vj≥pij)

≡ A where A ≤ E[vm+1,n ]
Pr(vj≥pij)

.

Next we give an example which illustrates Proposition 3.

Example 3. Let m = 2, n = 4 and g = {11, 12, 13, 23, 24}. This graph is illustrated in Figure 2 where Bj
represents buyer j. Let v = {1, 2, 9, 10} and let each occur with equal probability. First notice that seller 2 is an
allocatively complete seller since if buyers 3 or 4 have at least one of the top two valuations, then all the top value
buyers can receive the good. However, if buyers 1 or 2 have the top two valuations, then they cannot both receive
the good; thus g is not allocatively complete. Next we consider the sellers expected payoffs if both sellers participate
in an ascending bid auction. Notice that if v3 = v4,4 or if v4 = v4,4, then pa

2 = v4,4. In all other cases pa
2 = v3,4.

While pa
1 = v2,4 if either v3 = v4,4 and v4 = v3,4 or if v3 = v3,4 and v4 = v4.4. In all other cases pa

1 = v3,4.
Thus, E[u1] =

1
8 E[v2,4] +

7
8 E[v3,4] and E[u2] =

1
2 E[v4,4] +

1
2 E[v3,4]. Since seller 2 expects to receive v4,4 half

of the time this seller may benefit from exiting the auction and selling directly to buyer 4 who is not linked to any
other seller and so cannot remain in the auction if seller 2 opts out. If seller 2 offers to sell directly to buyer 4 at
price p24, then his expected payoff is p24 · Pr[v4 ≥ p24]. If seller 2 participates in the auction, he expects to receive
E[u2] =

1
2 E[v4,4] +

1
2 E[v3,4] =

1
2 · (1.76) + 1

2 · (3.11) = 2.446. If instead seller 2 sells directly to buyer 4 at
price p24 = 9, then he expects this price to be accepted half of the time and he expects to receive 1

2 · 9 = 4.5 > 2.44.
Buyer 4 is not linked to any other seller except seller 2; thus by Proposition 3 he accepts p24 as long as p24 ≤ v4.
In the language of Proposition 3, if A = E[u2]

Pr(v4≥9) =
2.44
0.5 = 4.88 ≤ p24 ≤ 9, then both seller 2 and any buyer 4

with v4 ≥ 9 will choose to opt out of the auction. Note that A = 4.88 <
E[vm+1,n ]
Pr(v4≥9) =

E[v3,4]
Pr(v4≥9) =

3.11
0.5 = 6.22.

Comparing Proposition 1 to Proposition 3 we find that an allocatively complete seller in an
allocatively incomplete graph is more likely to opt out of the auction than a seller in an allocatively
complete graph; the price range of acceptable offers is larger in Proposition 3 since the left hand side of
the price range is lower and the right hand side is the same. In Proposition 3, seller i does not contribute
to the allocative incompleteness of the graph and so i may not receive as high of a price in the auction
over g as he would if g were allocatively complete. Intuitively, i has no power over particular buyers in
g, but as g is allocatively incomplete another seller may. Thus, i is at a disadvantage and may receive a
lower price in the auction over g; this makes i willing to accept a lower price from j to opt out of the
auction. In Example 3, seller 2 is allocatively complete and seller 1 is not. Here seller 1 can receive
a price higher than v3,4 in the auction over g while seller 2 can receive a price lower than v3,4. If g
were allocatively complete, then all sellers would receive price v3,4 in an auction over g. Thus, seller 2
expects to do worse than in the allocatively complete case and so he is willing to accept a lower price
to opt out.

6 The calculation for E[v4,4] is given in Example 1. And E[v3,4] = 10(0.0501) + 9(0.1523) + 2(0.4258) + 1(0.375) = 3.11,
where 0.0501 is the probability that v3,4 = 10.
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Figure 2. Buyer-seller graph with allocatively complete seller 2.

3.3. Increasing the Seller’s Options

Next we examine what happens when the seller can choose to remain in the auction even if he
makes a price offer to a buyer. Thus, the game is altered so that after a seller i ∈ M is picked at random
this seller can choose to either: (1) participate in the auction over g; (2) make an offer of pij to any
buyer j such that ij ∈ g and commit to not joining the auction if the offer is rejected; or (3) make an
offer of pij to any buyer j such that ij ∈ g and join the auction over g if the offer is rejected. Note that if
the seller picks option 2 and the offer is rejected, then the auction will take place over g− i as before.
Proposition 4 gives conditions under which the seller prefers the second option of making an offer and
opting out of the auction.

Before presenting the proposition we first extend Example 1 to allow for the additional
seller’s choice. In this example, the seller prefers to commit to not joining the auction if the offer is
rejected as this decision allows him to make a higher offer to the buyer.

Example 4. Recall from Example 1 that m = 3, n = 4, g = {11, 12, 22, 23, 33, 34}, and vi ∈ {1, 2, 9, 10}
each with equal probability. First, we consider the auction over g. From Example 1, seller 2 expects to
sell his item at price E[v4,4] = 1.75806. Next, we determine the payoff that buyer 2 expects to receive
from the auction over g. If v2 = 10, then buyer 2 expects to receive a payoff of 10(0.9961)− 1(0.5781)−
2(0.2969)− 9(0.10938)− 10(0.0117). Here 0.9961 is the probability that buyer 2 wins an item as buyer 2
always wins the item unless all other buyers also have a valuation of 10 in which case three of the four buyers
are selected at random to win an item. And 0.5781 is the probability that buyer 2 wins the item and pays
a price of 1 which occurs if at least one of the other buyers has a valuation of 1. If v2 = 9, then buyer 2
expects to receive payoff E[ũ2] = 9(0.918)− 1(0.5781)− 2(0.2969)− 9(0.4297) = 6.7034. And if v2 = 2,
then E[ũ2] = 0.5781. If seller 2 chooses to make offer p22 and to remain in the auction over g if p22 is
rejected, then seller 2 must expect a payoff at least as high as he would get from just participating in the auction
over g; so p22 ≥ E[v4,4] = 1.75806. Buyer 2 will accept this offer when v2 = 10 if v2 − p22 ≥ 7.68749
or p22 ≤ 2.3125. If v2 = 9, then buyer 2 accepts if p22 ≤ 2.2966. And if v2 = 2, then buyer 2 accepts if
p22 ≤ 1.4219. Seller 2 maximizes his expected profits by setting p22 = 2.2966 in which case buyer 2 accepts
this offer half of the time and otherwise rejects the offer in which case seller 2 participates in the auction; seller 2’s
expected profits equal ( 1

2 )(2.2966) + ( 1
2 )(1.75906) = 2.0353. If instead seller 2 chooses to make an offer of p22

and commit to not returning to the auction, then we know from Example 6 that he chooses a price such that
3.5172 ≤ p22 ≤ 5.25 and that this offer will be accepted half of the time. To maximize profits here seller 2 sets
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p22 = 5.25 and receives expected profits equal to 1
2 (5.25) = 2.625. Thus, seller 2’s expected profits are higher if

he commits to opting out of the auction when he makes an offer.

Next we generalize the results of the example in Proposition 4.
Define p∗∗ij = argmaxp p · Pr(p ≤ min{vj(1− Pr(vj ≥ v+m,n)) + E[v+m+1,n|vj ≥ v+m,n], vj}).

Proposition 4. Let Corollary 1 hold true for some i and j. Then seller i prefers to make a offer p∗ij to j and to opt
out of the auction than to make offer p∗∗ij to j and to remain in the auction, if E[p∗ij] ≥ p∗∗ij .

Proof. First, consider the case where seller i offers pij to j and opts out of the auction. From Corollary 1
and the discussion preceding this corollary, seller i’s expected payoff is maximized when pij = p∗ij and
equals E[p∗ij]. Next, consider the case where seller i offers pij to buyer j and remains in the auction.
Here i expects to receive a payoff of pijPr(j accepts pij) + E[v+m+1,n](1− Pr(j accepts pij)) since if
i’s offer is rejected then i enters the auction and expects to receive E[v+m+1,n]. Buyer j will accept
offer pij if his payoff from accepting is greater than his expected payoff from entering the auction
over g or if vj − pij ≥ Pr(vj ≥ v+m,n)(vj)− E[v+m+1,n|vj ≥ v+m,n] ≥ 0 or if pij ≤ min{vj(1− Pr(vj ≥
v+m,n)) + E[v+m+1,n|vj ≥ v+m,n], vj}. Thus, if i wants to maximize his expected payoff he will offer price
p∗∗ij = argmaxp p · Pr(p ≤ min{vj(1− Pr(vj ≥ v+m,n)) + E[v+m+1,n|vj ≥ v+m,n], vj}).

Seller i is better off opting out of the auction and offering p∗ij than opting in and offering p∗∗ij
if E[p∗ij] ≥ p∗∗ij Pr(j accepts p∗∗ij ) + E[v+m+1,n](1− Pr(j accepts p∗∗ij )). Note that seller i only offers p∗ij
and opts out if doing so is better than participating in the auction or if E[p∗ij] ≥ E[v+m+1,n]. Thus, if
E[p∗ij] ≥ p∗∗ij , then E[p∗ij] ≥ p∗∗ij Pr(j accepts p∗∗ij ) + (E[v+m+1,n)(1− Pr(j accepts p∗∗ij )).

4. Concluding Remarks

We have given conditions under which it is optimal for a seller not to participate in an auction
over a buyer-seller network. Specifically, a seller will choose to opt out of the auction if the seller acts
as a bridge in the network and if there is a considerable likelihood of low value and/or a considerable
likelihood of high value buyers. A considerable likelihood of low value buyers decreases the expected
price the seller expects to receive in the auction making him more likely to exit. While a considerable
likelihood of high value buyers makes it more likely that the buyer who receives the opting out offer
will be willing to take it. We also extend the results to the case where a seller can make offers to
multiple buyers and show that this makes opting out more likely. Additionally, we extend the results
to the case where the initial graph is not allocatively complete.

The model could naturally be extended to a repeated game framework, which we leave for
future research. Such an extension is important in many examples such as spectrum sharing networks
and networks of clothing assemblers and garment manufacturers. In both of these examples, goods are
sold on a network repeatedly. It would be interesting to investigate how such repetition influences
whether or not a seller chooses to opt out of the network. For instance, in a repeated game it may be
possible for a seller to learn the valuation that a linked buyer has for the good. Such knowledge could
increase the likelihood that a seller will choose to opt out of a network with a particular buyer.
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