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Abstract: Effective sharing mechanisms of joint costs among beneficiaries of a project are a
fundamental requirement for the sustainability of the project. Projects that are heterogeneous both
in terms of the landscape of the area under development or the participants (users) lead to a more
complicated set of allocation mechanisms than homogeneous projects. The analysis presented in
this paper uses cooperative game theory to develop schemes for sharing costs and revenues from
a project involving various beneficiaries in an equitable and fair way. The proposed approach is
applied to the West Delta irrigation project. It sketches a differential two-part tariff that reproduces
the allocation of total project costs using the Shapley Value, a well-known cooperative game allocation
solution. The proposed differential tariff, applied to each land section in the project reflecting their
landscape-related costs, contrasts the unified tariff that was proposed using the traditional methods
in the project planning documents.
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1. Introduction

Cost allocation is the process of dividing the costs of a multi-purpose or a multi-agent project
among the various project purposes or beneficiaries. Criteria and principles used for cost allocation are
decided at the planning phase of the project and can lead to a situation where some of the beneficiaries
are unsatisfied and thus the project may fail. Some of the cost allocation schemes are based on simple
rules, proportional to a single parameter, which can lead to allocation solutions that are not acceptable
by all participants. This is especially true when the affordability of beneficiaries to share the cost
widely varies, or when beneficiaries face different conditions affecting their ability to benefit from the
project. This paper demonstrates the application of Cooperative Game Theory (CGT) to an irrigation
project that has been considered for implementation in the West of the Nile Delta in Egypt.

The main issues to which CGT tries to address are agreements to allocate joint gains, using solution
concepts. Solution concepts are rules of allocation of gains from cooperation that the cooperating
members of a given group can share. The number of allocation solution concepts is quite large, due
also to the diversity of the problems that CGT can address. A review of the literature of CGT cost
and benefit allocations in water projects can be found in [1]. Among the most known solutions are:
the Core, the Shapley Value [2], and the nucleolus [3]. For a general introduction to game theory and
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in particular to cooperative games see [4–6]. The Shapley value, in particular, has been successively
used as a cost allocation method in many applications (see, for instance, the survey [7]), including the
management of environmental resources (e.g., see [8]).

In most of its solution approaches, CGT ignores the strategic stages leading to coalition building
and focuses on the possible results of cooperation. CGT attempts to answer questions such as which
coalitions can be formed? How can the coalitional gains be divided in order to secure a sustainable
agreement? Often, for joint projects, the optimal way to maximize the gains (revenues minus costs,
or cost savings) is to build a facility (for example) that involves all of the interested players. Thus,
in CGT, the solutions that include all possible players (Grand Coalition) are prominent, and thus
most CGT solution concepts refer to a way of allocating among players the gains achieved by the
Grand Coalition. As such, CGT is a good framework for allocation of joint costs or benefits among
participants in a project.

An important aspect associated with the solution concepts of CGT is the equitable and fair sharing
of the cooperative gains. One can refer to equity in a comprehensive framework, that is, social
justice—a proper distribution of resources, welfare, rights, duties, opportunities, or in our case the
costs of an investment and of Operations and Maintenance (O&M) of a project. There have been many
applications of CGT to allocation issues in water projects, including the publication [9]. In most, if not
all previous works, simplifications of the allocation problem have been introduced, which made the
application less operational.

In this paper, we introduce an application of cooperative game theory to a cost allocation
problem arising from a complex water project in Egypt, taking into account differences in the regional
landscape of land sectors (sectors) of the project area that affect the benefits that can be accrued
by water users in each of the project land sectors. We demonstrate the challenges faced during the
application of cooperative game theory concepts and how they are addressed. The analysis produces a
differential two-part tariff that differs by the project land sectors, in contrast to the unified tariff that
was recommended by the traditional methods used by the planners.

We start in the next section with some basic definitions and notations on cooperative games.
Section 3 is devoted to the description of the analytical framework related to the West Delta Project
(WDP). In Section 4, we introduce and discuss the data and the procedures used to evaluate the
relevant costs and the revenues under two different scenarios of water supply, namely, alternative A0
and A2. In Sections 5 and 6, we describe how we computed the (cost and revenues) cooperative games
associated with scenarios A2 and A0, respectively. The cooperative games defined in Sections 5 and 6
are compared and discussed in Section 7, together with the analysis of the associated cost allocation
problem. Section 8 concludes this paper.

2. Preliminaries and Notations

A cooperative cost game (or, simply, a cost game) on a finite set N “ t1, . . . , nu of players is a pair
pN, cq where the characteristic function c is a map c : 2N Ñ < assigning to each coalition S Ď N a real
value cpSq P < representing the cost of coalition S, and with cp∅q “ 0. A cost game pN, cq is subadditive
if cpSY Tq ď cpSq ` cpTq for all S, T Ď N such that SX T “ ∅.

Given a cost game pN, cq, an imputation is a vector x P <N such that
ř

iPN
xi “ cpNq and xi ď cptiuq

for each i P N. An imputation is in the core of the cost game pN, cq if
ř

iPS
xi ď cpSq for all S Ď N.

A very well studied solution from the literature of cooperative games is the Shapley value (Shapley
1953, [2]), which is defined for every cost game pN, cq as follows:

Shipcq “
ÿ

SP2Nztiu

s!pn´ s´ 1q!
n!

mipSq, (1)

where s is the cardinality of a coalition S and mipSq “ cpSY tiuq ´ cpSq is the marginal contribution
of i to S, for each i P N and S P 2Nztiu. Thus, Shipcq is the expected marginal contribution of
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player i P N in the cost game pN, cq over all possible coalitions not containing i and assuming that
the probability to enter in a coalition of size s is equal to s!pn´s´1q!

n! . The Shapley value Shipcq of a
subadditive cost game pN, cq is an imputation of pN, cq, but Shipcq is not necessarily in the core of
pN, cq. A sufficient condition to have Shipcq in the core of pN, cq is that pN, cq is submodular or concave,
i.e., cpSY Tq ` cpSX Tq ď cpSq ` cpTq for all S, T Ď N.

3. The Analytical Framework

As an example, tailored to the West Delta Project (WDP) scheme presented below, of a cooperative
game, considers a three-player game, whose players are 1, 2, and 3 1. Each player faces a different
physical situation that affects his performance (costs and benefits). Assume that the players want to
build a system of irrigation infrastructure to be used by all of them for production. The presence of
joint costs will require some way of attributing them to each player. One way of allocating joint costs
is to apply approaches used in cooperative game theory. The idea is quite simple in principle. One
has to find what would be the costs if the infrastructure would be built just for one player (singleton
coalitions). Then do the same for each group of two players (partial coalitions), and finally, for the
entire group (grand coalition) of the three players. In such a way one gets a string of numbers (costs),
that we shall call c(1), c(2), c(3), c(1,2), c(1,3), c(2,3) and, of course, c(1,2,3) (the later is the cost of the
project as appears in the project documents). This is a cooperative (cost) game, and one looks for
“allocation solutions” to this game; namely, how to allocate the project cost among 1, 2, and 3. In
general, a solution is assumed to be an imputation. That is, it will share exactly the total joint cost
among the players, without attributing to anyone a cost higher than its “stand-alone” cost, c(i), i = 1, 2, 3
in our case. In our model, we will develop a cooperative cost game to see the feasibility and interest of
all the players in the construction of the surface irrigation system. We use the Shapley Value to allocate
the costs among the players.

While the project documents suggest a certain tariff to be charged to the players, we have
investigated which would be the tariff (or the tariffs) proposed by the cooperative game theory
analysis. We will develop a cooperative cost game to analyze the feasibility of different methods
for sharing the costs for building the surface irrigation infrastructure, using the Shapley Value. We
develop a cooperative cost game to see the feasibility and interest of all the players in the construction
of the surface irrigation system. Finally, based on the cooperative game, we find out which operational
two-part tariff for surface water could be used to reproduce the fair solution (which is, in our case, the
Shapley Value). The challenge, of course, is the setting of various characteristic functions, which is the
focus of this paper.

3.1. Features of the West Delta Water Conservation and Irrigation Rehabilitation Project

The West Delta Water Conservation and Irrigation Rehabilitation Project (WDP) was a unique
attempt of the Government of Egypt to prevent the environmental degradation of the flourishing West
Delta region. The massive agriculture development of the region (about 107,000 ha) led to depletion
and salinization (seawater intrusion) of groundwater resources. The project is based on the premise
that supplementing the groundwater in the region with imported Nile water to irrigate the existing
land and even extending it, can be done in both an ecologically and financially sustainable way. An
innovative component of the project was the inclusion of a for-profit private sector entrepreneurship
that will fund the investment, manage the cost recovery, and operate the surface irrigation system
according to specified rules of operation. Another innovative component was the introduction of full

1 Players F1, 2, and F3 are sub-regions in the project that differ in their landscape and sensitivity to groundwater salinity. We
use the notion presented in previous works in the literature (e.g., Young, Okada and Hashimoto, 1982 [10]; Esteban and
Dinar, 2013 [11]) that there is an authority (project manager, government authority) that can decide on combinations of the
regions of the project for realization of economies of scale in the case of a benefit sharing game or diseconomies of scale in
a cost sharing game. The project manager or the government authority could be in charge of such calculations.
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cost recovery and volumetric pricing. The Government of Egypt was supposed to provide guarantees
to mitigate financial risks faced by the private entrepreneur from non-payments by farmers in the
project. Eighty five percent of the cost of the first phase of the project (about 38,000 ha) was supposed
to be funded by the World Bank ($145 million) and the French Development Agency (EUR 30 million).
The other 15% of the first phase cost and the cost of the next phases had to be raised by the private
operator. More information on the project and its closure can be found in [12].

The most critical question related to the project was how to design the cost recovery scheme that
will fully cover all costs, will be acceptable to the various users (farmers), and at the same time will
be attractive to a private investor. The reason for that can be seen in the map of the region below
(Figure 1). The project area can be divided into three distinguished sectors: Central (player 1), Southern
(player 2) and Northern (player 3). The three sectors differ in both their size of land holding, and in the
(average) depth to water table (i.e., the depth at which the ground beneath the surface is saturated
with water)2. Sectors’ size will affect the investment cost per unit of land due to economies of scale
and pumping cost. Sectors’ depth to water table will affect the cost of pumping groundwater and,
thus, the willingness to pay for imported surface Nile water (Table 1).
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Figure 1. Project area: The areas marked with red lines indicate the Southern sub-region (player 2); the
areas marked with purple lines indicate the Northern sub-region (player 3); and the unmarked blocks
indicate the Central sub-region (player 1).

Table 1. Area and depth to water table by the 3 sub-regions (players).

Player Region Gross Farm Area under A2
(Feddan)

Gross Farm Area under A0
(Feddan)

Average depth to GW
(m)

1 Central 141,600 59,472 85
2 South 48,400 18,876 110
3 North 65,000 45,500 45

TOTAL 255,000 123,848

Note: 1 Feddan = 0.42 hectares.

2 Note that, according to a land satellite imagery of January 2002, more than 123,000 Feddans were under cultivation. When
fully developed, the net cultivable area under alternative A2 is estimated to reach 255,000 Feddans.
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The cost3 per player will affect the profit level and, therefore, the willingness to participate in the
project and contribute to the cost recovery, which is a fundamental condition for the risk a private
investor may be willing to take.

3.2. The Empirical Framework

In this model we consider three players, each one is formed by a subset of land owned by farmers
in various sectors of the project (Figure 1). We assume that all farmers in each sector, or sub-region,
can be represented by one voice. Player 1, central region, consists of sectors {S01, S02, S03, S04, S05, S09};
player 2, southern region, consists of sectors {S06, S07, S08}; and player 3, northern region, consists of
sectors {S11, S12, S13, S14, S15, S16}. This choice of sectors and sub-regions for the players is very
close to the situation of Market and Demand Parameters (MDP) project option for alternative A24 (PPIAF,
2005 [14]). Therefore, our cost allocation game is based on three players/regions characterized by
different size of land and depth to groundwater table as shown in Table 1 5.

4. Description of the Data and Procedures Used

This section describes the various types of costs and revenues that are considered under the two
alternatives scenarios of water supply to the project: A0 and A2. All the data used in our analysis
originated from several reports prepared by the World Bank [12,15] and several local and international
consultants [13,14,16–18]. Since the project is funded mainly by the World Bank, it has to follow
the World Bank procedures. As such, [13,14,16–18] are reports that prepared the project design and
different assessments (e.g., irrigation efficiency, net benefits and their distribution across beneficiaries,
soil and groundwater quality, environmental and social assessment, and public–private partnership
performance and risk—the private sector had a major role in this project). The report [15] is the
project appraisal report, which is based on the reports cited above and a series of discussions with
the Government of Egypt. This report triggered the approval of the project and the initiation of the
procedures in the project plan. The [12] report addresses the termination of the project.

Under both alternatives, investment costs for irrigation equipment are considered for a time period
of 20 years, and running costs (O&M and labor) are considered on a per-year basis. Yearly revenues have
been calculated on the basis of the cropping patterns derived from the farm survey results (Annex 1
and 3 in [13]). Net benefits are calculated, based on an optimal allocation of land use for irrigated
crops in each sub-region [13]. When the net benefits from irrigated agriculture under Alternative
A0 (business as usual) turn negative due to high level of salinity, the reference cropping pattern is
replaced by a more salt tolerant (and less profitable) cropping pattern. This switch consists primarily
on a different allocation of the area for crops (e.g., an increase in the area cultivated with grapes, which
has been supposed to double after Year 13).

Under alternative A0, it has been evaluated that after 13 years from the first year of connection
to surface water the loss in agricultural production in the Nile Delta would make it more profitable
for farmers to leave the project area. Consequently, alternative A0 has been considered to produce
revenues for only 13 years. The main assumptions, sources of data, etc. used in the financial part of
the model, are presented in Annex 3 of the WDWCIARP Drainframe Analysis, Main Report [13]. The

3 One important factor is the salinity of groundwater, which is a main driver of the interest of the farmers. However, we were
not able to find information on salinity levels in the three project land sections. Available information on salinity in the
groundwater refers to the entire project only.

4 The West Delta Irrigation Project analyses considered four alternatives (choices): (i) Alternative A0, which assumes business
as usual, i.e., doing nothing; (ii) Alternative A1, which provides a maximum surface water supply capacity of 4.5 mm/day
with the conjunctive use of ground water to meet peak water requirements during the summer months; (iii) Alternative
A2, where surface water supply follows the crop water requirement through the year and no ground water pumping is
needed; and (iv) Alternative A3, where groundwater recharge is combined with conjunctive use of surface water and
groundwater [13].

5 We did not compare between the alternatives A1, A2, and A3, but only between alternative A2 and status quo/business as
usual (A0).
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chosen time period is 13 years, starting from the first year of connection to surface water. This rather
short timeframe has been chosen in order to provide consistent results for the different evaluated
impacts. This is also the timeframe of the National Water Resources Plan (NWRP); therefore, we
adopted a financial model with a similar time horizon. Extending the timeframe by 20–30 years would
show even more clearly that the impacts on agricultural production under A0 are unsustainable.

4.1. Scenario A2

Scenario A2 considers no groundwater use. Thus the capacity of the conveyance system should be
designed to meet the peak monthly surface water requirement of 222 million cubic meters in June, [14].

Under scenario A2, we have considered the investment costs categories reported in Table A1
in Appendix A (from [13]) and the running cost (O&M) shown in Table A2 in the Appendix A
(based on [16]).

For alternative A2, a reference crop pattern is reported in Table 2. It consists of high value crops
with a higher share of perennial trees (79%) and vegetables (21%). Under A2, where the surface
irrigation system is designed in order to meet peak summer requirements, it is assumed that farmers
will maintain the current cropping pattern.

Table 2. Cropping Patterns under Scenario A2 and A0.

Cropping Pattern for Year 1–13,
Scenario A2

Cropping Pattern for Year 14–20,
Scenario A0

# Crop % area % area
1 Apricot 8 4
2 Pears 6 0
3 Mango 10 10
4 Peaches 15 13
5 Grapes 23 46
6 Citrus 17 17
7 Summer Vegetables 10 5
8 Winter vegetables 11 5

Note: All the assumptions on data concerning the cropping patterns for the three regions originates from the
Annex 3 of the main report, where the reference cropping pattern has been derived from the farm survey results
in Annex 1.

For summer and winter vegetables, double cropping has been assumed in a six-month periods for
both summer and winter crops under the reference cropping pattern only. Revenues from production of
different cropping patterns are assumed to depend on the expected yields according to Mass-Hofman
formula [19]. This means that under this alternative they depend on the average soil salinity under
Nile water irrigation.

4.2. Scenario A0

Scenario A0 represents the case of continued dependence on ground water only (business
as usual).

Under scenario A0, we have considered the investment costs categories shown in Table A3 in the
Appendix A (based on [16]) and the running cost categories reported in Table A4 in the Appendix A
(based on [16]).

Under scenario A0, the reference cropping pattern is assumed to be the same as in A2 (Table 2).
For summer and winter vegetables, double cropping has been assumed in a six-month periods for both
summer and winter crops of the reference cropping pattern only. It is also assumed in A0 that farmers
will continue to grow the reference cropping pattern as long as the net benefits remain positive. More
precisely, after Year 13, the model yields negative benefits and it is assumed that the (less sensitive
to water salinity) cropping pattern shown in Table 2 is adopted. The switch consists primarily in a
different allocation of the area for each crop (i.e., a relative increase in the area cultivated with grapes),
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while only in one case a particularly salt sensitive crop (pear) is replaced by a more tolerant one (maize).
Moreover, we assume that at the Year 15, after the intense use of water during the previous years, the
yield of the crop pattern in Table 2 would be at 80% of the saline non-stressed fields.

Revenues from production of the two different crops are assumed to depend on the expected
yields [13], and hence ultimately on the expected behavior of groundwater salinity [16]. When the
switch to cropping pattern in Table 2 occurs, we considered a single cropping for vegetables and a 20%
of yield reduction with regards to the non-stress situation for the other products in Table 2 (grapes and
other crops).

5. Assigning the Investment and Running Costs and the Revenues to the Various Coalitions in
the Game under Alternative A2

We use the existing cost items provided by in the World Bank project document [15]. Our goal
is to assign costs to each possible coalition, i.e., each possible sub-group of the three land sections.
Since the project documents [15] were prepared to estimate the cost of implementation on the overall
area (grand coalition consideration), we developed a methodology for assessing the costs for the
intermediate coalitions. We used the cost data on investment and running cost items related to the
project. For certain items the information is provided for the entire project, and for some items data is
aggregated for land sectors and yet for some other cost items the data is provided for each individual
sector (see Figure 1 and first paragraph of the Empirical Framework Section).

According to this information and assuming equal distribution of cost per hectare among all
land blocks we used the available information to estimate the cost of coalitions in three different cost
games as explained in more detail in the next section. The resulting cost allocations of investments
and running costs per region (that were used below to create the cost per coalition) can be found in an
excel file that is provided in the auxiliary dataset to this paper [9]. In the following, we describe how
we estimated the amount of investment costs for each coalition of players.

Finally, in the last part of this section (namely, in Section 5.3), we introduce the procedure used to
determine the revenues of each coalition under alternative A2 on the basis of the information provided
in [14] and [13,16,17].

5.1. Evaluation of the Investment Costs under Alternative A2

To determine our cost game, we shall consider it as the sum of three games, cA2,1, cA2,2 and cA2,3.
This decomposition into three different cost games is based on our ability to apportion the various
costs from available data [20,21] to the various coalitions.

In game cA2,1, only the cost of the grand coalition {1,2,3} can be directly assessed. In game cA2,2,
only the costs of coalitions {1,2},{3} and {1,2,3} can be assessed directly, and, in game cA2,3, the costs
of all coalitions are assessed from the available data6. All three games are used in the calculation of
the Shapley Value. We use all three games to produce the cost of all seven coalition-sections in the
project area. Both cA2,1 and cA2,3 are additive cost games. cA2,1 is calculated starting from the value of
the grand coalition (taken from the costs presented in [21]), and then proportionally allocated by the
area of each sub-coalition (See footnote 6). cA2,3 is also additive but the cost items in this game are a
priori assigned to the three section in the data taken from [15], so the cost of each larger coalition is
computed additively based on these data. In the following discussions and tables, all costs have been
considered in 106 LE (Egyptian Pounds)7.

5.1.1. Costs Items in Game cA2,1

Costs considered in game cA2,1 are the following (Table 3).

6 We use costs presented in a spreadsheet of the project report that can be attributed to each region depicted in Figure 1 [21].
7 The exchange rate used at the time of conducting study (2002) is 5.8 LE = 1$.
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Table 3. Costs in Game cA2,1.

Description Total Cost in the Project Area

Supplementary Work 107.68
Electricity supplies 29.60

(O&M Program) 11.30
Physical Contingencies 126.39

Price Contingencies 126.39

Source: [20]. Note that we considered in this game only the cost of investment in the project region depicted
in Figure 1. From costs in Table 3, it is possible to assess the total amount for the grand coalition {1,2,3} as
cA2,1(1,2,3) = 401.36. This was mentioned in the definition of this game earlier in the section.

5.1.2. Cost Items in Game cA2,2

Costs considered in game cA2,2 are presented in Table 4.
The cost in Table 4 allow us to assess the total amount, for coalitions {1,2}, {3} and {1,2,3}, as

cA2,2(1,2) = 599.941; cA2,2(3) = 176.796; and cA2,2(1,2,3) = cA2,2(1,2) + cA2,2(3) = 776.737, respectively.

Table 4. Costs in Game cA2,2.

Description Total Cost for Central and
Southern Region (Player 2)

Total Cost for the Northern
Region (Player 3)

Intakes 290.10 *
Intakes * 64.48

Intermediate Boosters 62.78 *
Intermediate Boosters * 31.78

Electricity Supply IN-01 30.60 *
Electricity Supply IN-02 * 16.70
Electricity Supply IB-01 17.70 *
Electricity Supply IB-02 * 16.70

Mains (pressurized) 57.27 *
Mains (gravity) 66.85 *

Mains (pressurized) 15.39 *
Mains (pressurized) 15.39 *
Mains (pressurized) 8.33 *

Mains (gravity) * 17.00
Mains (pressurized) * 17.93
Crossing Structure 29.08 *
Crossing Structure 12.08 *
Crossing Structure * 2.18

Road system 2.72 *
Road system * 1.70

Source: [20]. Note: * means that the corresponding cost item on the row does not affect the corresponding
player on the column. For example, the description “Electricity Supply IN-01” refers to the cost component
“Electricity Supply” corresponding to the intake (IN) 01 [20].

5.1.3. Costs in Game cA2,3

Costs considered in game cA2,2 are presented in Table 5. All costs considered here concern
components that can be directly attributed to each region in Figure 1. The resulting cost game is an
additive game, that is, the cost for coalition S Ď {1, 2, 3} is equal to the sum of the individual costs for
players in coalition S. Note that these kinds of costs correspond to those cost components of the project
which can be directly allocated to each participant.
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Table 5. Costs in Game cA2,3.

Description Cost for the Entire Project Area

Crossing structure 11.92
Road system 189.40

Sub mains boosters 767.89
Electricity Supply 18.40

Mains 152.51
Sub-Mains 124.44

Farm Connections 203.05

The resulting additive cost game ({1,2,3},cA2,3) is presented in Table 6.

Table 6. Additive cost (LE) in Game cA2,3.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

cA2,3(S) 812.55 265.57 389.49 1078.12 1202.04 655.06 1467.61

Note that the total cost of investment under alternative A2 in the project area depicted in Figure 1 is equal to
2645.712 ˆ 106 LE.

5.1.4. Missing cost Estimation for Intermediate Coalitions

In Sections 5.1.4.1 and 5.1.4.2, we present how we estimated the value of coalitions in games
cA2,1 and cA2,2, whose costs were not possible to be evaluated from the data spreadsheet in the project
documents [13,14,20].

5.1.4.1. Estimation of the Cost of Intermediate Coalitions in Game cA2,1

Costs of intermediate coalitions have been estimated in game cA2,1 proportionally to the area of
the corresponding region covered by the coalition. For example, for coalition {1,2}, the cost assigned to
such coalition has been estimated as the fraction (area of central and southern region)/(area of the entire
region) of the total cost evaluated from the spreadsheet for the entire region c({1,2,3}). Of course the
assumption of direct proportionality produces a rough approximation of the costs for each coalition,
but it is needed to address the lack of information in the project documents.

5.1.4.2. Estimation of the Cost of Intermediate Coalitions in Game cA2,2

This case, which is directly assessable from the spreadsheet, is the cost for two distinct regions,
region {1,2} and region {3}. The main characteristics affecting the value of these costs have been
assumed to be the water intake that is assumed to be proportional to the dimension of the served
area. A secondary variable, which has been assumed to affect the costs considered in this game is the
average depth to water table of the served lands.

Therefore, we considered a model for cost estimation where costs are mainly function of the area
of the served regions plus another term representing the interaction between the area and the average
level of the regions served. In formula, we considered the model

C “ b¨F ` a¨F¨H ` K (2)

where F is the size of the served area (Feddan), H is the average depth to water table of the served
area (meter), a and b are coefficients, K is a fixed cost component, and C is the total cost for cost
items presented in Table 4 and analyzed in game cA2,2. Note that the parameter F for a coalition S
has been calculated as the sum of the area (in Feddan) of players in S, whereas the parameter H has
been obtained as a weighted average of depth to water table for players in S. For example, if S = {1,2},
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then F(S) = (141,600 + 48,400) = 190,000 Feddan and H(S) = (141,600 ˆ 85 + 48,400 ˆ 110)/(141,600 +
48,400) = 91.37 m.

Fitting the model in Equation (2) to data presented in Section 5.1.2, the resulting optimal
coefficients are a = 0.002, b = 9.43844 ˆ 106 and K = 0 and the corresponding costs for game cA2,2 are
shown in Table 7.

Table 7. The calculated costs for game cA2,2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

F (Feddan) 141,600 48,400 65,000 190,000 206,600 113,400 255,000
H (level) 85 110 45 91 72 73 80
cA2,2(S) 438.60 161.39 176.80 599.94 615.40 338.13 776.74

5.1.5. Total Investment Costs Game under Alternative A2

Summing up, the cost games related to the investment costs under alternative A2 are shown in
Table 8 (costs in 106 LE), where ({1,2,3},cA2(S)) is the total investment cost game under alternative A2.

Table 8. Total investment cost game under alternative A2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

cA2,1(S) 222.88 76.18 102.31 299.06 325.19 178.49 401.37
cA2,2(S) 438.60 161.34 176.80 599.94 615.40 338.13 776.74
cA2,3(S) 812.55 265.57 389.49 1078.12 1202.04 655.06 1467.61
cA2(S) 1474.03 503.09 668.60 1977.12 2142.63 1171.68 2645.71

cA2(S)/20 73.70 25.15 33.43 98.86 107.13 58.58 132.29

The game cA2(S)/20 is the amount of investment cost that should be supported each year by the
corresponding coalitions under alternative A2, in an ideal situation where the principal amount can be
amortized over 20 years.

Next, we consider a situation with a more accurate estimation of the effects of time on the cash flows.

5.2. Evaluation of Running Costs under Alternative A2

Running costs (O&M) are costs that farmers should support every year for operating and
maintaining all the agriculture procedures. Similar to what was observed for investment cost, we
observed three different kind of running cost games, the games rA2,1, rA2,2 and rA2,3, again different
from each other by the possibility to assess the cost of each coalition of players directly from data
presented in [20]. In game rA2,1, only the cost of the grand coalition {1,2,3} is directly assessed. In
game rA2,2, only the costs of the coalitions {1,2},{3} and {1,2,3} are directly assessed and, in game rA2,3,
the costs of all the coalitions are assessed, from direct attribution of costs presented for the regions
depicted in Figure 1.

5.2.1. Costs in Game rA2,1

Costs considered in game rA2,1 are the following (Table 9).

Table 9. Costs in game rA2,1.

Description Total Cost on the Project Area
(i.e., Figure 1 Area, 45% of the Total Served Area)

Supplementary Work 6.16
(O&M Program) 0.25
(O&M Program) 54.28
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For costs in Table 9 it is possible to assess the total amount, for the grand coalition, that is
rA2,1 = 60.691.

5.2.2. Costs in Game rA2,2

Costs considered in game rA2,2 are the following.

For costs in Table 10 it is possible to assess the total amount for coalitions {1,2}, {3} and {1,2,3},
precisely as rA2,2(1,2) = 60.06; rA2,2(3) = 11.5; and rA2,2(1,2,3) = rA2,2(1,2) + rA2,2(3) = 71.56, respectively.

Table 10. Costs in game rA2,2.

Description Total Cost for Central and
Southern Region (Coalition {1,2})

Total Cost for the Northern
Region (Coalition {3})

Intakes 50.69 9.28
Intermediate Boosters 9.37 2.22

5.2.3. Costs in Game rA2,3

Costs considered in game rA2,3 correspond to Sub Mains Boosters costs (see Table A1 in
Appendix A for a short description of the cost categories). All costs considered here concern those
components that can be directly attributed to each area in Figure 1. The resulting cost game is an
additive game. The total cost for the entire area is 767.888 ˆ 106 LE.

The resulting game ({1,2,3},rA2,3) is presented in Table 11.

Table 11. Coalitional costs in the game ({1,2,3},rA2,3).

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

rA2,3(S) 27.16 9.57 12.79 36.68 39.90 22.36 49.48

Note that the total running costs under alternative A2 in the project area depicted in Figure 1 is equal to
181.681 ˆ 106 LE.

5.2.4. Cost Estimation for Intermediate Coalitions

As for the investment costs, costs of intermediate coalitions in game rA2,1 have been assumed to
be directly proportional to the area of each region.

Estimation of Game rA2,2

For running costs, where the cost of energy employed for the operations is the main variable that
affects the costs considered in Section 5.2.2, we assumed that both land area and average level have
the same weight in the model for cost estimation. For this reason, we assumed the following model for
running cost estimation

C1 “ a1¨F¨H ` K (3)

where C1 is the total cost for cost items presented in the Section 5.2.2, F1 is the extension of the area
served (Feddan), H1 is the average level of depth to water table in the area (meter), a1 is coefficient
which represents the variable cost component and K1 is the fixed component for running costs. Fitting
the model in relation (3) to data presented in Section 5.2.2, the resulting optimal coefficients are
a1 = 0.003457258 ˆ 10´3 and K1 = 1.393520161, and the corresponding game rA2,2 has the characteristic
function shown in Table 12.
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Table 12. Characteristic Function Values for game rA2,2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

F (Feddan) 141,600 48,400 65,000 190,000 206,600 113,400 255,000
H (meter) 85 110 45 91 72 73 80

rA2,2(S) 43.06 19.80 11.51 61.41 53.12 29.91 71.52

5.2.5. Evaluation of Labor Cost and Production rlp

Cost of seasonal labor is assumed to depend both on the total cultivated area (70% weight) and
on the level of production (30% weight), while permanent labor is assumed to only depend on the
cultivated area. These coefficients and assumptions are based on [16]. Other costs of production
(seeds, fertilizers, machinery, etc.) are reported on a per Feddan basis, taking into account the reference
cropping pattern [16]. Resulted costs appear in Tables 13 and 14.

Table 13. Labor cost.

Type of Labor Salary LE/month Total Person-Hours per Year
(100 Feddan, Year 2005)

Permanent-skilled 400 25,200
Permanent-unskilled 300 46,500

Seasonal 270 109,000

Table 14. Production cost by crop.

Crop Cost (LE/ Feddan)

Summer and winter vegetables 1670
Maize 1024

Fruit trees 1000

The reference-cropping pattern considered is the one shown in Table 2. The total area is
255,000 Feddan. Given these parameters, the aggregated labor and production cost game rlp is shown in
Table 15. Note that the cost estimation for labor and production has been done to provide a holistic
picture in the project area only because the allocation problem for these costs is clearly defined: each
individual farm will support its own costs of labor and production.

Table 15. Aggregated labor and production cost game rlp.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

rA2,1(S) 33.70 11.52 15.47 45.22 49.17 26.99 60.69
rA2,2(S) 43.01 19.80 11.51 61.41 53.12 29.91 71.52
rA2,3(S) 27.11 9.57 12.79 36.68 39.90 22.36 49.47
rlp(S) 482.28 164.85 221.39 647.13 703.67 386.24 868.52
rA2(S) 586.09 205.74 261.16 790.44 845.86 465.50 1050.20

5.2.6. Total Running Cost Game under Alternative A2

Summing up, the cost games related to the running costs (on a per year basis) under alternative
A2 are shown in the following table (106 LE), where rA2(S) is the total running cost game under
alternative A2.
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5.3. Revenue Evaluation under the Alternative A2

Under this alternative the cultivated area is assumed to reach the full area of 255,000 Feddan.
Unit revenues from production of different crops are reported in Table 16.

Table 16. Unit revenues from production of different crops.

Crop Farmgate Price LE/Ton Non Stress Yield (Ton/Fedan)

Apricot 800 3.5
Pears 3200 6.9

Mango 1680 3.2
Peaches 1040 7.4
Grapes 1200 6.8
Citrus 600 6.7

Winter Vegetables 470 14.9
Summer Vegetables 450 19.6

Under alternative A2 (no use of groundwater), we assume that the salinity of (Nile) water has
been assumed to remain constant over the entire period of 20 years, which has been considered in
this analysis [13,14,16,17]. According to [13,16,17], the revenues from production of different crops are
assumed to depend on the expected yields and, ultimately, on the expected behavior of groundwater
salinity under alternative A2. Therefore, yields, costs and profits remain constant over time under
alternative A2.

Summing up, the revenue game ({1,2,3},vA2), which provides the revenue of each coalition under
alternative A2, is shown in Table 17.

Table 17. Revenue of the coalitions under alternative A2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

vA2(S) 812.55 265.57 389.49 1078.12 1202.04 655.09 1467.61

6. Assigning the Investment and Running Costs and the Revenues to the Various Coalitions in
the Game under Alternative A0

In this section, we use again World Bank project document [14,15] and the same approach
previously introduced in the previous section to assign costs and revenues to each possible sub-group
of the three land areas under alternative A0.

6.1. Investment Cost Evaluation under the Alternative A0

Investment costs in irrigation equipment include groundwater pumping equipment (wells,
pumps, engines, and fuel tank) and the cost of the irrigation system (drip lines, hydrants, etc.).
The assumed average lifetime of these elements for A0, where the ground water (GW) pumping
equipment has a relatively short life expectancy, is the following: 10 years for well, pump and engine,
30 years for fuel tank [17]. The cost of this equipment is reported in Table 18.

As shown in Table 18, the size of the needed equipment depends on the size of the area served.
Thus, the investment cost game ({1,2,3},cA0) under alternative A0 is depicted in Table 19.
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Table 18. Cost of pumping and irrigation network.

Item Unit Capital Cost (LE) No. per Farm (100 Feddan) Lifetime (Years)

Well construction (100 m) [16] 60,000 2 10
Engine 100,000 2 10
Pump 80,000 2 10

Irrigation network (including
hydrants and drip lines) on

100 Feddan
250,000 1 20

Fuel tank 5000 1 30

Table 19. The investment cost game ({1,2,3},cA0) under alternative A0.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

cA0(S) 437.12 138.74 334.42 575.86 771.54 473.16 910.28
cA0(S)/20 21.86 6.94 16.72 28.79 38.58 23.66 45.51

6.2. Running Cost Evaluation under the Alternative A0

Running costs incorporate O&M costs, labor costs, production costs and energy costs. O&M costs
have been assumed equal to 5% of the yearly investment in equipment. Costs of supply of irrigation
water include energy costs for water pumping. Energy cost per unit water has been estimated in [16]
to be 0.029 LE/m3. The annual water requirement for a reference-cropping pattern for 100 Feddan has
been than estimated at about 6250 m3/year.

Cost of labor and production per year have been calculated according to cost values shown in
Tables 13 and 14, with respect to the cultivated area under alternative A0. As we already indicated, the
cost allocation for labor and production is already allocated (each farm will pay its own cost of labor
and production cost) but it is included in the calculation to provide a more detailed account of all costs.
The running cost game ({1,2,3},rA0) is then the one depicted in Table 20.

Table 20. The running cost game ({1,2,3},rA0).

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

rA0(S) 232.37 73.75 177.78 306.16 410.14 251.53 483.89

6.3. Revenue Evaluation under the Alternative A0

This alternative assumes continued use of groundwater, which is deteriorated in quality over
time. The reference-cropping pattern is reported in Table 2. For this cropping pattern only, for summer
and winter vegetables double cropping has been assumed in six-month periods for both summer
and winter crops. Under alternative A0 the cultivated area is assumed to reach the partial area of
123,848 Feddan. After Year 13, the reference-cropping pattern has been substituted by the cropping
pattern in Table 2.

Under alternative A0 the effect of salinity of irrigation water on yields is determined following
the methodology reported in the economic model in the Annex 3 of [16], with the effect of salinity on
yields being calculated according to the formula [19]:

Y(t) = [100 ´ B ˆ (ECe(t) ´ A)] ˆ Yns (4)

where Y(t) is the absolute yield, A is threshold salinity at which a crop start to suffer from salinity
(dS/m), B is rate of yield decrease % per dS/m increase in salinity, ECe(t) is mean electrical conductivity
of saturated paste of the soil in (dS/m) at time t, and Yns is the non stress yield level (ton/Feddan).
Consequently, each year, each coalition gets an incremental decrease of its revenues of about 4%.
All revenue games are shown in the Table A5.
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Therefore, and due to the annual decrease of revenues, we face 20 revenue games vt
A0, where

t = 0, 1, . . . , 19 is the year index. All revenue games shown in Table A5 are also depicted in Figure 2.
It has been shown in the simulation presented by [16] that after Year 13, alternative A0 produces
a negative net benefit under the reference-cropping pattern. Because of these negative net benefits,
farmers are supposed to switch the cropping pattern in Table 4 (Scenario A0) to the one in Table 2
(Scenario A2), which yields the revenues reported in italics in Table A5.
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Figure 2. Annual revenues for coalitions in games vt
A0 for t = 0, . . . , 19 under Alternative A0 (from the

data shown in Table A5 in Appendix A). After Year 13, alternative A0 produces a negative net benefit
(i.e., the revenues minus the costs) under the reference cropping pattern in Table 2 (Scenario A0) and
farmers are supposed to switch the cropping pattern in Table 2 (Scenario A2).

7. Game Comparison for Alternatives A0 and A2

In this section, we present a comparison of alternatives A0 and A2 in terms of their Net Present
Values (NPVs). Running cost games rA0 and rA2 are computed on an annual basis, so they have to
be paid by regions at each period. On the other hand, we suppose that the annual investment cost
that each coalition should bear every year under the two alternatives and over the entire period of
20 years is:

cy
A0 “ 1.065ˆ cA0{20 and cy

A2 “ 1.065ˆ cA2{20

where the coefficient 1.065 takes into account the Interest During Construction (IDC), which is assumed
to be 6.5% according to [14].

For harmony with other studies concerning this project, we chose to actualize all these (running
and investment) using the conservative estimate of the interest rate of 10%, as it appears in [16]. As
also indicated in [16], 10% is the conservative estimate of the real interest rate for Egypt, computed on
the basis of the nominal interest rate and the average inflation rate according to the formula in Table 21.

Table 21. Calculation of a conservative estimate for interest rate.

Real Interest Rate = [(1 + Nominal Rate)/(1 + Inflation Rate)] ´ 1

nominal interest rate 12%
inflation rate 3%

real interest rate 8.74%
conservative estimate 10%

The present values of investment and running costs together with the present values of the
revenues under the two different alternatives over a period of twenty years are shown in Tables 22
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and 23. The present values of the investment costs under alternatives A0 and A2 are denoted by iA0

and iA2, respectively. The present value of the running costs for alternative A0 is denoted by aA0.
Under alternative A2, we distinguish between the present value of running cost game rlp due to labor,
denoted by alp, and the present value of the sum of running cost games rA2,1 + rA2,2 + rA2,3, denoted
by aA2 (the present values games iA2 and aA2 will be also used in the cost sharing problem introduced
in the next section). Finally, the present values of the revenue games under the two alternatives A0
and A2 are denoted by VA0 and VA2, respectively.

Table 22. Present values of cost and revenues games under Alternative A0.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

iA0(S) 217.98 69.19 166.77 287.17 384.76 235.96 453.94
aA0(S) 2176.08 690.67 1664.84 2866.74 3840.92 2355.51 4531.59
VA0(S) 3321.10 1054.09 2540.86 4375.19 5861.96 3594.96 6916.05

NPV(A0) 927.04 294.23 709.25 1221.28 1636.29 1003.49 1930.52

Table 23. Present values of cost and revenues games under Alternative A2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

iA2(S) 735.07 250.88 333.42 985.95 1068.49 584.30 1319.37
aA2(S) 972.18 382.92 372.43 1342.07 1331.58 742.30 1701.44
alp(S) 4516.54 1543.79 2073.27 6060.33 6589.81 3617.06 8133.60

VA2(S) 7609.48 2487.02 3647.54 10096.50 11257.02 6134.57 13744.04
NPV(A2) 1385.68 309.43 868.42 1708.15 2267.14 1190.91 2589.63

The last rows of Tables 22 and 23 provide the difference between the present values of the revenue
game minus the present value of the cost games under the two alternatives A0 and A2, respectively.
Note that the NPV of alternative A2 is larger than the one of alternative A0, for each coalition SĎ {1,2,3},
suggesting that alternative A2 is more profitable than A0 over the entire period. The data presented in
Tables 22 and 23 are synthetically reported in Figures 3 and 4, respectively.
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From the results in Tables 22 and 23 we can realize that the net present value of alternative A2
is superior to that of alternative A0 for each coalition of land sections in the project. Therefore, the
implementation of alternative A2 is the best option for all intermediate coalitions of all regions. This is
consistent with the analysis in Section 7.1, where the allocation problem of the joint implementation
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costs for alternative A2 is studied. Of course, such allocation problem must take into account both
the effects of time on the cash flow (mainly affecting the actualization of the yearly running costs)
and the strength of each coalition S Ď {1,2,3} in contributing to the total cost of implementation of
alternative A2 in the entire region N. Our next assignment in the paper is to find an allocation of the
(investment plus running) cost game in which all the players (land sections) are not unhappy with
such an allocation, that is, we will find an allocation which is in the core of the game. We will show
that the Shapley Value of the cost game under alternative A2 (for both investment and running costs)
is in the core of the cost game (see Figure 5). Moreover the Shapley value satisfies some nice properties
of fairness in general. Thus, we propose the Shapley value of the cost game under alternative A2 as
a basis for allocating the costs of implementation of alternative A2 of this game. The Core and the
Shapley Value are displayed in Figure 5.
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7.1. Cost Allocation Problem under Alternative A2

We are now ready to suggest ways to allocate the joint costs among the various players (regions).
First we summarize which games have been considered, that is, the costs of implementation of
alternative A2 that have been adopted for the three regions and analyzed in the previous sections.

Concerning the running costs, in this section we consider the cost allocation problem related to
the running cost game aA2 provided in Table 23, that is the present value of the sum of the running
cost games rA2,1 + rA2,2 + rA2,3. Note that the game rlp concerning the cost of labor and production is
not considered here because, as we previously said, the allocation problem for these costs is clearly
defined: each individual farm will support its own cost of labor and production.

Investment costs cA2 (see Table 8) are deflated to present time and, as described in [13], will be
probably depreciated over 20 years. Similar to the previous section, for the investment costs, from [14]
we estimated IDC costs at 6.5%, yielding the game îA2 = 1.065 ˆ cA2 as shown in Table 24. Table 25
summarizes the present value aA2 of the total running cost for the implementation of alternative A2,
as defined in the previous section (Table 23).

Table 24. Investment cost game plus IDC costs are calculated as îA2 = 1.065 ˆ cA2, where cA2 are the
costs reported in Table 8.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

îA2(S) 1569.84 535.79 712.05 2105.63 2281.90 1247.84 2817.68

Table 25. NPV of the total running cost for implementation of alternative A2.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

aA2(S) 972.18 382.92 372.43 1,342.07 1331.58 742.30 1701.44

The Shapley values Sh of the games îA2(S) and aA2(S) computed according to relation (1) are
shown in Table 26.

Table 26. Shapley Values for games îA2(S) and aA2(S).

Player Central (Player 1) South (Player 2) North (Player 3)

Sh(îA2) 1569.84 535.79 712.05
Sh(aA2) 963.49 374.22 363.73

Sh(îA2 + aA2) 2533.33 910.01 1075.78

The Shapley allocations in the games Sh(îA2) and Sh(aA2) are in the core of games iA2 and aA2,
respectively, and, consequently, the allocations under Sh(îA2 + aA2) is in the core of game iA2 + aA2.

Normalizing all data with respect to the cost allocated by the Shapley value to one single Feddan
in the central region, the remaining regions should pay proportionally to the values presented in the
Table 27.

Table 27. Normalized Shapley Value payments of the investment game, and the combined game.

Central (Player 1) South (Player 2) North (Player 3)

Sh(îA2) 1 1 1
Sh(aA2) 1 1.136 0.822

Sh(îA2 + aA2) 1 1.051 0.925

Note that, if the Shapley value is implemented as an allocation method, then because the
investment cost game is almost additive, the fraction of investment costs allocated to one Feddan on
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the project area is the same for all regions. In other words, the Shapley value assigns to one Feddan
in the Northern region a smaller fraction of the running costs than in the Southern region and an
intermediate fraction in the Central one.

Finally, based on the previous analysis we propose a tariff based on the Shapley value of the cost
game that was considered in this paper. We assume a loan for the entire cost of investments (with
annual fixed interest rate equal to 4.5%). Table 28 reports our proposed tariff based on the Shapley
Value allocations. The tariff is composed of a fixed amount (per Feddan) plus a per m3 cost.

Table 28. Proposed tariff, based on the Shapley Value allocation of the joint costs.

Central (Player 1) South (Player 2) North (Player 3)

Fixed charge per unit area (LE/Feddan/year) 849 849 849
Volumetric water charge (LE/m3) 0.12 0.13 0.10

8. Conclusions and Epilogue

The Government of Egypt and several financing institutions, led by the World Bank designed
the West Delta Water Conservation and Irrigation Rehabilitation Project. The project was motivated
by the loss in agricultural land productivity and deteriorated groundwater quality that jeopardized
the promising development of the region of the West Delta in Egypt. The project was based on
several premises, including a maximum surface water delivery of 5000 m3 per year per Feddan; a
conjunctive use of surface and groundwater resources; a full cost recovery of all investment and
operation and maintenance costs; and management of the project by the private sector with only
government guarantees to reduce risk faced by the private operator. An independent regulator will
monitor and enforce the terms of contracts between the beneficiaries and the service provider.

The project documents [15] propose a single two-part tariff to be charged to all users. The fixed
part of the tariff (1272 LE/Feddan per year) was intended to cover capital cost, concession fees, and
operator profit. The volumetric part of the tariff (0.15 LE/m3) was designed to cover the operating
costs. These tariffs differ from the once we calculated in our Shapley Value8.

The Shapley Value tariff per volumetric unit of water is designed such that it takes into
consideration the heterogeneous conditions in the different land sections of the project site, which are
reflected in differential volumetric fees computed for each section, based in this paper, on height to
water table of the aquifer9. The Shapley Value fixed tariff of 849 (LE/Feddan/year) for all sections is
the result of the investment data we had, which was available for the entire land area of the project.

After tireless attempts to recruit private sector bidders to the project with no success, the project
was canceled on 30 June 2011 [12]. Reasons for no interest in the project on the part of the private
sector bidders were: (1) high financial risks; (2) proposed government guarantees were not sufficient
for private sector entrepreneurs under existing institutions in the country; and (3) collection of the
irrigation tariff seemed subject to high transaction costs. From the government point of view, the
reasons were: (1) lack of private sector interest in the project; and (2) unrealistically high tariff in the
only submitted bid [12]. Given the dire need of farmers’ for new water supply and their continued
request for a solution, the idea of the project will remain alive. It takes more proactive role from all
parties if the private sector involvement will be an option.

Based on the above, one could look at our paper as an unsuccessful academic effort. However,
the fact that the proposed Shapley-based differential tariff could be by itself an improved version of

8 The cost charged according to World Bank calculation and the cost charged by us in the Shapley value refer to different
alternatives (alternative A2 for the Shapley Value) so it is not surprising that the total cost each of them ought to allocate
are different.

9 Salinity in the groundwater is another factor that affects in reality the fee. However, we did not have data on salinity levels
in the groundwater by land sectors.
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the single tariff, taking into account the physical characteristics of the main land sections of the project,
and the fact that the proposed Shapley-based differential tariff was efficient (recovering all costs) is by
itself a reason for making it more attractive to the users and thus reducing the no-payment risk faced
by the service provider. Our paper demonstrated the use of cooperative game theory approach in real
life decision associated with development and sustainability of scarce water resources. We guided the
interested reader through the process we developed to calculate the needed parameters in the cost
allocation scheme we proposed. If indeed the Government of Egypt and the World Bank, or any other
international development agency will revive this project, we would suggest to use the results of our
Shapley Value to conduct a study that will estimate the willingness to pay based on the Shapley Value
and on a comparative one tariff to represent alternative A2. Having these responses from the project
beneficiaries could shed light on the stability and sustainability of projects that rely on cost allocation
of the joint cost.
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Appendix A

Table A1. Investment Cost Categories under Scenario A2.

Description Function

Supplementary Works
This cost component includes the cost of the transformers required to
supply electricity to the plant. It also includes any crossing structure
required to transfer water under the railway and Rayah El-Behary.

Intakes
Pumping surface water from the Rayah El-Nasery to the project area
high lands. This component includes the electricity supply requirements
such as transformers.

Intermediate Boosters

Pumping water in the system locally to serve the high areas within the
project. These boosters are intermediate pump stations at mains to
supply water from mains to different served farms with the required
pressure and volume. This component includes the electricity supply
requirements such as transformers.

Sub-Mains Boosters
These boosters lift water from the mains (gravity flow) to connected
sub-mains (pressurized flow). Each sub-main booster serves
one sub-main.

Electricity Supply
Feeds all pumping stations, intakes, boosters in the project with
electricity. This component includes a transformer plant at each intake.
All required transmitting lines are included.

Mains

Convey pumped water to the different zones in the project area. Each
main serves one sector in the project area. These mains are carriers and
have no direct farm connections. Also, any minor crossings required for
mains construction are included in this component. Other main crossing
structures are included in component “CS”.

Sub-Mains

Receives water from the main through the sub-main boosters and
distributes it within the zone. These sub-mains deliver water to the
different farms the project area. Water flow in the sub-main pipes is
pressurized flow. Usually, sub-mains are soft pipes to allow the farm
connections easier.
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Table A1. Cont.

Description Function

Farm Connections

Serves the different farms in the project area. Each farm connection
serves one farm or several (depending on the design). Each farm
connection delivers water to the farm with the required pressure and
volume. Soft pipes are recommended. Design of each farm connection
will be subject to case-by-case evaluation, depending on the farm size,
farm level and its location from the sub-main.

Crossing Structures

These structures result due to the different crossings of the planed
delivery and distribution system with the existing roads in the project
area. Any crossing with SOMID pipeline, Railways or Cairo-Alexandria
Desert road forms a crossing structure. The construction method of
these crossing structures depend on the crossing type and its
governing characteristics.

Roads System This system connects the project area through a two-degree road system,
main and secondary roads.

O&M Program

Covers the technical and managerial assistance, equipment and facilities
required for the O&M program. This component includes also
institutional development and capacity building program and
establishment of Monitoring and Evaluation programs.

Source: Adapted from [13].

Table A2. Running Cost Categories under Scenario A2.

Description Function

Supplementary Works

Compensate the consumed water from the Rayah El-Nasery by
pumping the same water volume from the Rosetta Branch to the
Rayah El-Nasery downstream the project under the Rayah El-Behary
to serve the downstream areas.

O&M Program
Pumping surface water from the Rayah El-Nasery to the project area
high lands. This component includes the electricity supply
requirements such as transformers.

Intermediate Boosters Pumping water in the system locally to serve the high areas
within the project.

Intakes Pumping surface water from the Rayah El-Nasery to the project
area high lands.

Sub-Mains Boosters
These boosters lift water from the mains (gravity flow) to connected
sub-mains (pressurized flow). Each sub-main booster serves
one sub-main.

Cost of Labor (permanent) Costs of permanent labor are assumed to only depend on the
cultivated area.

Cost of Labor (seasonal)
Costs of seasonal labor are assumed to depend both on the total
cultivated area (70% weight) and on the level of production
(30% weight)

Other Production Costs
(seeds, fertilizers, etc.)

Other costs of production (seeds, fertilizers, machinery, etc.) are on
a per Feddan basis, taking into account the cropping pattern

Source: Adapted from [16].
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Table A3. Investment Cost Categories under Scenario A0.

Description Function

Pumping Equipment

Groundwater pumping equipment (wells, pumps, engines, fuel
tank). The GW pumping equipment has a relatively short life
expectancy: 10 years for well, pump and engine,
30 years for fuel tank

Source: Adapted from [16].

Table A4. Running Cost Categories under Scenario A0.

Description Function

EC Energy costs for water pumping

O&M Program Operation and maintenance costs have been assumed
equal to 5% of the yearly investment in equipment (PE)

Cost of Labor (permanent) Costs of permanent labor are assumed to only depend on
the cultivated area.

Cost of Labor (seasonal)
Costs of seasonal labor are assumed to depend both on
the total cultivated area (70% weight) and on the level of
production (30% weight)

Other Production Costs
(seeds, fertilizers, etc.)

Other costs of production (seeds, fertilizers, machinery,
etc.) are on a per Feddan basis, taking into account the
cropping pattern

Source: Adapted from [16].

Table A5. Annual revenues for coalitions in games vt
A0 for t = 0, . . . , 19 under Alternative A0.

S {1} {2} {3} {1,2} {2,3} {1,3} {1,2,3}

v0
A0 443.26 140.69 339.13 583.95 479.82 782.39 923.08

v1
A0 425.53 135.06 325.56 560.60 460.62 751.10 886.16

v2
A0 408.51 129.66 312.54 538.17 442.20 721.05 850.71

v3
A0 392.17 124.47 300.04 516.65 424.51 692.21 816.68

v4
A0 376.49 119.49 288.04 495.98 407.53 664.52 784.02

v5
A0 361.43 114.71 276.52 476.14 391.23 637.94 752.65

v6
A0 346.97 110.13 265.45 457.09 375.58 612.42 722.55

v7
A0 333.09 105.72 254.84 438.81 360.56 587.93 693.65

v8
A0 319.77 101.49 244.64 421.26 346.13 564.41 665.90

v9
A0 306.98 97.43 234.86 404.41 332.29 541.83 639.26

v10
A0 294.70 93.54 225.46 388.23 319.00 520.16 613.69

v11
A0 282.91 89.79 216.44 372.70 306.24 499.35 589.15

v12
A0 271.59 86.20 207.79 357.79 293.99 479.38 565.58

v13
A0 260.73 82.75 199.48 343.48 282.23 460.20 542.96

v14
A0 308.43 97.89 235.97 406.32 333.86 544.40 642.29

v15
A0 296.09 93.98 226.53 390.07 320.51 522.62 616.60

v16
A0 284.25 90.22 217.47 374.47 307.69 501.72 591.94

v17
A0 272.88 86.61 208.77 359.49 295.38 481.65 568.26

v18
A0 261.96 83.15 200.42 345.11 283.56 462.38 545.53

v19
A0 251.49 79.82 192.40 331.30 272.22 443.89 523.71

Note: In italics are the net benefits after switching to a less sensitive cropping pattern.
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