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Abstract: Prisoner’s Dilemma, Chicken, Stag Hunts, and other two-person two-move  

(2 × 2) models of strategic situations have played a central role in the development of game 

theory. The Robinson–Goforth topology of payoff swaps reveals a natural order in the 

payoff space of 2 × 2 games, visualized in their four-layer “periodic table” format that 

elegantly organizes the diversity of 2 × 2 games, showing relationships and potential 

transformations between neighboring games. This article presents additional visualizations 

of the topology, and a naming system for locating all 2 × 2 games as combinations of game 

payoff patterns from the symmetric ordinal 2 × 2 games. The symmetric ordinal games act 

as coordinates locating games in maps of the payoff space of 2 × 2 games, including not 

only asymmetric ordinal games and the complete set of games with ties, but also ordinal 

and normalized equivalents of all games with ratio or real-value payoffs. An efficient 

nomenclature can contribute to a systematic understanding of the diversity of elementary 

social situations; clarify relationships between social dilemmas and other joint preference 

structures; identify interesting games; show potential solutions available through 

transforming incentives; catalog the variety of models of 2 × 2 strategic situations available 

for experimentation, simulation, and analysis; and facilitate cumulative and comparative 

research in game theory.  

Keywords: taxonomy of 2 × 2 games; transforming strategic situations; strict and  

non-strict ordinal games; social dilemmas; collective action problems 
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1. Introduction 

Two-person, two-move games form the simplest possible models of strategic situations, where the 

outcomes of each person’s action depend on choices by another. Prisoner’s Dilemma, Chicken  

(also known as Hawk-Dove), and other 2 × 2 preference structures have played a central role in the 

development and application of game theory in economics, political science, evolutionary biology, and 

other fields. Most attention has focused on a small subset of strict symmetric games, with less attention 

to the much larger numbers of asymmetric games, where players do not face the same incentive 

structure, and to non-strict games, those with indifference (ties) between outcomes. Games have 

mostly been looked at in isolation, assuming static preferences, with limited consideration of how 

changes in payoffs may transform one incentive structure into another [2–5]. 

Even for 2 × 2 ordinal games, with only two players, two choices, and four ranked payoffs, the 

multitude of apparently different payoff structures for games can make it hard to understand the 

diversity of games and difficult to identify games that are similar or equivalent. Taxonomies and 

associated naming systems have played a significant role in organizing knowledge in many fields of 

science, such as the Periodic Table of the Elements, molecular names in chemistry, and Linnaean 

classification of species, but have not seen much application in game theory. Rapoport and Guyer [6] 

showed that for strict ordinal games, where each player has four differently ranked payoffs, there are 

78 strategically distinct games, when payoff matrices formed by switching columns, rows, or positions 

(as row or column player) are treated as equivalent. They proposed a Linnaean-style branching 

taxonomy, based on properties including conflict, dominant strategies, Pareto-inferiority, and a concept 

of “natural outcomes” related to maximin strategies, pressure, and vulnerability to competition and 

threats. They analyzed the available research on 2 × 2 ordinal games, and provided an appendix with 

game numbers and payoff matrices. However, their taxonomy and game numbers have seen little 

subsequent use. A subsequent typology and alternative numbering scheme for strict ordinal 2 × 2 games 

(omitting “no conflict” games) developed as part of Brams’ Theory of Moves [7] has also seen little 

use by other authors.  

If ties are allowed, then there are 726 strategically unique ordinal games [8]. Kilgour and Fraser 

noted that little attention had been paid to games with ties (non-strict), in part due to the large number 

of such games. In addition to strict games without ties, there are seven possible types of ties, creating 

eight preference orderings [8–10]. Fraser and Kilgour used a computer program to enumerate the 

complete set of 2 × 2 ordinal games and analyze their properties. Since they were not aware of any 

“natural order” in the 2 × 2 games, they used a somewhat arbitrary numbering scheme. Although they 

expressed the hope that their work would contribute to further work on games with ties, and expressed 

a willingness to share their detailed output and program code, their numbering system does not seem to 

have been further applied.  

Robinson and Goforth [2] showed that swaps in adjoining payoffs link 2 × 2 strict ordinal games in 

a topology, as for example when swaps in the highest payoffs convert Prisoner’s Dilemma into Stag 

Hunt. This topology reveals a natural order in the payoff space of 2 × 2 games. Their “periodic table” 

display elegantly arranges 2 × 2 symmetric and asymmetric strict ordinal games in cross-cutting 

categories according to alignment of best payoffs, symmetry, number of dominant strategies and 

equilibria, externalities (inducement correspondences [11]), kinds of conflict (including zero-sum, pure 
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cooperation, and mixed interests [12]), the presence of Pareto-inferior equilibria, and other properties. 

In their table, index numbers identify the strict 2 × 2 ordinal games, including pairs of games 

equivalent by swapping row and column positions. However, the way the numbers were initially 

assigned and the table adjusted to show game properties means that the sequence of index numbers is 

not obvious or intuitive, and instead requires some understanding of the structure of the topology. 

Robinson and Goforth’s game numbers do not seem to have seen much use in the ten years since their 

book was published.  

The topology of 2 × 2 strict ordinal games can be expanded to include games with ties, with 

transformations that make or break ties treated as half-swaps [13–15]. Many more games have 

equivalent ordinal structures, so each ordinal game represents a much larger equivalence set of games 

with payoffs measured on ratio (interval) or real (cardinal) scales [2]. Normalized versions of 

symmetric games with real or ratio payoffs may be mapped onto a topology of the symmetric 2 × 2 

games [4,5] and normalized versions of symmetric and asymmetric games may be similarly mapped 

onto the full topology of 2 × 2 games [16]. Thus, the topology of 2 × 2 games provides a unifying 

framework for understanding relationships between all 2 × 2 games.  

While the author was developing additional visualizations of the topology of payoff swaps in 2 × 2 

games, it became apparent that a simple naming scheme could be applied to locate games within these 

maps of payoff space. Each row has the same payoff pattern for the row player and each column has 

the same pattern for the column player. The strict symmetric games form a diagonal axis in the table. 

Thus, each asymmetric game combines payoff patterns from two different symmetric games, providing 

a way to specify the location, and a name, for each asymmetric game. The same approach extends to 

the games with ties, which requires first identifying all the symmetric 2 × 2 ordinal games with ties. 

Games with ties can be treated as transformations of games without ties, so names for twelve strict 

games and seven transformations suffice to name all the ordinal 2 × 2 games and locate them within 

the topology of 2 × 2 games.  

Changes in expected payoffs are a common occurrence in strategic situations; as a result of better 

information, technological innovation, agreements with side payments, rules with sanctions, sympathy 

and other revisions in preferences, and other processes, and may switch the relative ranking of 

different outcomes, creating payoff swaps [2]. Changing rules and other institutions to modify 

incentives can be crucial to solving social dilemmas and other problems of collective action [17]. The 

nomenclature and maps of the topology of payoff swaps locate games and show their potential 

transformations, contributing to a dynamic understanding of how social situations may change. A 

nomenclature based on the topology of payoff swaps in 2 × 2 games contributes to a systematic 

understanding of the diversity of 2 × 2 games, putting the few highly-studied strict symmetric games 

into the larger context of the full range of elementary models of social situations. The nomenclature 

catalogs the many possible models available for research, including experiments, simulations, and 

analysis; and should facilitate comparative and cumulative research in game theory and related fields.  

The next section of the paper briefly introduces the topology of 2 × 2 games and presents results 

including additional visualizations of the payoff space of 2 × 2 games, a nomenclature for locating 

games within the topology, the complete set of 38 strategically distinct 2 × 2 symmetric ordinal games, 

and the extension of the nomenclature to ordinal games with ties. The following section discusses how 

the nomenclature may be useful in identifying games that are equivalent or similar; distinguishing 
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between similar games, such as different types of Stag Hunts and Cyclic Games; understanding 

relationships between games, such as the Volunteer’s Dilemma and Low Dilemma games that adjoin 

Chicken, and identifying interesting games for further study. Methods used in developing the 

nomenclature for locating games within the payoff space of 2 × 2 strategic situations are then 

described, followed by a brief summary of conclusions.  

2. Results 

2.1. Visualizing the Payoff Space of 2 × 2 Games 

The topology of payoff swaps provides a natural ordering for arranging the 2 × 2 games, assuming 

that games linked by swaps in the lowest payoffs are nearest neighbors [2]. Four games linked by 

swaps in the two lowest payoffs (1↔2) form a tile. Tiles are linked by swaps in middle payoffs (2↔3), 

forming a layer of 9 tiles and 36 games. Swaps in the two highest payoffs (3↔4) link games across 

layers. While the full topology linking games in a network forms a three-dimensional torus with  

37 holes, the payoff space can be conveniently displayed on a two-dimensional surface divided into 

four “layers.” Layers differ by the alignment of best payoffs, as shown in Figures 1 and 2, which are 

enhanced visualizations of the topology of payoff swaps in 2 × 2 games, building on Robinson and 

Goforth’s Periodic Table format [18].  

The twelve strict symmetric games form a diagonal axis from lower left to upper right. Games on 

Layer 1 have best payoffs in diagonally opposed cells, while those on Layer 3 have win–win outcomes 

with the best payoffs in the same cell. Each layer is a torus, and wraps from left to right and top to 

bottom. With Prisoner’s Dilemma scrolled toward the center, the entire table is also a torus that wraps 

from left-to-right and top-to-bottom, showing links from swaps of best and second-best payoffs (3↔4) 

that cross between layers, including, for example, the swaps that transform Prisoner’s Dilemma into 

Stag Hunt.  

Within each layer, games in the lower left quadrant have two dominant strategies and a single Nash 

Equilibrium. Games in the adjoining quadrants, above and to the right, have one dominant strategy and 

a single Nash Equilibrium. Games in the upper right quadrant have no dominant strategies, with cyclic 

games (with no Nash Equilibria in pure strategies) on Layers 2 and 4, while stag hunts on Layer 3 and 

battles on Layer 1 both have two Nash Equilibria.  

Robinson and Goforth’s Periodic Table of 2 × 2 Ordinal Games showed game payoff structures as 

graphs. The additional visualization (presented in Table 2 [18]) shows numeric payoffs as an 

alternative that may be easier to use for those to whom the payoff graphs are not intuitive. Robinson 

and Goforth identified families of games including win–win games, (with a subset of stag hunts); 

games where following a dominant strategy leads to a Pareto-inferior equilibrium, as in Prisoner’s 

Dilemma and its asymmetric siblings and cousins; varieties of Battle of the Sexes; and cyclic games. 

These form compact connected regions in the topology. The visualization presented here provides a 

complete set of families, based on payoffs at Nash Equilibria, shown in different colors (with shading 

for subfamilies with different numbers of dominant strategies), including win–win, social traps, battles, 

and cyclic games, and adding several more payoff families: second-best (3,3); biased (4,3);  

unfair (4,2); and sad games (3,2) without a Pareto-superior outcome.  
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Figure 1. In the Topology of 2 × 2 Games, swaps in adjoining payoffs link strict  

ordinal games. Based on [2] and [18].  
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Figure 2. The twelve strict symmetric games form a diagonal axis in this small schematic 

diagram of the Topology of 2 × 2 Games. 

This visualization includes borderlines separating games. Narrow borderlines separate games within 

the same tile. Borderlines mark the locations of games with ties that lie between the strict ordinal 

games, as discussed later. Intersections in the grid of borderlines mark the location of ordinal games 

with ties for both players. Thicker borderlines outline tiles of games, and form horizontal and  

vertical bands composed of three tiles. Bands share similar high swap (3↔�4) linkages between 

equivalently-located tiles on different layers. Icons on the edges of the table indicate the pattern of 

payoff ranks for rows and columns of strict ordinal games. Pairs of arrows on the edges show the 

structure of games with dominant strategies for row or column, for each quadrant within a layer.  

2.2. Names for Strict Ordinal 2 × 2 Games 

The strict symmetric games lie along a diagonal axis in the Topology of 2 × 2 games, as shown in 

Figure 1 and in the schematic visualization of the topology in Figure 2. Payoffs are the same across 

each row for the row player and in each column for the column player, so payoff patterns from two 

symmetric games combine to form the bimatrix payoff structure for each asymmetric game, providing 

an efficient way to locate and name games. The nomenclature requires specifying unique names for 

each of the twelve strict games, as further described in the Methods section. Where games have been 

discussed under multiple names, and for asymmetric games with established names, those can be 

treated as a “common name,” with the formal name used as a “scientific name” analogous to Linnaean 

taxonomy, for example Samaritan’s Dilemma [19] (Harmony × Chicken). This binomial nomenclature 

conveniently locates each game in relation to neighboring games in the topology of 2 × 2 games.  

Games in the table are symmetric around the diagonal axis, equivalent by switching position as row 

or column, and this naming system names make these mirror pairs obvious. In Figure 1, the games 

below the axis show common names for selected games. Many of these are based on earlier research, 

as in the Robinson–Goforth Periodic Table of 2 × 2 games [18], which in turn draws heavily on names 

from Brams’ research on 2 × 2 games [7], while others are suggested by characteristics of games that 

may be of interest. Abbreviations provide a compact notation for identifying games, thus Samaritan’s 

Dilemma would be HaCh.  
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2.3. The Complete Set of Symmetric Games with Ties 

Extending the naming scheme to games with ties requires identifying and assigning unique names 

to all symmetric 2 × 2 games with ties. Fraser and Kilgour generated the complete set of all 2 × 2 

strategically distinct ordinal 2 × 2 games [10], which would have included all the symmetric 2 × 2 

ordinal games, although they did not publish the actual payoff structures. Subsequent publications by 

other researchers have shown the complete set of symmetric 2 × 2 ordinal games in a diagram using 

payoff graphs [4] and discussed them [5]. However, the complete set of 38 symmetric ordinal games 

does not appear to have been previously published in normal form matrices, as shown in the lower 

section of Figure 1, including the 26 strategically distinct 2 × 2 symmetric ordinal games with ties. 

Games with ties can be categorized according to the number and type of ties [9,10]. In addition to the 

strict games with no ties, games may have two ties for the lowest, middle, or highest payoffs; two pairs 

of ties; three ties for highest or lowest payoffs; or all ties.  

Creating ties in the twelve strict games forms symmetric games with ties. The names of the 

adjoining strict games can be used to assign identifying names to the symmetric games with ties, as 

further discussed in the methods section. As an example, Volunteer’s Dilemma, located between 

Chicken and Battle would be Middle Battle. The 12 strict symmetric ordinal games and 26 symmetric 

ordinal games with ties (including the Zero “game” of complete indifference) compose a total of  

38 strategically unique symmetric ordinal games. The Supplementary Materials for this paper include 

cards showing graphs, numeric payoffs, and other properties for each of the symmetric 2 × 2  

ordinal games.  

2.4. Locating Asymmetric Games with Ties 

In the expanded topology of 2 × 2 games, most classes of games form compact rectangular matrices 

of games in which each game only appears once, as shown in Figure 3 and so can easily be assigned 

unique names in the same way as for strict games. However, games with ties for the two highest 

payoffs, High Ties and Double Ties along with the Zero game, require additional specifications. 

Matrices for these games contain alternate variants, equivalent by row and column swaps. Some of 

those alternate payoff structures for symmetric games are needed to form some of the asymmetric 

games, such as Matching Pennies (Double Coordination × Double Hero). As discussed in the methods 

section, versions in the lower left (win–win) Layer 3 can be designated as default versions, as indicated 

in Figure 3.  

2.5. A Binomial Nomenclature for 2 × 2 Ordinal Games 

All 2 × 2 ordinal games can be named and located within the topology of 2 × 2 games based on how 

they combine payoff patterns from the 2 × 2 symmetric ordinal games, with some additional 

specifications for games with ties on the two highest payoffs. As discussed in the methods section, 

variants equivalent by row and column swaps can be distinguished according to the location of the 

highest payoffs, for example following Robinson and Goforth’s convention of putting the highest row 

payoff in the right-hand column and the highest column payoff in the upper row, with variants 

designated using subscripts. Appropriate choice of names for games and types of ties allows compact 
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abbreviations, which could also be used as the basis for short distinct hashtags (for example #2×2pd) 

and for unique resource identifiers (URIs) for 2 × 2 games in a semantic web [20] ontology. Each 

ordinal game represents an equivalence set of games with the same ordinally-ranked payoffs measured 

on ratio or real scales. A simple procedure can be used to find the ordinal equivalent for any 2 × 2 

game. Normalized equivalents of games with ratio and real payoff values can also be mapped onto the 

topology. Thus, the tables show not only the ordinal games, with discrete payoffs, including games 

with ties at grid intersections, but also map a flat (2-dimensional) projection of the normalized payoffs 

for the continuous payoff space of the topology of payoff swaps for all 2 × 2 games. A binomial 

nomenclature based on the topology of 2 × 2 games thus provides a unifying framework to 

conveniently locate all 2 × 2 games in payoff space, and aid understanding of relationships between 

elementary models of strategic situations.  

 

Figure 3. The complete set of 2 × 2 ordinal games. Symmetric games form the diagonal 

axis in this schematic diagram of an expanded topology of 2 × 2 games that includes games 

with ties. Games are linked by half-swaps that make or break ties. Games with low and 

middle ties games are interlaced with strict games in a checkerboard pattern [13].  



Games 2015, 6 503 

 

 

3. Discussion 

3.1. Identifying Similar Games 

The nomenclature aids identifying games that are the same, or ordinally equivalent, but have been 

discussed under different names. In the case of particularly famous games, this may already  

be well-understood. For example, most researchers would know that the strategic situation that game 

theorists usually refer to as Chicken is often discussed by evolutionary biologists as Hawk-Dove. 

However, there may be less awareness that the game of Snowdrift [21], often presented with algebraic 

relationships rather than numeric payoffs, is ordinally equivalent to Chicken. The game of Double 

Hunt is an interesting illustration of interdependence, where neither person can control their own 

payoff but can control the other’s payoff, which is why Aruka gives it the name Avatamsaka, based on 

a Buddhist story of such a situation [22,23]. However, he does not seem aware that this is the game 

that Rapoport, Guyer, and Gordon had earlier listed as game #79, one of the few non-strict games 

covered by their analysis of previous research (and a case of what they classed as “degenerate” games) [24]. 

This example illustrates how the same game may be studied under different names, apparently in 

ignorance of earlier research.  

The nomenclature locates games within the map of 2 × 2 games created by the topology of payoff 

swaps, and so helps to clarify the relationships between games. Several researchers have noted the 

payoff structure of the interesting Low Dilemma game that lies between Chicken and Prisoner’s 

Dilemma [9,24], however it does not seem to have an established name. This game illustrates the 

limitations of dominant strategies as a solution concept, since they would lead to the unsatisfactory 

result of both getting the worst outcome. However, the Pareto-superior outcome is still vulnerable to 

temptation to defect. Having a consistent name could facilitate communication, and might be helpful in 

directing more attention to this and other interesting games. While game theory has tended to 

concentrate on the most difficult situations, names may also help direct more attention to situations, 

such as the second-best games of Deadlock and Compromise, which are not as potentially tragic, but 

which nonetheless may represent empirically important phenomena.  

Robinson and Goforth point out that although there has been an enormous amount of research 

devoted to Prisoner’s Dilemma, many studies have focused on a single version, employing the payoff 

matrix used by Axelrod [25]. There has been almost no research on the adjoining asymmetric games, 

which also have Pareto-inferior equilibria. They offer a story where one prisoner has an alibi, creating 

an asymmetric structure [2]. However, they use the name Alibi for two different ordinal games  

(Stag Hunt × Dilemma and Assurance × Dilemma). For the third game with a Pareto-inferior 

equilibrium (Coordination × Dilemma) they use Steven Brams’ name, Revelation (which comes from 

his analysis of Biblical stories) [7,26]. The nomenclature, based on twelve strict symmetric games and 

seven types of tie transformations, provides an efficient way to locate similar and different games 

within the multitude of possibilities.  

3.2. Distinguishing Different Games 

Conversely, games with differences in ordinal structures that may have significant strategic 

implications are sometimes referred to with the same name, such as the variety of different stag hunt 
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games that have two Nash Equilibria, one of which is Pareto-inferior. A systematic nomenclature can 

help distinguish between similar games, disambiguating games that otherwise might be confused. 

Robinson and Goforth apply one name, Coordination to two of these symmetric games, which this 

nomenclature distinguishes as Assurance [27] and Coordination. In one case, risk avoidance in a 

maximin strategy, preventing the worst payoffs, conflicts with achieving the best for both, so there is a 

severe assurance problem. However, in the other situation, a maximin strategy would also choose the 

move that leads to the Pareto-superior outcome. In addition to the three symmetric stag hunts, there are 

also three more pairs of asymmetric strict stag hunts, and many more with ties, which could offer 

fertile ground for additional study. Understanding the diversity of stag hunts, with a clear way to 

distinguish between similar but distinct games, could facilitate experimental research and comparison 

to look at the relationship that different payoff structures have with risk avoidance and maximin 

strategies. This might also contribute to a deeper understanding of trust and other social dynamics [28]. 

Some of the asymmetric battle games mix the (4,3/3,4) equilibria of Leader or Hero with the (4,2/2,4) 

equilibria of Chicken. One of these is the game Buchanan called Passive Samaritan’s Dilemma (Battle 

× Chicken), (which differs from Active Samaritan’s Dilemma (Harmony × Chicken) by switching the 

best and second-worst payoffs, equivalent to making two swaps in adjoining payoffs). It is useful to be 

able to uniquely identify this ordinal game and put it into context with Chicken and its other neighbors. 

Even the archetypal coordination game, Double Coordination, analogous to the choice of conventions 

such as which side of the road to drive on, seems to lack an established name. Gintis [29] refers to this 

as Merchant’s Dilemma, based on a story about silent trade, exchanging offers set out on a beach. The 

nomenclature provides a way to identify this and other games, including distinguishing among the 

variety of different games with multiple equilibria.  

3.3. Locating Interesting Games 

Zero-sum games were a central area of interest in early game theory. However, the only symmetric 

zero-sum game (more precisely for ordinal games, zero rank-sum) [2], located between Chicken and 

Deadlock, also seems to lack an established name. The nomenclature provides a standard name to 

identify the game based on its location, Middle Deadlock, though it might also be called Zero-sum as a 

common name.  

The middle ties game Middle Harmony, located between Harmony and Concord, exemplifies 

situations where individual incentives lead to the best outcome, without requiring strategic anticipation 

or coordination, as with Adam Smith’s invisible hand (though it may still be useful to be aware that 

one is in such a favorable situation, rather than something more difficult or uncertain). The topology 

also makes clear that while such favorable situations occur, they are far outnumbered by situations 

where narrow non-strategic behavior does not necessarily lead to win–win.  

High Hunt, the game between Prisoner’s Dilemma and Stag Hunt offers another example of an 

interesting game that seems to have received little attention. High Hunt shares the problems of two 

kinds of social dilemmas: (weakly) dominant strategies lead to a Pareto-inferior equilibrium, and 

cautious avoidance of the worst outcome also leads to the inferior equilibrium, so the game shows both 

a social trap that is a tragedy of collective action [30–32] and an assurance problem [27,33].  
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There are many asymmetric games with ties that may prove interesting, particularly those with 

payoff structures based on Prisoner’s Dilemma and its close neighbors. Simpson examined the game 

he called Red Dress (Double Hunt × Low Dilemma), where indifference may create apparently 

paradoxical incentives [34]. A game with low and middle ties (Middle Hunt × Low Dilemma) can be 

seen as a payoff structure for a moral hazard, which a swap in high payoffs transforms into a situation 

with well aligned payoffs for a principal and agent (Middle Hunt × Low Concord). Brams’ Theory of 

Moves [7] seems to have been motivated in part by the potential for finding better, “non-myopic,” 

solutions to situations such as those in the game he names based on the Biblical story of Samson and 

Delilah (Concord × Battle), where a second-best, (3,3) outcome could be preferable to the seemingly 

unfair (4,2) equilibrium. Brams is one of the few researchers who has paid systematic attention to 

asymmetric games, one reason that Robinson and Goforth’s periodic table [18] includes many of his 

names. However, in some cases, Brams gives the same name to several different ordinal games, and so 

designates a set games, which he calls a generic game [26], (and which may form a connected region 

in the topology). By providing unique names, the nomenclature could facilitate systematic attention to 

these and other asymmetric games.  

Cyclic games are a particularly interesting group of asymmetric games, and have been used to 

examine problems such as law enforcement, for example in Inspector–Evader (Hunt × Battle) and 

similar cyclic situations [35]. The cyclic games pose challenges for solution concepts, since they lack 

Nash Equilibria in pure strategies (and mixed strategies cannot be meaningfully calculated for ordinal 

ranks). Even for ratio or real value payoffs, where mixed strategies could be calculated, the advantages 

of mixed strategies compared to maximin or other solution concepts may be questionable. Examining 

the cyclic games shows that in five out of the nine pairs of strict ordinal cyclic games, outcomes are 

available that would be better for both than a mixed strategy, if they could be reached through 

agreement on a focal point or other solution concept. Maximin solutions only achieve the superior 

outcome for two of these five cases. Having a map of the relationships between the various cyclic 

games, and a way to specify different games, could contribute to more systematic analysis of the 

relevance of various solution concepts in situations with cyclic payoff structures.  

3.4. Proportions 

To the extent that payoffs occur randomly, games will appear in the proportions shown in the  

table [34]. Thus, for example, one fourth of games have win–win outcomes. Cyclic games compose 18 

out of 144 games, one eighth of the total, as shown in Figure 1. If payoffs are restricted to four values, 

and ties are allowed, the expected proportions of games differ from those in the table [36]. However, 

as more values are allowed, then the expected proportions will tend towards those in the 144 games in 

the topology table [34]. This would also apply to mapping of ordinalized or normalized equivalents 

onto the topology [37].  

Thus, for example, in thinking about the evolution of human cooperation [36], to the extent payoffs 

occurred randomly, stag hunt games would have occurred about 6.25% of the time (18/144), favoring 

cooperation with no incentive to defect if coordination could be achieved. By contrast, Prisoner’s 

Dilemma and other social traps where following a dominant strategy leads to a Pareto-inferior result 

would have been slightly less common, 4.86% (7/144). Win–win, biased, and second-best games, 
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where cooperation at least gets second-best, are much more frequent, 64% (92/144) than games with 

equilibria where one or both get poor, second-worst outcomes (Unfair, Traps, and Sad payoff families) 

or cyclic games which lack Nash Equilibria. More generally, the topology can be seen as a fitness 

landscape that favors the evolution of cooperation [37]. 

3.5. Game Names as Coordinates in Payoff Space 

In the payoff space of 2 × 2 games, ordinal games are like integers plotted on a number line, 

identifying discrete locations. For normalized payoffs, equally-spaced ordinal values, such as 1,2,3,4, map 

onto the center of the square representing each game, while other normalized values move towards the 

side, until games with ties form the borderlines between different ordinal games. (More precisely, the 

flat projection of the topology on four layers maps the distance between the second-worst payoff and 

the adjoining worst and second-best payoffs. The relevant coordinates for mapping normalized games 

can be shown by calculating the second worst payoff as a proportion or percentage of the distance 

between the worst and second-best. The distance between second-best and the best and second-worst 

payoffs would map onto “hyperspace” dimensions of high swaps (3↔�4) that link layers. Those  

cross-layer high swap links would similarly be proportionate to the distance of the second-best payoff 

between second-worst and best.) The ordinal games are like integer Cartesian coordinates mapping 

locations in the payoff space of 2 × 2 games. The topology thus provides a continuous map of the 

payoff space of 2 × 2 games, and the ordinal games can be used as coordinates for locating games 

within this space.  

The 2 × 2 games with normalized payoffs are not limited to separate “quantized” entities, and so 

differ from the Periodic Table of the Elements. The Periodic Table of the Elements is essentially a 

spiral, with repeating patterns that lend themselves to presentation in a table that wraps from right to 

left descending row-by-row, patterns which turn out to be based on the underlying structure of electron 

shells. By contrast, the topology payoff space maps onto a torus (with 37-holes) [2]. It has a vertical 

and horizontal arrangement of payoff values, and symmetry on diagonal axes (Villarceau circles) 

including the axis of symmetric games [2]. The rows and columns provide the basis for the naming 

scheme presented in this paper.  

The topology usefully arranges games according to a variety of relevant properties, including 

symmetry, and the number of dominant strategies and equilibria, which are relevant to solution 

concepts. However, research indicates that solution concepts do not necessarily align neatly with the 

boundaries between ordinal games. In some cases, ratio or real payoff values may have a significant 

impact on solutions [2,5]. Nevertheless, the topology provides a framework, and a map, for exploring 

relationships between different games. A systematic set of names for games offers a tool for  

locating games and exploring the diversity of strategic situations that lie within the payoff space  

of 2 × 2 games.  

4. Experimental Section 

This section describes methods involved in developing the nomenclature. Earlier numbering 

schemes were reviewed and tables prepared that show where earlier game numbers fit in the topology 

of 2 × 2 games. Conventions were specified for representing ordinal payoff ranks with numbers 
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(1,2,3,4) and orienting rows and columns in payoff matrices according to the location of highest 

payoffs. Unique names were specified for the symmetric ordinal games, based on the transformations 

that create different types of ties in strict games. These provide a basis for locating and naming 

asymmetric games, with some additional specifications for games with ties on the highest two payoffs. 

Abbreviations create a compact notation, and a potential basis for tags and universal resource 

identifiers to identify research on similar and related games. A simple procedure locates any 2 × 2 

game, including those with ratio and real payoff values, by converting payoffs to standard ordinal 

values, orienting highest payoffs, and finding symmetric games with the equivalent payoff structures.  

4.1. Game Numbers 

Rapoport and Guyer [6] clarified the seemingly enormous variety of 2 × 2 games by showing that 

there were only 78 strategically distinct strict ordinal games, if payoff matrices equivalent by switching 

row, column, or position are considered to be the same game. They listed the 78 games with numbers 

(but no names) in an appendix to their book on 2 × 2 games [24]. Their numbers are shown in  

Figure 4a. For his Theory of Moves and accompanying typology of games, Steven Brams [7] assigned 

a different set of numbers to strict ordinal 2 × 2 games, shown in Figure 4b. Numbers were not 

assigned to “no conflict” games, those with win–win outcomes, since they were not of interest  

for that analysis. 

 

Figure 4. Three schemes for numbering strict ordinal games.  

As part of their topology of 2 × 2 games, Robinson and Goforth assigned three-digit index numbers, 

with the first digit based on the layer, and the second and third on the row and column within the layer, 

as shown in Figure 4c. In the topology, games related by switching row and column positions of 

players are treated as different, creating pairs of games reflected around the diagonal axis of symmetry. 

Thus, numbers are needed for 144 games created by combining 12 different payoff patterns. Twelve of 

these are strict symmetric games, on the diagonal axis, while there are 66 pairs of asymmetric games, 

equivalent by switching row or column positions. The 12 symmetric and 66 asymmetric games make 

up the total of 78 strategically distinct 2 × 2 strict ordinal games, if positions are not considered 

relevant. If position as Row or Column is important, then 66 reflected pairs of asymmetric games, plus 

12 symmetric games, compose a total of 144 strict ordinal games. 
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Robinson and Goforth chose to start their numbering with the most famous game, Prisoner’s 

Dilemma, a reasonable but somewhat arbitrary choice. In hindsight, this is comparable to beginning the 

periodic table of the elements with element 92, Uranium, an element that is interesting, dangerous, and 

complex. Furthermore, scrolling the layers to display Prisoner’s Dilemma next to the center elegantly 

arranged games according to their properties, but meant that their index numbers ended up in the 

sequence 1 6 5 4 3 2, making the numbering scheme unintuitive on first encounter, and somewhat 

complicated to learn and use.  

Consistent with starting with Prisoner’s Dilemma as game 111, Robinson and Goforth put 

Prisoner’s Dilemma, and its layer of discord games with highest payoffs in diagonally opposite cells, 

in the lower left part of their table. A more logical arrangement, analogous to Cartesian coordinates 

that conventionally increase up and to the right, is to put the layer of simpler win–win games in the 

lower left, and the more complex discordant games in the upper right. If games with no dominant 

strategies and either two Nash Equilibria (stag hunts and battles) or none (cyclic) are placed in the 

upper right quadrant of each layer, then there is also a general trend toward increasing complexity 

within layers.  

Binomial names are easier to remember than arbitrary numbers, if the number of names can be kept 

small. While it might be possible to come up with unique names for all the strict 2 × 2 ordinal names, 

these would be hard to remember, and impossible for the much larger number of games with ties. 

Names can be linked with numbers where needed, as shown by the abbreviations in Figure 4. Binomial 

names are also consistent across different ways of arranging layers and sequencing symmetric games 

within layers. Robinson–Goforth index numbers can also be extended to games with ties, adding a 

letter on the beginning to show the preference order (type of ties). The Supplementary Materials for 

this paper include cards showing each symmetric ordinal game, with names, graphs, and numeric 

payoff matrices, as well as abbreviations, indices, preference orders, dominant strategies, tile locations 

(showing hotspots and pipes), externalities, and payoff icons.  

4.2. Payoff Values 

Ordinal payoffs are defined only by their relative ranks, and may be given in terms of algebraic 

inequalities, for example a > b > c > d. However, if different authors define the inequalities using 

different symbols, this makes it harder to recognize games that are similar or ordinally equivalent. For 

specific ordinal games, it is easier and more intuitive to show simple numeric payoffs. While some 

authors start with zero, this may be confusing, especially if payoff values are transformed. The 

nomenclature proposed here follows Rapoport, Guyer, and Gordon [24]; Robinson and Goforth [2]; 

and many others in showing payoff values with numerals in ordinal ranks from one to four: 1 < 2 < 3 < 4. 

It should be noted that payoffs expressed algebraically may be equivalent to multiple games and to 

regions within the topology, which may also be mapped onto the topology.  

For showing ties on a 1–4 scale, low ties can be treated as setting the two lowest values to 1 and 

high ties setting the two highest values to 4. This convention makes it easier to follow the half-swap 

transformations that form games with ties. Ties for middle payoffs can be conveniently shown as 3, 

(which takes up less space than 2.5, and since the decimal is not relevant for ordinal ranks). Because 

the null “game” of complete indifference is unique, it may sometimes be appropriate to show it with 
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zero values for payoffs, all equally good, equally bad, or equally undifferentiated. Following a 

standard convention for displaying numeric payoff values from one to four makes it easier to identify 

games that are ordinally equivalent or similar.  

4.3. Row and Column Orientation 

Interchanging rows or columns or both allows a game to be arranged in as many as four different 

ways, which are usually considered to be equivalent [24]. The different ways of arranging payoffs are 

another reason it may be hard to identify and compare games that are the same or ordinally equivalent. 

Rapoport, Guyer, and Gordon [24] defined a “natural outcome” and put that in the upper left corner 

(with some exceptions), which makes the arrangement dependent on understanding and applying their 

criteria for natural outcomes. Robinson and Goforth primarily rely on graphs to display games, an 

approach that avoids the need for orienting numeric payoffs in rows and columns, since graphs are the 

same for any of the possible versions of a game obtained by switching rows and columns.  

As suggested by Robinson and Goforth [2], it is useful to specify the arrangement of payoffs based 

on the location of best payoffs and to choose one arrangement as a default. For numeric payoff 

matrices, they use a convention of putting Row’s highest payoff (4) in the right column, and Column’s 

highest payoff in the upper row, which can be summarized as: Row’s 4 right, Column’s 4 up, or  

Right-Up (although they make an exception, not used for this nomenclature, to put 3,3 equilibria in the 

upper right). They justify this arrangement as being consistent with the convention in Cartesian graphs 

of putting higher values up and to the right. By contrast, discussions of Prisoner’s Dilemma and other 

symmetric 2 × 2 games usually place the cooperate-cooperate (CC) outcome in the upper left cell, a 

Left-Up orientation. However, the concept of a cooperate-cooperate outcome is problematic  

for battles, and for many asymmetric games, making this questionable as a basis for orienting the 

arrangement of payoffs.  

Subscripts provide a convenient way to identify different orientations of the same game, equivalent 

by interchanging rows or columns. Thus, Robinson and Goforth’s version of Prisoner’s Dilemma would be 

Right-Up: PdRU while the format used by Axelrod and many others, with the cooperate-cooperate cell 

in the upper left, would be Left-Up: PdLU. The discussion here will follow Robinson and Goforth’s 

choice of a Right-Up, “Cartesian” display as the default arrangement, which is conveniently consistent 

with graphical displays of game payoffs. As with using numeric values from one to four, a default 

arrangement with Row’s highest payoff in the right column and Column’s best payoff in the upper row 

makes it easier to identify equivalent and similar games.  

4.4. Strict Symmetric Games 

Most but not all of the twelve strict symmetric ordinal games have established names. The 

nomenclature proposed here tries to follow established names where appropriate, particularly those in 

Robinson and Goforth’s Periodic Table of 2 × 2 Ordinal Games [18], while also seeking names that are 

distinctive and that will yield different abbreviations for a compact notation. The discussion starts with 

the six discordant games on Layer One, where best payoffs are diagonally opposed, including the 

famous games that have been the subjects of most research in game theory, and then proceeds to the 

win–win games on Layer Three.  
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4.4.1. Layer One: Discord Games 

Prisoner’s Dilemma. With its combination of dominant strategies leading to a Pareto-inferior Nash 

Equilibrium, Prisoner’s Dilemma is arguably the most unique strict ordinal symmetric game and 

already has a well-established name. Where a shorter name is needed for naming games resulting from 

combining payoffs or transformations creating ties, these may be labeled just using the word dilemma, 

for example the Low Dilemma game between Prisoner’s Dilemma and Chicken, formed by ties in the 

lowest two payoffs.  

Deadlock. Swaps in middle payoffs turn Prisoner’s Dilemma into the game sometimes called 

Deadlock [38]. Robinson and Goforth call this game Anti-Prisoner’s Dilemma, based on the similarity 

in the payoff graph. In this game, following dominant strategies means that neither gets their best 

payoff, and instead at the Nash Equilibrium both get second-best. For a nomenclature, positive names 

are preferable to ones that define a game in terms of another game. Avoiding “anti” names also makes 

for shorter names and more convenient abbreviations, so Deadlock is proposed as the standard name 

for this game. For naming games with ties, this may be shortened to Lock.  

Compromise. Switching lowest payoffs in Deadlock creates another second-best game, which 

Robinson and Goforth refer to as Anti-Chicken, again based on the similarity in the “wiring diagram” 

of the payoff graph. The name proposed here is Compromise. This avoids defining the game in terms 

of another game, abbreviates more distinctly, and also, compared to the name for its neighbor 

Deadlock, reflects a less grim view of the not-so-bad result where dominant strategies lead both 

players to get second-best.  

Hero. Rapoport [39] distinguishes the two strict battle games as Hero and Leader, based on the 

payoff to the player moving away from the “natural” maximin outcome when both avoid the worst 

payoff but instead get second-worst. In Hero, the player who changes to the other move, making it 

possible to reach a Nash Equilibrium, gets second-best as a result, making a kind of heroic sacrifice.  

Battle. In Leader, the one who moves from the maximin outcome of both getting second-worst gets 

the best payoff, while the other gets second-best. Robinson and Goforth use the original name, Battle 

of the Sexes [40], for this game. Concern about gender stereotypes has led to suggestions for 

alternative names, such as Bach or Stravinsky, (allowing the same abbreviation, BoS) [41]. A more 

accurate name, capturing the conflict over first preferences (while avoiding gender stereotypes) might 

be Battle of Favorites. The name Battle is proposed here, for simplicity and shortness, to reduce 

concerns about sexism or gender stereotyping, and because the initial “B” provides a more distinctive 

abbreviation than the letter “L.” Alternative common names for this game would then include Leader, 

Battle of Favorites, Battle of the Sexes, and Bach or Stravinsky. As with scientific names for species in 

Linnaean taxonomy, it may be convenient to follow the common name with the binomial name in 

parentheses, in italic font, for example: Leader (Battle).  

Chicken. The second-most famous game has two Nash Equilibria, both with unequal payoffs,  

where one or the other gets their best result while the other gets second-worst. Both are tempted to 

defect from the cooperative second-best outcome that would result if both play a dove strategy. 

However, if both try to get their best result, pursuing a Hawk strategy, they instead both end up at the 

worst outcome.  
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4.4.2. Layer Three: Win–Win Games  

Stag Hunt. Swapping the top two payoffs for both players turns Prisoner’s Dilemma into Stag Hunt. 

For the strict ordinal game where the inferior equilibrium is second worst, Robinson and Goforth’s 

name seems well-suited, reflecting Rousseau’s story [42] about the hunter preferring the safer but 

much less desirable choice of a rabbit rather than a share of a stag that might be gained if others could 

be trusted to cooperate.  

Assurance. Robinson and Goforth labeled both the other two symmetric ordinal stag hunts as 

Coordination. However, for the nomenclature there is a need to distinguish between them. The game 

next to Stag Hunt, resulting from swapping middle payoffs, represents a more severe form of an 

assurance problem as defined by Sen [27]. This occurs where there are two equilibria, one  

Pareto-inferior, and if the other does not choose the move that would lead to the best equilibrium, then 

it is better to also choose the alternate move. Thus, the assurance problem poses a conflict between 

getting the best, win–win outcome if the other can be trusted to cooperate, and doing much worse if the 

other does not choose to cooperate.  

Coordination. In the third of the three strict symmetric stag hunts, the move that avoids the worst 

payoff also makes it possible to achieve the best, as discussed earlier. While there is an assurance 

problem, it is milder, since a player will not get the worst outcome, regardless of what the other does. 

It may be noted that the term coordination game can also be used in a more general sense. Some games 

require coordination to choose between one of two equilibria, including not only the strict win–win 

games of Stag Hunt, Assurance, and Coordination, but also Hero, Battle, and Chicken. This also 

applies to simpler games with ties, such as the simplest coordination game (Double Coordination) 

discussed below. In a looser sense, the term coordination could also include some cyclic games. In 

these games, players may seek a way to coordinate on the choice of a desirable outcome, perhaps 

through choosing a prominent focal point [12]. The more general meaning of the term coordination 

games is a reason to prefer the term stag hunts to identify the games with two Nash Equilibria, one 

win-win and one Pareto-inferior, and since the term stag hunt seems to be more commonly used  

than assurance.  

Peace. This was the only one of the twelve strict symmetric games originally left nameless by 

Robinson and Goforth. [2] It is a game of mixed motives or mixed interests [2,12]. Its symmetric 

neighbors, Coordination and Harmony, are games of pure cooperation where one player’s incentives 

always lead to moves that also raise the other player’s payoff, all positive externalities and, in 

Greenberg’s [11] terminology, positive inducement correspondences. In Peace, there is an underlying 

conflict, a negative inducement correspondence, which is avoided. As long as the other player follows 

the logic of a dominant strategy and chooses the move that includes win–win, the first player’s 

incentives lead to a move that raises payoffs for both, a positive externality. However, if the other 

player did choose the alternate move, which does not lead to win–win, then the first player’s incentives 

would encourage a move that would make things worse for the other, imposing a negative externality. 

Thus in this situation, there is a degree of underlying conflict, even if dominant strategies mean that 

incentives should lead both to the win–win outcome, suggesting Peace as an appropriate name, for a 

situation where a potential conflict has been overcome.  
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Harmony. Incentives are strongly aligned in Harmony, where moves following dominant strategies 

raise payoffs by two ranks, from worst to second-best or second-worst to best. Robinson and Goforth 

do not cite a source for this name, but it seems appropriate.  

Concord. Moves following dominant strategies only raise payoffs by one rank, but still lead both to 

win–win, so the incentives are in the same direction as Harmony, although not as strong. Robinson and 

Goforth originally called this game No Conflict. However, for games with ties (discussed below), 

names based on the tie transformations would lead to awkward terminology, such as Low No Conflict 

or High No Conflict. Therefore, the name Concord, with a similar meaning, is proposed, which 

conveniently also allows Nc and N as workable abbreviations. Using the letter N helps to distinguish 

this from Coordination, Compromise, and Chicken, which also begin with the letter C.  

In a later publication, Robinson and Goforth [5] used the names Boring, Anti-Boring, and Anti-Stag 

Hunt, for Concord, Harmony, and Peace, which could be treated as alternative common names. It may 

be noted that all the games with win-win payoffs are sometimes called “no-conflict” games [7,24]. 

However, this is inaccurate if it includes the stag hunts, which are a kind of social dilemma where in 

some cases achieving the mutually best outcome conflicts with risk minimization, if assurance that 

others will cooperate is problematic. Therefore, win–win seems a more suitable appellation. Robinson 

and Goforth’s Layer numbers may also be used for simplicity, with the win–win games designated as 

Layer 3.  

4.5. Symmetric Games with Ties 

Games with ties can be linked by half-swaps that make or break ties, expanding the topology and 

providing a natural ordering for the complete set of 2 × 2 ordinal games. Thus, games with ties lie 

between the strict ordinal games [13–15]. For a nomenclature, symmetric games with ties can be 

identified as transformations from the twelve strict symmetric games. In the other direction, starting 

from the null game of complete indifference, breaking ties differentiates payoff structures into games 

with three ties for high or low payoffs, and then with two ties, or only a pair of ties for one or both 

players, followed by strict games. Combinations of the eight preference orderings divide 2 × 2 ordinal 

games into 64 preference classes, as shown in Figure 5. A nomenclature based on the symmetric 

ordinal games requires coming up with distinctive names for all the symmetric ordinal games,  

(as discussed above) and specifying distinctive names for the types of ties and the resulting games.  

Low Ties. These games usually form ideal types for the neighboring strict games. Assigning names 

based on the adjoining strict games requires a choice, sometimes somewhat arbitrary, between the two 

neighbors. In general, the approach here favors the “lower left” game in the respective tile, the one 

nearer to Harmony. However, applying this rule too rigidly would sometimes generate misnomers, 

inaccurate names, such as Middle Dilemma, rather than Middle Deadlock, which actually has a single, 

second-best, equilibrium, like Deadlock. Therefore, to obtain more meaningful names, a slightly more 

flexible approach is applied. Low Battle lies between Hero and Leader (Battle), Low Lock between 

Deadlock and Compromise, Low Coordination between Assurance and Coordination, and Low 

Harmony between Harmony and Peace. Low Concord lies between Concord and Stag Hunt. Since it 

has weakly dominant strategies leading to a single win–win Nash Equilibrium, it is not a stag hunt and 

so is more like Concord. In Low Dilemma between Prisoner’s Dilemma and Chicken, weakly 
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dominant strategies would lead to a Pareto-inferior outcome at a single equilibrium where both get the 

worst payoff, an unsatisfactory outcome.  

 

Figure 5. Types of ties categorize the complete set of 2 × 2 ordinal games into eight 

preference orderings and sixty-four preference classes. Adapted from [13]. For preference 

orderings A–H see [9,10]. 

Middle Ties. Volunteer’s Dilemma (Middle Battle) [43,44] is the most well-known game with ties 

for middle payoffs, and (along with Matching Pennies) is one of the few games with ties to have been 

the subject of substantial research and to have an established name. Volunteer’s Dilemma can be 

formed by making ties for middle values in Chicken or Battle. Middle Compromise is a second best 

game, between Hero and Compromise. Middle Deadlock, between Deadlock and Prisoner’s Dilemma, 

also has a second-best equilibrium. Middle Deadlock is remarkable as the only symmetrical zero-sum 

game (or more precisely, zero rank-sum ordinal game), and so an ideal type or exemplar of zero-sum 

games, although its uniqueness does not seem to have been recognized. Middle Hunt lies between Stag 

Hunt and Assurance. The usual story of Rousseau’s Stag Hunt makes no mention of concern about 

whether or not the other hunter might also safely get a hare, suggesting indifference, in which case a 

game with middle ties would most accurately model the story, suggesting Rousseau’s Hunt as a 

common name. Middle Peace is another harmonious game where dominant strategies lead to win–win. 

This is also the case for Middle Harmony, between Harmony and Concord.  

High Ties. High Hunt lies between Stag Hunt and Prisoner’s Dilemma. The symmetric high ties 

games may come in two versions, depending on the starting point for the tie transformation. High Hunt 

ends up with the identical arrangement of payoffs as High Dilemma. High Chicken and High Concord 

also have identical payoff patterns. However, the other high ties games have two alternate variants, 

which differ by the orientation of rows and columns. One can be designated as the default version, and 

it seems suitable to prefer the version on Layer Three as a default. Where necessary for locating and 

naming asymmetric games, preference may also be given to lower left games within a tile, and to 

games with High Hunt payoffs for games on Layers 2 and 4. For the complete set of 2 × 2 ordinal 

games, as shown in Figure 3, the alternate variant (shaded gray) of some symmetric games with ties is 

still needed to form some asymmetric games with ties, including Matching Pennies (Double 

Coordination × Double Hero, DoDe). High Coordination (and High Assurance) and High Hero (and 

High Battle) both have two Nash Equilibria, in one of which both get the best payoff. High Concord 
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(and High Chicken), High Harmony (and High Compromise), and High Peace (and High Lock) all 

have two dominant strategies leading to win–win at a single equilibrium.  

Double Ties. These games have ties for both the two highest and two lowest payoffs. The Double 

Ties symmetric games can also come in alternate versions, equivalent by interchanging rows and 

columns, and the Layer Three versions can be used as default versions. Although thorough discussion 

is beyond the scope of this paper, it may be noted that these games are the roots of the two kinds of 

high swap (3↔�4) linkages across layers between equivalently-located tiles identified by Robinson 

and Goforth, forming “pipes” composed of quartets of tiles and “hotspots” of pairs of tiles. Breaking 

ties in Double Ties games differentiates them into the six different kinds of hotspots and pipes (pipes 

are named here according to the combinations of H, C, and D bands; and hotspots by the layers they 

link).  

Triple Ties. In these games, each dislikes one outcome. In both Triple Harmony and Triple Lock, 

weakly dominant strategies lead to a win–win equilibrium. Triple Lock has a second Nash equilibrium, 

while Triple Harmony has two more.  

Basic Ties. These games are simplified ideal types for Layers One and Three, with best payoffs 

harmoniously located in the same cell in Basic Harmony, as in Layer Three; and discordantly aligned 

in diagonally opposed cells in Basic Discord (where synchronizing to take turns could be a solution in 

repeated play).  

Zero. All ties, complete indifference, characterizes the null game where players have no preferences 

between different outcomes. While normalized versions of all other 2 × 2 games may be mapped onto 

to the surface of the topology of 2 × 2 games, normalizing the zero game would require dividing by 

zero. Thus, the Zero Game stays separate from the payoff space mapped by the topology of payoff 

swaps, like a singularity. It may be seen as the origin at the center of the eight–dimensional payoff 

space of 2 × 2 games.  

Robinson and Goforth showed that the topology of 2 × 2 ordinal games is a torus with 37 holes [2] 

while the total of 37 strict symmetric 2 × 2 games arises from the number of nodes, edges, and faces in 

the topology of strict symmetric games, when games equivalent by row and column swaps are only 

counted once [4,5]. I suggest the conjecture that the number of 37 holes in the topology torus,  

and 37 symmetric ordinal games, not including the zero game, is not a coincidence regarding the prime 

number 37, but instead a necessary characteristic of the structure of the topology.  

In total, including the zero game, there are 38 strategically unique 2 × 2 symmetric ordinal games. 

High ties and double ties games have alternate variants, equivalent by interchanging rows or columns, 

some of which are needed to generate asymmetric games outside Layer 3, so Figures 2 and 3 show  

47 symmetric games, including the nine alternates and the zero game.  

4.6. Asymmetric Games 

As discussed earlier, asymmetric games come in reflected pairs equivalent by switching row and 

column positions of the players. For convenience, these can be labeled as right-hand forms, below the 

diagonal line of symmetric games, and left-hand forms, above the diagonal. These are chiral forms 

with left and right-handed versions (as with chiral molecules that have different isomers). Where 

position does not matter, the right-hand form could be considered the default exemplar. (For cyclic 
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games with counterclockwise movement, this conveniently happens to follow the “right hand rule” 

common in science and engineering.)  

An advantage of the binomial nomenclature is that it makes the reflected pairs of asymmetric games 

obvious. By contrast, the Rapoport–Guyer taxonomy and Brams typology do not distinguish between 

reflections and do not provide a way to identify which is being shown. Robinson–Goforth index 

numbers do show the two reflections resulting from switching position of row and column. However, 

the index numbers require understanding the structure of layers and arrangement of games in each 

layer before it is possible to recognize the reflected variants.  

4.7. Abbreviations and Tags 

Two-letter abbreviations provide a convenient way to refer to games, following the example of 

abbreviations for chemical elements. The twelve strict symmetric games can each have their own  

two-letter abbreviation, for the strict game, and a shorter single letter abbreviation used in designating 

the related games formed by ties. Names for the types of ties, the different Fraser–Kilgour preference 

orderings, have been chosen to have different initial letters. Thus, games with ties can be identified 

with a first letter based on the type of tie, and the second letter based on a strict game from which it is 

created by a forming a tie. Asymmetric games would have a four-letter abbreviation.  

Examples of abbreviations would be as follows: 

• Pd: Prisoner’s Dilemma; 

• HaCh: Harmony and Chicken, common name: Samaritan’s Dilemma;  

• Ld: Low Dilemma; 

• DoDe: Double Coordination × Double Hero, common name: Matching Pennies (right-hand, 

counter-clockwise version.  

Abbreviations would be as shown in Table 1. Abbreviations could also be used as online “tags” for 

games, making it easier to label and find studies of the same game, even when these use different 

payoff values and orientations. These could be simple hashtags, such as #2×2pd for Prisoner’s 

Dilemma, which could be used like keywords to label articles and other items dealing with particular 

ordinal games. The topology of 2 × 2 games can satisfy the requirements of an ontology (in the 

information science sense of the term) and so could provide unique Universal Resource Identifiers 

(URIs) for the semantic web [20]. As discussed, a systematic way of identifying a preferred default 

version for games with high, double, or all ties for one or both players is necessary to locate names, 

and so provides a basis for unique URIs for all the 2 × 2 ordinal games.  

Table 1. Abbreviations provide a compact notation for 2 × 2 Games. 

Strict Games   

Ch c Chicken/Hawk-Dove/Snowdrift 
Ba b Battle/Leader 
Hr e Hero 
Dl k Deadlock/Lock/Anti-Prisoner’s Dilemma 
Cm m Compromise/Anti-Chicken 
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Table 1. Cont. 

Strict Games   

Pd d Prisoner’s Dilemma 
Hu u Stag Hunt 
As a Assurance 
Co o Coordination 
Pc p Peace 
Ha h Harmony 
Nc n Concord/No Conflict 

Types of Ties (Preference Orderings)   

1,2,3,4 S Strict 
1,1,3,4 L Low 
1,3,3,4 M Middle 
1,2,4,4 H High 
1,1,4,4 D Double 
1,4,4,4 T Triple 
1,1,1,4 B Basic 
0,0,0,0 Z Zero/All ties 

4.8. Finding a Game 

Starting with a matrix of payoff values, Figures 2 and 5 can be used to find the name, based on the 

following steps: 

1. Make ordinal: Rank payoffs as integers from 1 to 4. In case of ties, low ties are 1, high ties are 

4, and middle ties are 3.  

2. Orient Right-Up. Put Row’s best payoff in the right-hand column, and Column’s best payoff in 

the upper row.  

3. Categorize by type of ties: Determine the preference ordering for each player’s payoffs.  

4. Inspect preference class: Within class(es) formed by the preference ordering(s), find the 

symmetric game with the same payoff pattern by inspection of Figure 2.  

5. Check for alternate versions: For high ties, double ties, and all ties, check alternate versions 

formed by interchanging rows and columns to identify the preferred, default, variant as shown 

in Figure 3. As discussed above, Layer 3 variants, with win–win outcomes in the upper right 

corner of the payoff matrix, are preferred where available. For high ties, prefer games formed 

by payoffs from High Coordination, High Hero, and High Hunt. For double ties, prefer games 

formed by payoffs from Double Hunt, and prefer the right-hand (counter-clockwise) versions, 

to the right and below the axis of symmetry, such as the right-hand version of Matching Pennies 

(Double Coordination × Double Hero).  

5. Conclusions 

Robinson and Goforth’s topology of payoff swaps reveals an elegant structure in the payoff space 

of 2 × 2 games, which can be mapped onto a flat four-layer display. Names for games based on 

symmetric games provide coordinates for locating 2 × 2 ordinal games within this payoff space. This 
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paper provides an enhanced visualization of the topology of 2 × 2 games; presents the full set of  

38 strategically distinct symmetric 2 × 2 ordinal games, which lie on an axis of symmetry in the payoff 

space; and proposes an efficient nomenclature for naming and locating any 2 × 2 ordinal game. This 

nomenclature is based on the topology of swaps in 2 × 2 games, names for the symmetric games, and 

transformations that create different types of ties. It clarifies the unified order underlying the multitude 

of 2 × 2 games and different ways of presenting payoff values. It provides names based on the natural 

order revealed by the topology of 2 × 2 games. The nomenclature provides a consistent and systematic 

way of identifying all ordinally-equivalent 2 × 2 games and showing their relationships in payoff 

space. The nomenclature could contribute to clearer communication about games, aid understanding of 

similarities and differences between various strategic situations of conflict and cooperation, and 

facilitate cumulative and comparative research in game theory.  
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