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Abstract: We study the optimal regulation of a monopolist when intrinsic efficiency
(intrinsic cost) and empire building tendency (marginal utility of output) are private
information, but actual cost (the difference between intrinsic cost and effort level) is
observable. This is a problem of multidimensional screening with complementary activities.
Results are not only driven by the prior probabilities of the four possible types, but also by
the relative magnitude of the uncertainty along the two dimensions of private information.
If the marginal utility of output varies much more (less) across managers than the intrinsic
marginal cost, there is empire building (efficiency) dominance. In that case, an inefficient
empire builder produces more (less) and at lower (higher) marginal cost than an efficient
money-seeker. It is only when variabilities are similar that there may be the natural ranking
of activities (empire builders produce more, while efficient managers produce at a lower
cost).
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selection



Games 2013, 4 533

1. Introduction

Armstrong and Rochet [1] have provided a “user’s guide” for studying multidimensional screening
problems.1 They studied a model with two activities, focusing on the case in which the utility functions
of the agent and of the principal are additively separable in the levels of the two activities (independent
activities). Furthermore, they considered that the agent’s types are defined by two parameters coming
from a binary distribution, with each parameter corresponding to one of the activities, in the sense that
it only influences the utility of the agent and of the principal that is associated with that activity. They
provided a full solution for this setup and concluded that the qualitative properties of the solution are
determined by the correlation between the two parameters and by the amount of “symmetry” between
the two activities.

The methodology proposed by Armstrong and Rochet [1] is the following: (i) start by considering
a relaxed problem where only the downward incentive-compatibility constraints are accounted for; (ii)
solve this relaxed problem; and (iii) find conditions that ensure that the solution of the relaxed problem
is the solution of the fully constrained one. They noted, however, that it may be the case that upward or
diagonal constraints bind and outlined the resulting equilibria (in that case, activities may be distorted
upward and not only downward).

We consider here a somewhat different problem. We start from the well-known model of Laffont and
Tirole [3], which deals with the regulation of a monopolist that has private information about his/her
intrinsic marginal cost. In this model, the manager of the firm chooses a level of effort, which decreases
the marginal cost of production, but is costly to the manager. The effort level is also private information
of the manager, but the regulator observes the resulting production cost. Borges and Correia-da-Silva
[4] modified this framework by assuming that the manager may have a preference for empire building,
i.e., may have a positive marginal utility for output (or employment, if we assume that employment
determines output via a deterministic production function).2 They showed that the regulator’s welfare
is increasing with the manager’s tendency for empire building: the more the manager is interested in
a non-monetary reward, the lower is the monetary informational rent he/she requires. In a subsequent
paper, Borges, Correia-da-Silva and Laussel [9] studied the case in which the magnitude of the tendency
for empire building is private information of the manager, while the intrinsic marginal cost is observable.
Here, we study the case in which the private information of the manager bears simultaneously on the
value of the intrinsic marginal cost and on the value of the marginal utility of output. This leads to a
two-dimensional screening model with complementary activities.

We suppose that both the level of efficiency and the tendency for empire building can be either high or
low (the intrinsic marginal cost and the marginal utility of output are drawn from a binary distribution).
There are, therefore, four types of managers: the efficient money-seeker, the efficient empire builder, the
inefficient money-seeker and the inefficient empire builder. The resulting problem differs from the one

1The book by Basov [2] is also an important reference for the treatment of multidimensional screening problems.
2The tendency of managers for empire building has been studied, among others, by Niskanen [5] and documented by

Donaldson [6]. Jensen [7,8] has emphasized it as an origin of excess investment and output: “Managers have incentives to
cause their firms to grow beyond the optimal size. Growth increases managers’ power by increasing the resources under
their control. It is also associated with increases in managers’ compensation, because changes in compensation are positively
related to the growth in sales.”
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considered by Armstrong and Rochet [1], because the utility function of the regulator is not separable
in the two activities—output and effort are complementary. More precisely, since effort reduces the
marginal cost of output, more effort yields a larger optimal output level. In turn, a larger output level
increases the returns from any given effort level and, thus, leads to a larger optimal effort level.

Our purpose is twofold. First, it is a substantive one: we aim at analyzing the characteristics of
optimal contracts between regulator and manager in the two-dimensional case, where the manager’s
preference for high output is private information, as well as his/her intrinsic efficiency. Second, it is a
methodological one: we want to see how the method proposed by Armstrong and Rochet [1] performs
in the case of complementary activities.3

When analyzing our model, we realized that the approach of Armstrong and Rochet [1] did not
provide a complete picture of the possible kinds of solutions. In fact, the solutions of the relaxed problem
obtained by considering only the downward incentive constraints (and ignoring the upward and diagonal
incentive constraints)4 rarely solve the fully constrained problem, and finding general conditions for
that seems to be very hard. More precisely, with complementary activities, the diagonal constraints are
frequently binding. This is why our approach is based on the consideration of a less relaxed problem,
where only the upward incentive compatibility constraints are discarded. Inclusion of the diagonal
incentive constraints increases the number of a priori possible combinations of binding and non-binding
incentive constraints to 63, which means that the analysis is much more difficult and tedious.

One of our main findings is that an important determinant of the kind of solution that is obtained is
the ratio between the variability (across managers) of the marginal utility of output and the variability
of intrinsic efficiency. When these variabilities are very different, the model becomes similar to a one-
dimensional model, where the relevant private information concerns the dimension in which managers
differ in a greater degree. Since Armstrong and Rochet [1] showed that the correlation between types
is the main driver of the kind of solution that is obtained when activities are independent, our results
suggest that, when activities are complementary, there is another element that significantly drives the
results: the relative magnitude of the uncertainty along each dimension of private information.

When intrinsic efficiency varies much more than marginal utility of output, there is “efficiency
dominance”: more efficient managers have lower marginal cost and larger output levels than the less
efficient ones (an efficient money-seeker produces more than an inefficient manager). When it is large,
there is “empire building dominance”: manager types with a stronger tendency for empire building types
have larger output and lower marginal cost levels than managers with a weaker tendency for empire
building (an inefficient empire builder exerts more effort than an efficient money-seeker).

3In the contributions of Brighi and D’Amato [10] and Rochet and Stole [11], the case of four possible types characterized
by the realization of two binary variables is not explored. While Brighi and D’Amato [10] focus exclusively on the case of
two types that differ in two dimensions (and, therefore, cannot be ranked a priori), Rochet and Stole [11] provide a general
study of multidimensional screening, but in the discrete case, only explore in detail an example that also has two types that
differ in two dimensions.

4The downward (resp. upward) constraints are those that require that a worse (resp. better) type should not benefit from
mimicking a better (resp. worse) type. One speaks of a diagonal constraint when the two types cannot be ranked: each type
is better in one dimension and worse in the other.
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Assuming that the variabilities of efficiency and the tendency for empire building are equal, we find
three kinds of solutions: (i) output bunching between the money-seekers and marginal cost bunching
between the inefficient managers; (ii) output bunching between the inefficient empire builder and the
efficient money-seeker; and (iii) natural ranking of activities, i.e., more efficient types producing at
lower marginal cost, types with a stronger tendency for empire building producing more output.

The rest of the paper is organized as follows. Section 2 introduces the model and the multidimensional
screening problem. Section 3 focuses on a relaxed problem. Section 4 presents the solutions to several
cases that differ qualitatively. Section 5 concludes the paper with some remarks. The systems of
equations that characterize each case and the proofs of the formal results are presented in the Appendix.

2. The Model

The firm produces an observable quantity of a good, q ≥ 0, with an observable total cost, C =

(β − e)q, where β is the intrinsic marginal cost of the manager and e is the level of effort that is exerted
by the manager. Neither the intrinsic marginal cost, β, nor the effort level, e, are directly observable, but
the marginal cost can be inferred: c = β − e = C/q.

The regulator pays the observed production cost plus a net transfer, t, to the manager. The manager
attributes utility to this monetary reward and, also, to output in itself. The utility of the manager is:

U = t− ψ(e) + δq = t− ψ(β − c) + δq,

where ψ(e) is the disutility of effort, assumed to be a convex function, and δ is the marginal utility of
output.

The marginal utility of output is the private information of the manager (as well as the intrinsic
marginal cost). It measures the importance of the empire building component of the manager’s utility.
A positive value of δ means that the manager likes to produce a higher output, or, for example, to have
authority over more employees.

The manager requires a minimum utility level (which we set to zero for convenience) to accept the
contract. The participation constraint is: U ≥ 0.

A level of output equal to q generates a consumer surplus that is given by S(q). Social welfare is
measured as the difference between the total surplus (consumer surplus plus firm surplus) and the cost
of raising funds to compensate the firm, (1 + λ)(C + t), with λ > 0:

W = S(q)− (1 + λ)(C + t) + U,

= S(q)− (1 + λ) [cq + ψ(β − c)− δq]− λU.

Notice that the regulator’s welfare is increasing with the manager’s marginal utility of output, because,
when the manager enjoys more of a given level of output, this reduces the money transfer that is necessary
to compensate him/her. It obviously follows that, other things being equal (and, specifically, the intrinsic
cost, β), the regulator prefers an empire builder to a pure money-seeker.

There are two possible values of β, namely βE < βI , and two possible values of δ, namely δM < δB.
There are, then, four possible types of managers: the efficient money-seeker, (βE, δM); the efficient
empire builder, (βE, δB); the inefficient money-seeker, (βI , δM); and the inefficient empire builder,
(βI , δB).
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Obviously, the efficient empire builder (EB) is the best type for the principal, and the inefficient
money-seeker (IM ) is the worst type. It is also clear that EB is a better type than the inefficient empire
builder (IB) and the efficient money-seeker (EM ); and that IB and EM are better types than IM . It is
not possible to rank a priori the two intermediate types, i.e., IB and EM .

Let ω ≡ δB−δM
βI−βE

be the relative variability of empire building tendency and efficiency (among the
different types). We will see that many results are driven by the value of this parameter.

The prior probabilities associated with the manager types are αEB, αEM , αIB and αIM , all assumed
to be strictly positive. The vector of prior probabilities is denoted by α ≡ (αEB, αEM , αIB, αIM). It is
also useful to define ρ ≡ 1− αEMαIB

αEBαIM
, which we will refer to as the “correlation” between efficiency and

empire building.
The regulator maximizes: ∑

i={E,I}

∑
j={M,B}

αijWij,

where Wij = S(qij)− (1 + λ) [cijqij + ψ(βi − cij)− δjqij]− λUij .
It is very important to notice that, from the regulator’s point of view, the two activities, output and

efficiency, are complements, i.e., ∂2Wij

∂qij∂cij
= −(1 + λ) < 0. Higher efficiency makes a larger output level

more desirable and vice versa. This is a substantial difference with respect to the setup of Armstrong
and Rochet [1], where both the agent and the principal have additively separable utility functions.

The regulator offers a menu of contracts to the manager, such that the manager of type ij produces
qij at marginal cost cij and receives a net transfer tij , which results in a utility level Uij . In this problem,
there are four participation constraints and twelve incentive constraints.

The only binding participation constraint is UIM ≥ 0, because it implies that all the other types
are able to attain a strictly positive utility level. The inefficient money-seeker (worst type) obtains its
reservation utility.

The incentive constraints may be downward, upward or diagonal. The downward (upward) constraints
are those in which the constrained type is better (worse) than the constraining type in both dimensions.
In the diagonal constraints, each of the types is better in one dimension and worse in the other.

The incentive constraint that imposes that the constrained type, ij, cannot be better off by mimicking
the constraining type, i′j′, will be denoted constraint ij/i′j′. There are five downward constraints
(EB/IM , EB/EM , EB/IB, EM/IM and IB/IM), five upward constraints (IM/EB, EM/EB,
IB/EB, IM/EM and IM/IB) and two diagonal constraints (EM/IB and IB/EM ).

A manager of type ij that claims to be of type i′j′ obtains the utility level of type i′j′, plus the
difference in the empire building component of utility, (δj − δj′)qi′j′ , and minus the difference in the
disutility of the effort component, ψ(βi−ci′j′)−ψ(βi′−ci′j′). The corresponding incentive compatibility
constraint (ij/i′j′) is:

Uij ≥ Ui′j′ + (δj − δj′)qi′j′ + ψ(βi′ − ci′j′)− ψ(βi − ci′j′). (1)

The following monotonicity property is a direct consequence of the incentive constraints.
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Remark 1. An empire builder produces more output than a money-seeker (with the same efficiency), and
an efficient manager produces with a lower cost than an inefficient manager (with the same tendency for
empire building):

qiB ≥ qiM , ∀i ∈ {E, I} , (2a)

cEj ≤ cIj, ∀j ∈ {M,B} . (2b)

Proof. Adding the two incentive constraints between types ij and i′j′, we obtain: 0 ≥ (δj − δj′)(qi′j′ −
qij) +ψ(βi′ − ci′j′)−ψ(βi− ci′j′) +ψ(βi− cij)−ψ(βi′ − cij). Considering types iB and iM , we obtain
0 ≥ (δB − δM)(qiM − qiB), which implies that qiB ≥ qiM . Considering types Ej and Ij, we obtain
0 ≥ ψ(βI − cIj)−ψ(βE − cIj) +ψ(βE − cEj)−ψ(βI − cEj). Since ψ is a convex function, this implies
that cEj ≤ cIj .

We will focus on the case in which ψ(e) = e2

2
and S(q) = 2q−q2. To ensure that the problem is concave,

we also assume that λ < 1.5 In this case, the incentive constraints can be written as:

Uij ≥ Ui′j′ + (δj − δj′)qi′j′ +
1

2
(β2

i′ − β2
i ) + ci′j′(βi − βi′), (3)

for all ij and i′j′.
Denote by q∗ij and c∗ij the perfect information output and marginal cost for each manager type. The

first-order conditions are:

S ′(q∗ij) = (1 + λ)
(
c∗ij − δi

)
,

ψ′(βi − c∗ij) = q∗ij.

Since ψ(e) = e2

2
and S(q) = 2q − q2, the first-best solution (perfect information benchmark) is:

q∗ij =
1

1− λ
[2− (βi − δj)(1 + λ)] ,

c∗ij =
1

1− λ
[−2 + 2βi − (1 + λ)δj] .

The above expressions illustrate the complementarity between output and efficiency, which is the main
characteristic of the model. For instance, a high value of the marginal utility of output translates not
only into a high first-best output level, but also into a high first-best efficiency level. Reciprocally, a
low value of the intrinsic marginal cost translates not only into a high level of efficiency, but also into
a high output level. It is not true, contrary to a model with separable utility functions, that intrinsically
efficient managers always exhibit first-best efficiency levels and more output-oriented managers produce
their first-best output levels. Due to the complementarity property, downward distortions along one
dimension result in downward distortions along the other dimension.

The complementarity of activities seriously complicates the analysis of the model. Armstrong and
Rochet [1], when analyzing the case of independent activities, considered first a “relaxed” problem
obtained by considering only the downward incentive constraints, i.e., by neglecting the upward incentive

5It is usual to assume that −S′′(q)ψ′′(e) > (1 + λ). See, for example, Laffont and Tirole [3]. For the specific functions
on which we focus, this is equivalent to λ < 1.
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constraints and the two diagonal incentive constraints (those between the two intermediate types). In
a second stage, they checked that the neglected constraints were indeed satisfied by the solutions of
the relaxed problem (or found conditions that ensured that they were satisfied). When activities are
complementary, the solutions of such a relaxed problem almost never satisfy the diagonal constraints.
This is why we consider a less relaxed problem, where only the upward constraints are discarded.

3. The Relaxed Problem

We define a relaxed problem in which only the downward and the diagonal incentive constraints are
considered, together with the participation constraint for the worst type (the only one that is binding):

max
q,c,U

∑
(i,j)

αij {S(qij)− (1 + λ) [(cij − δj) qij + ψ(βi − cij)]− λUij}

subject to:

UIM = 0, (4a)

UEB ≥ UEM + ∆δqEM , (4b)

UEB ≥ UIB −∆βcIB + k, (4c)

UEB ≥ ∆δqIM −∆βcIM + k, (4d)

UIB ≥ ∆δqIM , (4e)

UEM ≥ −∆βcIM + k, (4f)

UIB ≥ UEM + ∆δqEM + ∆βcEM − k, (4g)

UEM ≥ UIB −∆βcIB + k −∆δqIB, (4h)

where ∆β ≡ βI − βE , k ≡ 1
2

(β2
I − β2

E) and ∆δ ≡ δB − δM .
The solution of the relaxed problem must be such that:

UIB = max {∆δqIM ; UEM + ∆δqEM + ∆βcEM − k} , (5a)

UEM = max {−∆βcIM + k ; UIB −∆βcIB + k −∆δqIB} , (5b)

UEB = max {UEM + ∆δqEM ; UIB −∆βcIB + k ; ∆δqIM −∆βcIM + k} . (5c)

Equations (5a) and (5b) are the incentive constraints of the intermediate types (IB and EM ). For each
of them, the constraining type that binds may be the other intermediate type, the worst type or both.
Equation (5c) is the best type’s incentive constraint: EB may indeed be constrained by IB, EM , IM
or by two or three of them (seven possibilities). Combining the possible solutions of (5), there are up to
63 possible patterns of binding incentive constraints.

Figure 1 pictures all the possibly binding downward and diagonal incentive constraints. Notice that
types on the left are intrinsically more efficient, and types above are more output-oriented. It should
be read as follows. The arrow starting from EB and going to IB represents the downward constraint,
EB/IB: the difference between UEB and UIB must be at least equal to −∆βcIB + k. Consider the
arrow from EM to IB: the difference between UEM and UIB must be at least −∆βcIB + k −∆δqIB.
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Figure 1. Downward and diagonal incentive constraints.

EM IM

EB IB
−∆βcIB + k

∆δqEM

−∆βcIM + k
+∆δqIM

∆δqIM

−∆βcIM + k

−∆βcIB + k
−∆δqIB

∆βcEM − k
+∆δqEM

βE βIβ

δM

δB

δ

To determine which of the constraints are binding, one has to compare the “lengths” of the paths from
a point, ij, to another, i′j′. Constraints are non-binding if there is a longer path between the two points.
For instance, to go from EB to IM , there are three possible paths: EB/IM , EB/IB + IB/IM and
EB/EM + EM/IM . To determine which is the longest, one has to compare ∆δqIM − ∆βcIM + k,
∆δqIM −∆βcIB + k and ∆δqEM −∆βcIM + k. To go from EM to IM , there are two possible paths:
EM/IM and EM/IB + IB/IM , and so on.

Let γ1 to γ5 be the non-negative Lagrange multipliers associated with the five downward constraints
(EB/EM , EB/IB, EB/IM , IB/IM and EM/IM , respectively) and γ6 and γ7 the multipliers
associated with the diagonal constraints (IB/EM and EM/IB, respectively).

The first-order conditions with respect to UEB, UEM and UIB are:

−λαEB + γ1 + γ2 + γ3 = 0, (6a)

−λαEM − γ1 + γ5 − γ6 + γ7 = 0, (6b)

−λαIB − γ2 + γ4 + γ6 − γ7 = 0. (6c)
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For S(q) = 2q − q2 and ψ(e) = e2

2
, the first-order conditions with respect to qij and cij yield:6

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (7a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− (γ1 + γ6)∆δ − γ6∆β

αEM

]
, (7b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− (γ2 + γ7)∆β − γ7∆δ

αIB

]
, (7c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− (γ3 + γ4) ∆δ + (γ3 + γ5)∆β

αIM

]
, (7d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (7e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

(γ1 + γ6)∆δ − γ6
2∆β
1+λ

αEM

]
, (7f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

(γ2 + γ7)2∆β
1+λ
− γ7∆δ

αIB

]
, (7g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

(γ3 + γ4) ∆δ + (γ3 + γ5)2∆β
1+λ

αIM

]
. (7h)

Besides the classical “no distortion at the top” (i.e., for the efficient empire builder), what we mainly
observe in these results is that the distortion of the activities of type ij decrease with the probability,
αij , associated with his/her type. On the other hand, it increases with the probability of type i′j′ if the
corresponding incentive constraint, i′j′/ij, is binding. Finally, a distortion along the intrinsic efficiency
dimension effects not only the cost level, but also the output level and, reciprocally, for a distortion along
the empire building dimension.

It is not surprising that the efficient empire builder (EB) must produce more and at a lower marginal
cost than the inefficient money-seeker (IM ).

Remark 2. In any solution of the relaxed problem, we have:

qEB > qIM , cEB < cIM and eEB < eIM .

Proof. It follows from (7a), (7e), (7d) and (7h), given the non-negativity of the multipliers.

After finding the solution of the relaxed problem, we will be interested in checking that the upward
incentive constraints are satisfied. The next result is helpful for that purpose.

Remark 3. If a downward incentive constraint is binding, the corresponding upward incentive constraint
is surely satisfied if the activity levels satisfy the monotonicity property (2).

Proof. See Appendix 6.1.

6See Appendix 6.1 for further details.
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Notice that, while Remark 1 establishes that the monotonicity property is a consequence of the
incentive constraints, Remark 3 establishes that each upward incentive constraint is a consequence of
the monotonicity property and of the corresponding downward incentive constraint.

4. Several Possible Scenarios

In this section, we analyze possible solutions of the relaxed problem and of the fully constrained problem.
The methodology that we use is the following. We start by assuming that the incentive constraints that are
binding are those that belong to a certain set. This set defines what is called a Case. Then, for each Case,
i.e., taking as given the list of binding and non-binding incentive constraints, a solution candidate (output,
cost and utility for each type and values of the Lagrange multipliers) is computed from the first-order
conditions, (6) and (7), and from the incentive constraints, (4). While the binding incentive constraints
provide additional equations, the non-binding incentive constraints allow us to set the corresponding
multipliers to zero. Finally, we study the conditions under which the solution candidate obtained in
each Case is an actual solution of the relaxed problem and of the fully constrained problem. To be a
solution of the relaxed problem, it is necessary that the values of the multipliers associated with the
binding incentive constraints are non-negative. If they are, we say that the Case is optimal in the relaxed
problem. To be a solution of the fully constrained problem, it is also necessary that the upward incentive
constraints are satisfied. If they are, we say that the Case is optimal in the relaxed problem and in the
fully constrained problem.

The number of possible cases is a priori very large, so it is almost impossible to study all of them.
Only a few of them lead to activity levels that solve the principal’s problem for some set of parameter
values. We present some of these cases, focusing on the importance of ω = ∆δ

∆β
in determining the nature

of the solutions.

4.1. Case A: Low Probabilities of Intermediate Types

We start with the first case that was presented by Armstrong and Rochet [1]. In this case, all the
downward constraints are binding, while the diagonal constraints are not binding.

The solution of the fully constrained problem is of this kind when the probabilities of the two
intermediate types are low.

In this case, there is a bunching of the output levels of the money-seekers (qEM = qIM ) and a bunching
of the cost levels of the inefficient managers (cIB = cIM ). Besides that, the ranking of the activity levels
is “natural”, in the sense that: the ranking of the output is primarily determined by the preference for the
output, while the ranking of the observed efficiency is primarily determined by the intrinsic efficiency.

Remark 4. When Case A is optimal in the relaxed problem, output and marginal cost levels are ranked
in the natural way, with a bunching of the worst types in each activity:

qEB > qIB ≥ qEM = qIM ,

cEB < cEM ≤ cIB = cIM .
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Figure 2. Incentive constraints that are binding in Case A.

EM IM

EB IB
−∆βcIB + k

∆δqEM

−∆βcIM + k
+∆δqIM ∆δqIM

−∆βcIM + k

βE βIβ

δM

δB

δ

Proof. See Appendix 6.2.

The solution of the relaxed problem that is obtained in Case A is also the solution of the fully constrained
problem if the probabilities of the types that are favorable in one dimension and unfavorable in the other
are below a certain threshold.

Proposition 1. Case A is optimal in the relaxed problem and in the fully constrained problem if
min {αEM , αIB} < α∗, where α∗ is a strictly positive function of the remaining parameters.

Proof. See Appendix 6.2.

4.2. Cases B and C: Equal Variabilities of β and δ

Several cases can only occur if ω is equal to one. In these cases, the ranking of types is not primarily
determined by their ranking along a single dimension (there is neither “empire building dominance” nor
“efficiency dominance”).

In Case B, which occurs when the “correlation” between empire building and efficiency is not too
negative and when the probability of the worst type is intermediate, the ranking of managers according
to their preference for the output determines the ranking of their output levels, while the ranking of
managers according to their intrinsic efficiency determines the ranking of their marginal cost levels. In
this case, we are close to a model with independent activities. In fact, it coincides with the second of the
cases that were analyzed by Armstrong and Rochet [1].
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In Case C, which holds when the probability of the worst type is low, the output levels of the inefficient
empire builder and the efficient money-seeker are identical (partial bunching). This case did not appear
in the work of Armstrong and Rochet [1].

4.2.1. Case B: Natural Ranking of Activity Levels

In Case B, we suppose that the diagonal incentive constraints are not binding, while all the downward
constraints, except EB/IM , are binding. This case holds when efficiency and tendency for empire
building are not too negatively correlated and ω = 1.

Figure 3. Incentive constraints that are binding in Case B.

EM IM

EB IB
−∆βcIB + k

∆δqEM ∆δqIM

−∆βcIM + k

βE βIβ

δM

δB

δ

There is a natural ranking of activity levels. The ranking of output levels is primarily determined by
the tendency for empire building, while the ranking of marginal cost levels is primarily determined by
intrinsic efficiency. Types that have a stronger preference for high output produce more, and types that
are intrinsically more efficient produce at a lower cost.

Remark 5. When Case B is optimal in the relaxed problem, output and marginal cost levels are ranked
in the natural way:

qEB > qIB ≥ qEM ≥ qIM ,

cEB < cEM ≤ cIB ≤ cIM .

Proof. See Appendix 6.3.
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Case B provides the solution to the fully constrained problem when the variabilities of β and δ are equal,
the “correlation” between efficiency and empire building is not too negative and the probability of the
worst type is intermediate.

Proposition 2. Case B is optimal in the relaxed problem and in the fully constrained problem when
ω = 1 if ρ ≥ − 1−λ

1+λ
and αIM ∈ [α∗IM , α

∗∗
IM ], where α∗IM and α∗∗IM are functions of the remaining

parameters. The interval, [α∗IM , α
∗∗
IM ], is non-empty if and only if λ ≤ λ∗, where λ∗ is a strictly positive

function of αEB and αEM .

Proof. See Appendix 6.3.

4.2.2. Case C: Bunching of Intermediate Output Levels

In Case C, we consider the case in which all the (downward and diagonal) incentive constraints are
binding, except EB/IM and IB/EM .

Figure 4. Incentive constraints that are binding in Case C.

EM IM

EB IB
−∆βcIB + k

∆δqEM ∆δqIM

−∆βcIM + k

−∆βcIB + k
−∆δqIB

βE βIβ

δM

δB

δ

Remark 6. When Case C is optimal in the relaxed problem, output and marginal cost levels are ranked
as follows:

qEB > qEM = qIB ≥ qIM

cEB < cEM < cIB ≤ cIM .
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Proof. See Appendix 6.4.

There is a bunching of the output levels of the two intermediate types (qEM = qIB). On the other hand,
there is no bunching of the marginal cost levels (cEM < cIB). The efficient money-seeker produces at a
lower marginal cost than the inefficient empire builder.

When ω = 1, the solution of the original problem is of the kind described in Case C, if and only if the
proportion of inefficient money-seekers is sufficiently low.

Proposition 3. Case C is optimal in the relaxed problem and in the fully constrained problem when
ω = 1 if and only if αIM ≤ α∗∗∗IM , where α∗∗∗IM is a strictly positive function of the remaining parameters.

Proof. See Appendix 6.4.

4.3. Case D: Empire Building Dominance (∆δ � ∆β)

If the variability of the empire building tendency parameter (∆δ) is significantly larger than that of
the intrinsic marginal cost parameter (∆β), then the inefficient empire builder should be a better type
than the efficient money-seeker (because IB has a much stronger empire building tendency and is only
slightly less efficient than EM ). The resulting ordering of types (from the best to the worst) is, then:
EB, IB, EM , IM .

In Case D, the constraints between types that are adjacent according to the ordering mentioned above
are binding: the efficient empire builder has to be prevented from mimicking the inefficient empire
builder (EB/IB), the inefficient empire builder from mimicking the efficient money-seeker (IB/EM )
and the efficient money-seeker from mimicking the inefficient money-seeker (EM/IM ). In addition,
the constraint that prevents the inefficient empire builder from mimicking the inefficient money-seeker
(IB/IM ) is also binding.

We will show that this corresponds to the solution of the fully constrained problem when ω is
sufficiently large.

Output and marginal cost levels are ranked in the same way and primarily according to the tendency of
the manager for empire building. An inefficient empire builder produces at lower cost than an efficient
money-seeker. This is the intuitive consequence of the complementarity between effort and output.
When the variability of the marginal utility of output becomes very large relative to the variability of the
intrinsic marginal cost, the greater effort provided by the inefficient empire builder compensates for the
lower intrinsic efficiency with respect to the efficient money-seeker.

Remark 7. When Case D is optimal in the fully constrained problem, we must have ω > 1 and the
following ranking of activity levels:

qEB > qIB ≥ qEM > qIM ,

cEB < cIB ≤ cEM < cIM .

Proof. See Appendix 6.5.
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Figure 5. Incentive constraints that are binding in Case D.

EM IM

EB IB
−∆βcIB + k

∆δqIM

−∆βcIM + k

∆βcEM − k
+∆δqEM

βE βIβ

δM

δB

δ

There always exists a threshold value for ∆β below which Case D provides the solution of the original
problem.

Proposition 4. Case D is optimal in the relaxed problem and in the fully constrained problem if ∆β <

∆∗, where ∆∗ is a strictly positive function of the remaining parameters.

Proof. See Appendix 6.5.

4.4. Case E: Efficiency Dominance (∆β � ∆δ)

An opposite situation occurs when the variability of the intrinsic marginal cost (∆β) is significantly
larger than that of the marginal utility of output (∆δ). In that case, EM is a better type than IB, because
EM is much more efficient and only a slightly less empire builder than IB. The intuitive ordering of
types, from the best to the worst, is: EB, EM , IB, IM .

In Case E, we assume that the binding constraints are those between adjacent types in the above sense
(EB/EM , EM/IB, IB/IM ) and the one that prevents the efficient money-seeker from mimicking
the inefficient money-seeker (EM/IM ). We will show that this kind of solution is optimal when ω is
sufficiently small.

In this case, the ranking of the activity levels of the four types of managers is primarily determined by
their ranking along the efficiency axis, i.e., more efficient managers not only produce at lower marginal
cost, but also produce larger outputs. The four types are unambiguously ranked, first according to their
efficiency and, then, according to their tendency for empire building (“efficiency dominance”).
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Figure 6. Incentive constraints that are binding in Case E.

EM IM

EB IB

∆δqEM ∆δqIM

−∆βcIM + k

−∆βcIB + k
−∆δqIB

βE βIβ

δM

δB

δ

Remark 8. When Case E is optimal in the relaxed problem, output and marginal cost levels are ranked
as follows:

qEB > qEM ≥ qIB > qIM

cEB < cEM ≤ cIB < cIM .

Proof. See Appendix 6.6.

Efficiency dominance is the result of the complementarity of effort and output levels. When managers
differ much more in their intrinsic marginal cost than in their marginal utility of output, the optimal
contract ranks their productivity and their output according to the value of this parameter. For instance,
an efficient money-seeker produces more output than an inefficient empire builder, though it has a lower
marginal utility of output. This holds even if the probability of a manager being a money-seeker is small.

For given values of all the remaining parameters, there always exists a threshold value for ∆δ below
which Case E provides the solution of the original problem.

Proposition 5. Case E is optimal in the relaxed problem and in the fully constrained problem if ∆δ <

∆∗∗, where ∆∗∗ is a strictly positive function of the remaining parameters.

Proof. See Appendix 6.6.
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5. Concluding remarks

We analyzed a model of two-dimensional screening with complementary activities and types drawn
from a binary distribution. The results show that one of the main determinants of the characteristics of
the optimal contract is the relative variability of the characteristics of managers in the two dimensions of
private information. When ∆δ

∆β
differs enough from one, the model becomes close to a one-dimensional

model. When it is low, our setup becomes close to the traditional model of Laffont and Tirole [3], where
the only piece of private information is the intrinsic cost: more efficient managers have both larger
output and lower marginal cost levels. When it is large, our setup becomes close to a model where
the only piece of private information is the manager’s tendency for empire building. In this case, an
empire builder produces more and at a lower marginal cost. These results are the consequence of the
complementarity of effort and output.

When ∆δ
∆β

= 1, the results are more mitigated. We have obtained three different kinds of solutions. The
“natural ranking of activities” (ranking of observed costs determined by intrinsic efficiencies and ranking
of output levels determined by empire building tendencies) only appeared in a scenario in which we
assumed that that empire building and efficiency are not too negatively correlated and that the probability
of the worst type is neither too low nor too high.

6. Appendix

6.1. Relaxed Problem

The first-order conditions with respect to the qij are:

S ′(qEB)− (1 + λ)(cEB − δB) = 0,

S ′(qIB)− (1 + λ)(cIB − δB) =
−γ7∆δ

αIB
,

S ′(qEM)− (1 + λ)(cEM − δM) =
(γ1 + γ6)∆δ

αEM
,

S ′(qIM)− (1 + λ)(cIM − δM) =
(γ3 + γ4)∆δ

αIM
.

Those with respect to the cij are:

qEB − ψ′(βE − cEB) = 0,

qIB − ψ′(βI − cIB) =
(γ2 + γ7)∆β

αIB(1 + λ)
,

qEM − ψ′(βE − cEM) =
−γ6∆β

αEM(1 + λ)
,

qIM − ψ′(βI − cIM) =
(γ3 + γ5)∆β

αIM(1 + λ)
.

With S(q) = 2q − q2 and ψ(e) = e2

2
, the activity levels are given by Equations (7a)–(7h).
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Proof of Remark 3

Suppose that ij/i′j′ is an upward incentive constraint and that i′j′/ij is binding. From (3):

Uij ≥ Ui′j′ + (δj − δj′)qi′j′ +
1

2
(β2

i′ − β2
i ) + ci′j′(βi − βi′),

Ui′j′ = Uij + (δj′ − δj)qij +
1

2
(β2

i − β2
i′) + cij(βi′ − βi).

Adding the two, we obtain:

0 ≥ (qi′j′ − qij)(δj − δj′) + (ci′j′ − cij)(βi − βi′). (10)

Since ij/i′j′ is an upward incentive constraint: δj − δj′ ≤ 0 and βi − βi′ ≥ 0. With the ranking of
activities being natural: qi′j′ − qij ≥ 0 and ci′j′ − cij ≤ 0. Hence, (10) holds. �

6.2. Case A

In Case A, the incentive compatibility constraints (4) can be written as:

UIM = 0, (11a)

UEB = −∆βcIM + k + ∆δqEM , (11b)

cIB − cIM = 0, (11c)

qEM − qIM = 0, (11d)

UIB = ∆δqIM , (11e)

UEM = −∆βcIM + k, (11f)

cIM − cEM ≥ 0, (11g)

qIB − qIM ≥ 0. (11h)

The first-order conditions (7) are:

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (12a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− γ1∆δ

αEM

]
, (12b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− γ2∆β

αIB

]
, (12c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− (γ3 + γ4) ∆δ + (γ3 + γ5)∆β

αIM

]
, (12d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (12e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

γ1∆δ

αEM

]
, (12f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

γ2
2∆β
1+λ

αIB

]
, (12g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

(γ3 + γ4) ∆δ + (γ3 + γ5)2∆β
1+λ

αIM

]
. (12h)
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Proof of Remark 4

From the binding incentive constraints (11c) and (11d), we must have cIB = cIM and qEM = qIM . From
(11g) and (11h), cIM ≥ cEM and qIB ≥ qIM . It is clear from the expressions (12) that qEB > qIB and
cEB < cEM . �

Proof of Proposition 1

By Remark 3, the upward constraints are satisfied. Therefore, for this to be the solution of the
relaxed problem and of the fully constrained problem, we only have to check that the multipliers are
non-negative.

Since γ6 = γ7 = 0, from (6), we find that:

γ3 = −γ1 − γ2 + λαEB, (13)

γ5 = γ1 + λαEM ,

γ4 = γ2 + λαIB.

Using these relations between the multipliers and the first-order conditions (12), qEM = qIM and cIB =

cIM imply that:

γ1 =
(αEM

ω

) 2αIM [λ+ αIM + λω(αEB + αIB)] + λ(1− λ)ωαIB (1− αEM) + αIB(2− ω − 3λω)

αEM [(1− λ)αIB + 2αIM ] + 2αIM(αIB + αIM)
.

Replacing αIB = 0 and αEM = 0, we obtain γ1 = 0. To verify that γ1 > 0 for sufficiently small αIB
and αEM , notice that: the denominator is always positive; the term, αEM

ω
, is also, obviously, positive;

and the numerator converges to 2αIM (λ+ αIM + λωαEB) > 0 when (αIB, αEM)→ (0, 0). Therefore,
∃α∗ > 0 : (αIB, αEM) < (α∗, α∗)⇒ γ1 > 0.

Similarly, we obtain:

γ2 =
αIB

αEM [(1− λ)αIB + 2αIM ] + 2αIM(αIB + αIM)
[λαEM(1− αIB)

−αEMαIM(1 + 3λ− ω − λω) + λαIM(2 + ω + λω − 2αIB) + α2
IM(−2λ+ λω + ω)

]
.

Again, replacing αIB = 0 and αEM = 0, we obtain γ2 = 0. Following the same reasoning as for γ1,
notice that: the denominator is always positive; the probability, αIB, is also, obviously, positive; and
the term inside square brackets converges to (2λ+ λω + λ2ω)αIM + (−2λ + λω + ω)α2

IM > 0 when
(αIB, αEM)→ (0, 0). Therefore, ∃α∗ > 0 : (αIB, αEM) < (α∗, α∗)⇒ γ2 > 0.
Since γ1 → 0 and γ2 → 0, from (13):

lim
(αIB ,αEM )→(0,0)

γ3 = λαEB.

We conclude that, for sufficiently small αIB and αEM , all the multipliers are non-negative.
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We still need to check that qIB ≥ qIM and cIM ≥ cEM . Replacing the limit values of the multipliers
in (12), we obtain:

qIB =
1

1− λ
[2− (1 + λ)(βI − δB)] ,

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− (λαEB + λαIB) ∆δ + (λαEB + λαEM)∆β

αIM

]
,

cEM =
1

1− λ
[−2 + 2βE − (1 + λ)δM ] ,

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

(λαEB + λαIB) ∆δ + (λαEB + λαEM)2∆β
1+λ

αIM

]
.

It is clear from the expressions above that qIB ≥ qIM and cIM ≥ cEM . �

6.3. Case B

In Case B, the incentive compatibility constraints (4) can be written as:

UIM = 0, (14a)

ω(qIM − qEM) + cIM − cIB = 0, (14b)

UEB = ∆δqIM −∆βcIB + k, (14c)

cIM − cIB ≥ 0, (14d)

UIB = ∆δqIM , (14e)

UEM = −∆βcIM + k, (14f)

ω(qIM − qEM) + cIM − cEM ≥ 0, (14g)

ω(qIB − qIM) + cIB − cIM ≥ 0, (14h)

Since γ3 = γ6 = γ7 = 0, from (7), the solution is of the form:

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (15a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− γ1∆δ

αEM

]
, (15b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− γ2∆β

αIB

]
, (15c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− γ4∆δ + γ5∆β

αIM

]
, (15d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (15e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

γ1∆δ

αEM

]
, (15f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

γ2
2∆β
1+λ

αIB

]
, (15g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

γ4∆δ + γ5
2∆β
1+λ

αIM

]
. (15h)
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Proof of Remark 5

From equations (15), qEB > qIB and cEB < cEM . Adding (14b) and (14h), we obtain qIB ≥ qEM .
Subtracting (14b) from (14h) yields cEM ≤ cIB. From (14d), cIB ≤ cIM . Then, from (14b), qEM ≥ qIM .
�

Proof of Proposition 2

We have to check that the multipliers are positive and that the discarded constraints are satisfied.
(i) When ω = 1, we obtain:

γ1 = λαEM
2αEBαIM − (1− λ)αEMαIB

(1 + λ)αIMαIB + (1− λ)αEMαIB + 2αEMαIM
.

This expression is positive, if and only if αEMαIB

αEBαIM
≤ 2

1−λ , which is equivalent to ρ ≥ −1+λ
1−λ ;

γ2 = λαIB
(1 + λ)αEBαIM + (1− λ)αEM(αEM + αEB)

2αIMαEM + αIB [(1 + λ)αIM + (1− λ)αEM ]
> 0.

From (6), γ4 and γ5 are always positive when γ1 and γ2 are positive.
(ii) To check that (14g) holds when ω = 1, notice that:

ω(qIM − qEM) + cIM − cEM = ∆β + ∆β
λαEM

[
αIB + 2

1+λ
(αEM + αEB)

]
2αIMαEM + αIB [(1 + λ)αIM + (1− λ)αEM ]

> 0;

(iii) To check that (14h) holds when ω = 1, notice that:

ω(qIB − qIM) + cIB − cIM = λ∆β
αEBαIM − αEM (1− αIM)

(1− λ)αEMαIB + 2αEMαIM + (1 + λ)αIBαIM

which is positive, if and only if αIM ≥ αEM

αEM+αEB
(this determines α∗IM );

(iv) From (14b), condition (14d) is equivalent to the positivity of qEM ≥ qIM . This is equivalent to:

∆β(1 + λ)− γ1
∆δ

αEM
+ γ4

∆δ

αIM
+ γ5

∆β

αIM
≥ 0 ⇔

∆β(1 + λ)− γ1
∆δ

αEM
+ (λαIB + λαEB − γ1)

∆δ

αIM
+ (λαEM + γ1)

∆β

αIM
≥ 0.

With ω = 1:

(1 + λ)αIM − γ1
αIM
αEM

+ λαIB + λαEB − γ1 + λαEM + γ1 ≥ 0 ⇔

αIM + λ− γ1
αIM
αEM

≥ 0.

Replacing the expression of γ1, we obtain:

αIM + λ− λαIM
2αEBαIM − (1− λ)αEMαIB

(1 + λ)αIMαIB + (1− λ)αEMαIB + 2αEMαIM
≥ 0 ⇔

(αIM + λ)

[
(1 + λ)αIB + (1− λ)

αEMαIB
αIM

+ 2αEM

]
− 2λαEBαIM + λ(1− λ)αEMαIB ≥ 0 ⇔

1 + λ

2
αIB +

1− λ2

2

αEMαIB
αIM

+ αEM +
λ(1 + λ)

2

αIB
αIM

+
λ(1− λ)

2

αEMαIB
α2
IM

+ λ
αEM
αIM

≥ λαEB.
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This clearly holds if λαEB ≤ αEM + 1+λ
2
αIB, which is equivalent to αIM ≤ 1 − 1+3λ

1+λ
αEB + 1−λ

1+λ
αEM

(this determines α∗∗IM ).
(v) From Remark 3, we only need to check the upward constraints between types that exhibit non-binding
downward constraints, i.e., between IM and EB:

0 ≥ UEB −∆δqEB − k + cEB∆β ⇔
0 ≥ (qIM − qEB)ω + cEB − cIB.

From Remark 5, this condition is satisfied.
We conclude the proof with two observations. The first is that points (iii) and (iv) determine the range

of αIM in which the Proposition holds:

α∗IM =
αEM

αEM + αEB
and α∗∗IM = 1− 1 + 3λ

1 + λ
αEB +

1− λ
1 + λ

αEM .

The second observation is that α∗IM ≤ α∗∗IM , if and only if:

λ
[
α2
EM + 4αEMαEB + αEB(3αEB − 1)

]
≤ α2

EM + αEB(1− αEB).

For any given values of αEB and αEM , there exists a threshold for λ below which the interval,
[α∗IM , α

∗∗
IM ], is non-empty. If α2

EM + 4αEMαEB + αEB(3αEB − 1) > 0, then:

λ∗ =
α2
EM + αEB(1− αEB)

α2
EM + 4αEMαEB + αEB(3αEB − 1)

;

otherwise, set λ∗ = 1. �

6.4. Case C

In Case C, the incentive constraints (4) can be written as:

UIM = 0, (16a)

ω(qIM − qEM) + cIM − cIB = 0, (16b)

UEB = ∆δqIM −∆βcIB + k, (16c)

cIM − cIB ≥ 0, (16d)

UIB = ∆δqIM , (16e)

UEM = −∆βcIM + k, (16f)

ω(qIM − qEM) + cIM − cEM ≥ 0, (16g)

ω(qIB − qIM) + cIB − cIM = 0. (16h)
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With γ3 = γ6 = 0, from (7), the activity levels are given by:

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (17a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− γ1∆δ

αEM

]
, (17b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− (γ2 + γ7)∆β − γ7∆δ

αIB

]
, (17c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− γ4∆δ + γ5∆β

αIM

]
, (17d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (17e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

γ1∆δ

αEM

]
, (17f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

(γ2 + γ7)2∆β
1+λ
− γ7∆δ

αIB

]
, (17g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

γ4∆δ + γ5
2∆β
1+λ

αIM

]
. (17h)

Proof of Remark 6

(i) Since γ6 = 0, from (17), qEB > qEM and cEB < cEM .
(ii) Adding (16b) and (16h), we obtain qIB = qEM . From (17):

qEM + cEM = βE,

qIB + cIB =
1

1− λ

[
(1− λ)βI +

γ2

(
2

1+λ
− 1
)

∆β

αIB

]
.

It is clear that qIB + cIB > qEM + cEM , which means that cEM < cIB.
(iii) From (16d), cIB ≤ cIM , and from (16h), qIB ≥ qIM . �

Proof of Proposition 3

We must check that, around ω = 1: the obtained multipliers (γ1, γ2, γ4, γ5 and γ7) are positive; and
constraints (16d) and (16g) are satisfied.
(i) Using the relations between the multipliers, (6), and the expressions for the activity levels, (17), in
the binding incentive constraints, (16b) and (16h), we obtain, with ω = 1:

γ1 = λ
αEBαEM
αIB + αEM

> 0,

γ2 = λ
αEBαIB

αIB + αEM
> 0,

γ5 = λ
αIM (αEB + αEM)

αIB + αIM
> 0,

γ7 = λ
αIB[αEM − αIM(αEM + αEB)]

(αIB + αEM)(αIB + αIM)
.
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The multiplier, γ7, is positive, if and only if αIM ≤ αEM

αEM+αEB
. This condition will be used to define the

threshold, α∗∗∗IM . The multiplier, γ4, is surely positive, as γ2 and γ7 are positive.
(ii) Constraint (16d) holds, if and only if qEM − qIM ≥ 0, which, evaluated at ω = 1, equals:

∆β

1− λ

[
−λ(1− αIM)αIM + (αEM + αIB) (λ+ αIM + λαIM)

(αIB + αEM)αIM

]
.

The above expression is positive, if and only if:

αIM ≤
1− λ

2
− 1 + λ

2
αEB +

√(
1− λ

2
− 1 + λ

2
αEB

)2

+ λ(1− αEB).

This condition will also be used to define the threshold, α∗∗∗IM .
(iv) To check constraint (16g), observe that, at ω = 1:

ω(qIM − qEM) + cIM − cEM = ∆β

[
αIB + αIM + λ

(1 + λ)(αIB + αIM)

]
> 0.

(v) Since the activity levels are ranked in the natural way, from Remark 3, we only need to check the only
upward constraint that corresponds to a non-binding downward constraint, i.e., IM/EB. This constraint
can be written as:

cIB − cEB ≥ 0,

which, by Remark 6, holds.
We conclude the proof with the observation that points (i) and (ii) determine the threshold for αIM

below which the Proposition holds:

α∗∗∗IM = min

 αEM
αEM + αEB

,
1− λ

2
− 1 + λ

2
αEB +

√(
1− λ

2
− 1 + λ

2
αEB

)2

+ λ(1− αEB)

 .

�

6.5. Case D

In Case D, since γ1 = γ3 = γ7 = 0, from (6), we obtain:

γ2 = λαEB, (18a)

γ5 − γ6 = λαEM , (18b)

γ4 + γ6 = λ(αIB + αEB). (18c)
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From (7), the activity levels are given by:

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (19a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− γ6∆δ − γ6∆β

αEM

]
, (19b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− λαEB∆β

αIB

]
, (19c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− γ4∆δ + γ5∆β

αIM

]
, (19d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (19e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

γ6∆δ − γ6
2∆β
1+λ

αEM

]
, (19f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

λαEB
2∆β
1+λ

αIB

]
, (19g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

γ4∆δ + γ5
2∆β
1+λ

αIM

]
. (19h)

The incentive constraints of the relaxed problem (4) can be written as:

UIM = 0, (20a)

cEM − cIB ≥ 0, (20b)

UEB = ∆δqIM −∆βcIB + k, (20c)

cIM − cIB ≥ 0, (20d)

UIB = ∆δqIM , (20e)

UEM = −∆βcIM + k, (20f)

ω(qIM − qEM) + cIM − cEM = 0, (20g)

ω(qIB − qIM) + cIB − cIM ≥ 0. (20h)

The equality (20g) is the additional relation that, together with equations (18) and (19), allows us to
determine the multipliers (γ4, γ5 and γ6) and the activity levels (qij and eij).

Proof of Remark 7

From (19), qEM + cEM − qIM − cIM < −∆β. This implies that ω(qEM − qIM) + cEM − cIM <

−∆β+ (ω− 1)(qEM − qIM). From (20g), the left term is null. From Remark 1, a solution of the general
problem must be such that qEM ≥ qIM . Thus, for a solution of type A to be a solution of the general
problem, we need ω > 1 and qEM > qIM . Then, from (20g), cEM < cIM . Subtracting (20b) from (20g),
we obtain cIB ≤ cEM . Adding (20b) and (20h), we obtain qIB ≥ qEM . From (19), qEB > qIB and
cEB < cIB. �
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Proof of Proposition 4

Using (18), (19) and (20g), it is possible to obtain γ4, γ5 and γ6 as a function of ω (among other
parameters). The points below are based on the solution that is obtained.
(i) The expression of γ6 is a ratio between two second-order polynomials in ω with positive coefficients
in ω2. Thus, γ6 is strictly positive for ω greater than a critical value, ωA6. In fact, limω→∞ γ6 =
λαEM (αEB+αIB)

αEM+αIM
.

(ii) The expression of γ4 is also a ratio between two second-order polynomials in ω with positive
coefficients in ω2. Thus, γ4 is strictly positive for ω greater than a critical value, ωA4. It can be computed
that limω→∞ γ4 = λαIM (αEB+αIB)

αEM+αIM
.

(iii) From (18b), γ5 is strictly positive when γ6 is positive.
(iv) Observe that lim∆β→0 (cIB − cEB) = 0. From (19), this implies that, in the limit, cIB < cIM and
cIB < cEM . Constraints (20b) and (20d) are satisfied.
(v) Constraint (20h) can be written as ∆δ(qIB − qIM) + ∆β(cIB − cIM) ≥ 0. When ∆β → 0, it is
implied by qIB > qIM . This clearly holds, from (19), when ∆β → 0.
(vi) It remains to check that the upward constraints are satisfied. Writing, respectively, IM/EB,
EM/EB, IB/EB, IM/EM and IM/IB:

UIM ≥ UEB −∆δqEB − k + ∆βcEB,

UEM ≥ UEB −∆δqEB,

UIB ≥ UEB − k + ∆βcEB,

UIM ≥ UEM − k + ∆βcEM ,

UIM ≥ UIB −∆δqIB.

After some manipulation:

ω(qEB − qIM) + cIB − cEB ≥ 0,

ω(qEB − qEM) + cIB − cEM ≥ 0,

cIB − cEB ≥ 0,

cIM − cEM ≥ 0,

qIB − qIM ≥ 0.

When ∆β → 0, the first and second of these conditions clearly hold, as they are implied by qEB > qIM

and qEB > qEM . It is also clear that cIB ≥ cEB and that, when ∆β → 0, qIB > qIM .
Only the fourth condition remains to be checked. Replacing the expressions of the multipliers in (19),

we obtain:

cIM − cEM =
ω2∆β(λ+ αIM)

αIM [2 + (1 + λ)(ω2 − 2ω)]
,

which is positive. �
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6.6. Case E

Given that γ2 = γ3 = γ6 = 0, the solution in Case E is of the form:

qEB =
1

1− λ
[2− (1 + λ)(βE − δB)] , (21a)

qEM =
1

1− λ

[
2− (1 + λ)(βE − δM)− γ1∆δ

αEM

]
, (21b)

qIB =
1

1− λ

[
2− (1 + λ)(βI − δB)− γ7∆β − γ7∆δ

αIB

]
, (21c)

qIM =
1

1− λ

[
2− (1 + λ)(βI − δM)− γ4∆δ + γ5∆β

αIM

]
, (21d)

cEB =
1

1− λ
[−2 + 2βE − (1 + λ)δB] , (21e)

cEM =
1

1− λ

[
−2 + 2βE − (1 + λ)δM +

γ1∆δ

αEM

]
, (21f)

cIB =
1

1− λ

[
−2 + 2βI − (1 + λ)δB +

γ7
2∆β
1+λ
− γ7∆δ

αIB

]
, (21g)

cIM =
1

1− λ

[
−2 + 2βI − (1 + λ)δM +

γ4∆δ + γ5
2∆β
1+λ

αIM

]
, (21h)

where:

γ1 = λαEB, (22a)

γ5 + γ7 = λ(αEM + αEB), (22b)

γ4 − γ7 = λαIB. (22c)

In Case E, the incentive constraints can be written as:

UIM = 0, (23a)

UEB = −∆βcIM + k + ∆δqEM , (23b)

qEM − qIB ≥ 0, (23c)

qEM − qIM ≥ 0, (23d)

UIB = ∆δqIM , (23e)

UEM = −∆βcIM + k, (23f)

ω(qIM − qEM) + cIM − cEM ≥ 0, (23g)

ω(qIB − qIM) + cIB − cIM = 0, (23h)

Proof of Remark 8

From (21), qEB > qEM and cEB < cEM . From (23c), qEM ≥ qIB. Adding (23g) and (23h), we obtain
ω(qIB − qEM) + cIB − cEM ≥ 0. From (23c), qIB − qEM ≤ 0, which implies that cEM ≤ cIB.
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After solving the whole system to obtain the values of multipliers, we find that:

cIM − cIB =
ω2∆β(λ+ αIM)

αIM [2 + (1 + λ)(ω2 − 2ω)]
,

which is positive.
By (23h), cIB < cIM implies that qIB > qIM . �

Proof of Proposition 5

Using (21), (22) and (23h), we can obtain the solution as a function of ω and the other parameters. After
finding this solution, we observe the following.
(i) When ω is sufficiently small, γ5 and γ7 are positive, because:

lim
ω→0

γ5 = λ
αIM(αEB + αEM)

αIB + αIM
> 0,

lim
ω→0

γ7 = λ
αIB(αEB + αEM)

αIB + αIM
> 0.

The value of γ4 is always positive when γ7 is positive.
(ii) The constraint, qEM−qIB ≥ 0, is equivalent to the non-negativity of a ratio between two polynomials
in ω that have positive constant terms. Therefore, for small ω, the ratio is positive. In fact:

lim
ω→0

(qEM − qIB) =
(λ+ αIB + αIM)∆β

(1− λ)(αIB + αIM)
> 0.

(iii) The constraint, qEM−qIM ≥ 0, is also equivalent to the positivity of a ratio between two polynomials
in ω that have positive constant terms. Thus, it holds for sufficiently small ω. In fact, we also have:

lim
ω→0

(qEM − qIM) =
(λ+ αIB + αIM)∆β

(1− λ)(αIB + αIM)
> 0.

(iv) Constraint (23g) is equivalent to the positivity of a polynomial in ω that has a positive constant term.
It is also satisfied for small ω. In fact:

lim
ω→0

[ω(qIM − qEM) + cIM − cEM ] =
2(λ+ αIB + αIM)∆β

(1− λ2)(αIB + αIM)
> 0.

(v) From Remark 3, we only need to check that the upward incentive constraints, IB/EB and IM/EB,
are satisfied. Respectively:

ω(qIM − qEM) + cIM − cEB ≥ 0,

ω(qEB − qEM) + cIM − cEB ≥ 0.

From Remark 8, the second is satisfied. The first is implied by condition (23g). �
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