
Games 2013, 4, 66-88; doi:10.3390/g4010066
OPEN ACCESS

games
ISSN 2073-4336

www.mdpi.com/journal/games

Article

Hierarchical Bayesian Analysis of Biased Beliefs and
Distributional Other-Regarding Preferences
Ozan Aksoy ? and Jeroen Weesie

ICS/Department of Sociology, Faculty of Social Sciences, Utrecht University, Padualaan 14, 3584 CH,
The Netherlands; E-Mail: j.weesie@uu.nl

* Author to whom correspondence should be addressed; E-Mail: o.aksoy@uu.nl;
Tel.: +31-30-2531827; Fax: +31-30-2534405.

Received: 22 November 2012; in revised form: 28 January 2013 / Accepted: 29 January 2013 /
Published: 19 February 2013

Abstract: This study investigates the relationship between an actor’s beliefs about
others’ other-regarding (social) preferences and her own other-regarding preferences,
using an “avant-garde” hierarchical Bayesian method. We estimate two distributional
other-regarding preference parameters, α and β, of actors using incentivized choice data
in binary Dictator Games. Simultaneously, we estimate the distribution of actors’ beliefs
about others’ α and β, conditional on actors’ own α and β, with incentivized belief
elicitation. We demonstrate the benefits of the Bayesian method compared to it’s hierarchical
frequentist counterparts. Results show a positive association between an actor’s own (α, β)

and her beliefs about average (α, β) in the population. The association between own
preferences and the variance in beliefs about others’ preferences in the population, however,
is curvilinear for α and insignificant for β. These results are partially consistent with the cone
effect [1,2] which is described in detail below. Because in the Bayesian-Nash equilibrium
concept, beliefs and own preferences are assumed to be independent, these results cast doubt
on the application of the Bayesian-Nash equilibrium concept to experimental data.
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1. Introduction

Experimental evidence shows that utility models incorporating other-regarding preferences often
explain choice data better than the classical economic model with selfish actors. Consequently, numerous
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social preference models have been proposed and many such model have received great attention in the
literature. (For example, according to our most recent search of Google Scholar on November 21, 2012,
Fehr and Schmidt’s [3] inequality aversion model is cited 5299 times, approaching the 7454 citations of
Adam Smith’s “The Theory of Moral Sentiments”). It is also acknowledged that there is heterogeneity
in preferences, i.e., some actors are selfish, whereas some actors have other-regarding preferences to
varying degrees (e.g., [3,4]). This heterogeneity is often invoked as an important factor to explain
why, under some experimental conditions, results seem to converge to the classical economic model’s
predictions, while under other conditions, results deviate significantly from the classical model.

Introducing other-regarding preferences in micro-economic models and acknowledging heterogeneity
in preferences, however, creates the need to also model actors’ beliefs about others’ preferences. In
many cases (without dominant equilibria), predictions of micro-economic models depend strongly on
actors’ beliefs about others’ behavior. Beliefs about others’ behavior, in turn, depend on actors’ beliefs
about others’ preferences. Thus, modeling actors’ own preferences is necessary but not sufficient to
obtain behavioral predictions. In addition to actors’ own preferences, actors’ beliefs about others’
preferences should also be dealt with. Otherwise, empirical tests of utility models are incomplete
because the observed behavior could be the result of not only own preferences, but also beliefs about
others’ preferences. In the behavioral economics literature uncertainty about others’ utilities, thus
beliefs about others’ preferences are typically dealt with via the application of the Bayesian-Nash
equilibrium [5] with “rational beliefs” (e.g., [3]). Beliefs are assumed to be independent of own
preferences, and actors are assumed to know the actual distribution of preferences in the “population”.
While making sense theoretically, this concept may not be empirically solid. Social psychology studies
often demonstrate clear biases in expectations, as summarized by the “false” consensus hypothesis [6],
the triangle hypothesis [7], or the Cone model of Iedema [1] indicating that actors’ own social preferences
and expectations about others’ social preferences may not be independent. See also [8,9] for a critic of
Bayesian-Nash equilibrium within the experimental economics context. We investigate actors’ beliefs
about others’ preferences empirically. Particularly, we focus on the relationship between own preferences
and beliefs about others’ preferences.

There is a rich literature on belief formation and learning (recent examples include [10,11]) which are
not among the topics of the current paper. Comparable existing studies on beliefs in the micro-economics
literature focus mainly on the relationship between the actor’s behavior and the actor’s beliefs about
others’ behavior (e.g., [12–15]), or between the actor’s preferences and the actor’s beliefs about others’
behavior (e.g., [8,16,17]). In our view, a micro theory, such as a social utility model, should be the
theoretical basis of the analysis of both the actor’s own behavior and the actor’s beliefs about others’
behavior. If we are to explain actors’ own behavior with a utility model, we should also explain actors’
beliefs with the same utility model. Thus, the distinctive feature of our study is that we explicitly analyze
the relationship between actors’ own preferences and their beliefs about others’ preferences, nested in the
same utility model. We estimate two other-regarding preference parameters for a variant of the Charness
and Rabin [18], an extension of Fehr and Schmidt [3] utility specification, using choice data in binary
Dictator Games. Simultaneously, we estimate the moments of the distribution of actors’ beliefs about
others’ other-regarding preferences, conditional on own other-regarding preferences, with incentivized
belief elicitation. To be clear, analyzing the relationship between preferences and beliefs about others’
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preferences, we deviate from rational beliefs –yet rational beliefs remain a special case of our model
where the aforementioned relationship is absent–. However, we do assume that people’s preferences are
described by the utility model we use, and people think that other people’s preferences are given by the
same utility model.

Because the main focus of this study is on the relationship between beliefs and preferences, we
restrict our attention to a single utility model, namely a variant of Charness and Rabin [18], which is an
extension of the inequality aversion model of Fehr and Schmidt [3]. Although we provide an assessment
of empirical fit of the model, the primary aim of this paper is not testing the utility model used in this
paper or finding the utility model that best explains our data. This has been done extensively in the
literature. We are aware of other relevant social motives and other successful models of other-regarding
preferences (e.g., [19–22]). Yet, because the model of Charness and Rabin [18], and of Fehr and
Schmidt [3] which is contained in Charness and Rabin are among the most cited and applied social utility
models, describing the relationship between actors’ own motives and beliefs within this framework is
useful. In addition, in our study, we use data on simple Dictator Games. In such games, preferences
given by the model used here are in line with other potentially relevant types of motives, e.g., maximin
preferences and inequality aversion. Finally, variants of other-regarding preferences given by Charness
and Rabin [18] are a common theme in other disciplines such as social psychology (e.g., [23]), and
rational choice sociology (e.g., [24,25]). Thus, our results would be relevant for a variety of disciplines.
In addition, the simple shape of the function we use yields substantial convenience in statistical analyses.

An important contribution of this paper, however, is it’s statistical methodology. We use a hierarchical
Bayesian method to estimate the other-regarding preferences and the moments of the distribution
of actors’ beliefs about others’ other-regarding preferences. Hierarchical Bayesian methods have
some practical advantages over their hierarchical frequentist counterparts [26]. First and foremost,
incorporating strong numerical estimation procedures, Bayesian methods are very flexible. They could
be relatively easily applied to many complex statistical models. Relying on the maximum likelihood
approach, however, frequentist methods are limited in this sense. For example, the simultaneous analysis
of own other-regarding preferences and beliefs that we perform in this paper is nearly impossible
within the frequentist framework. In addition, the Bayesian approach provides a strong and flexible
tool to assess model fit via posterior predictive sampling [27], which we exploit in the current paper.
Assessing model fit for relatively complex models as ours within the frequentist framework is, again,
very difficult. In addition to those practical advantages of Bayesian methods, given that one uses fairly
uninformative priors the results of the Bayesian methods converge to “would be” Maximum Likelihood
estimates [26,28]. In other words, (some of) the Bayesian results obtained using uninformative priors
may be interpreted as frequentist estimates. Our statistical analysis is implemented in OpenBugs [29].
We provide the estimation routine as a supplementary file so that other scholars could replicate, modify,
and apply the routine.

The main results of the hierarchical Bayesian analysis are the following:

• Result 1: There is a strong increasing monotonic relationship between own other-regarding
preferences and beliefs about average other-regarding preferences.
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• Result 2: There is a U-shaped association between own other-regarding preferences and beliefs
about the variance in others’ other-regarding preferences for one of the two parameters in the
utility model, namely α. For the other β parameter, the same relationship is insignificant.

• Result 3: The utility model that we use and the model for beliefs that we develop below explain
the choices and beliefs of subjects in binary Dictator Games adequately.

We want to elaborate on how this current paper improves on a previous study of the authors [2].
In the current paper we use a richer dataset, combining data from two experiments. Thus statistical
power is improved. Second, [2] employs a different other-regarding preference model, namely the
social orientation model, a model predominantly used in social psychological literature. In the social
orientation model in [2], actors are interested in absolute inequality as they are assumed to not
differentiate between advantageous and disadvantageous forms of inequality. Despite using a different
utility model in this paper, we still find some support for the cone effect. This further reinforces the
existence of the cone pattern, at least for some type of other-regarding preferences. Thirdly, and most
importantly, [2] uses a two step estimation method that predicts individual social preference parameters
in the first step, and in the second step uses these individual estimates to model beliefs. As we
acknowledge in [2], this two step estimation procedure is flawed as in the second step it does not take
into account measurement error in the first step. In this paper, the Bayesian estimation routine solves
this problem as simultaneous estimation of preferences and beliefs becomes possible.

The organization of the paper is as follows. After describing the experimental procedure, we describe
the model for other-regarding preferences and beliefs in detail. We then move on to the details of
the hierarchical Bayesian analysis where we briefly compare the Bayesian method with a frequentist
alternative. A final discussion of the main results concludes the paper.

2. Method

2.1. Subjects

The data come from two independent experiments. The only differences between the experiments
are: (1) the first experiment reported in [2] was conducted in January 2010; the second experiment
in May 2010, and (2) the second experiment was embedded in a larger set of experiments which
included additional treatments. In this paper, we use a subset of data from the second experiment.
This subset is collected using the identical procedure as in the first experiment. We performed careful
statistical analyses to compare the data from the two experiments. These analyses –available from the
authors– showed that when the parameters of the statistical models in this paper are considered, both
for other-regarding preferences and beliefs, the hypothesis that the two samples come from the same
population could not be rejected. Thus, we collapsed the data of the two experiments, and report below
the results for this combined dataset. This yielded a sample of 187 subjects (155 from the 1st and 32
from the 2nd experiment) recruited using the Online Recruitment System for Economic Experiments
(ORSEE) [30]. The two experiments comprised 10 sessions in total, each of which was run with 16
to 20 subjects who were seated randomly in one of the cubicles in the Experimental Laboratory for
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Sociology and Economics (ELSE) of Utrecht University. Since the experiment was conducted in the
English language a good command of English was a prerequisite for participation.

2.2. Procedure

We followed the standard procedures of experimental economics, e.g., anonymity, real and
anonymous partners, incentive compatibility, etc. [31]. Social preferences were measured with 18
different binary Dictator Games. Subjects were informed that for each Dictator Game, the recipient was a
randomly selected participant. The outcomes in these 18 Dictator Games were chosen to (approximately)
optimize the precision of statistical estimates of the other-regarding preference parameters, building
on the previous evidence on the empirical distribution of such parameters. In 16 of the games, one
option included an equal distribution, and the other option included inequity of varying degrees (see
the Appendix for the parameters of these 18 Dictator Games and the rationale behind choosing these
particular games). To measure beliefs, subjects were asked to guess the percentage of other participants
taking part in the experiment who would choose each option in each of these 18 Dictator Games.
Subjects earned points from their own decisions and were rewarded for the accuracy of their guesses
regarding others’ behavior. More precisely, for each of the 18 Dictator Games, if a subject’s guess of
how many other subjects would choose each option was equal to the actual percentage, she earned 500
points. For each percentage point of deviation from the actual percentage, the subject earned 20 fewer
points. If the guess was off by more than 25%, the subject earned no points.1 In addition, next to their
decisions as “senders” in the Dictator Games, as a subsequent step, subjects also passively earned points
as “recipients” of other randomly selected participants. No feedback about the accuracy of the guesses
or about the choices of others was given until all 18 games were complete. The order in which a subject
received these 18 games was randomized.

Here we want to discuss three methodological issues that may concern the reader. First of all, we
paid for both game outcomes and beliefs. One may argue that subjects might hedge by stating beliefs
to insure against bad outcomes in the game. We do not think this is a major concern as [32] study this
problem explicitly and show clearly that hedging in designs as ours is not a major problem. Secondly, we
pay for all games instead of paying for a randomly selected Dictator Game. Our data analysis assumes
that subjects treat each Dictator Game as a one-shot game independent from other games, rather than all
games as one big game. Sophisticated readers might claim that if subjects are also sophisticated enough
they may consider distributional outcomes not game by game but across the set of 18 games (see [33].
To stress the (assumed) one-shot nature of each decision, in the experiment the recipient was a randomly
selected new participant in each Dictator Game, i.e., stranger matching. Alternatively we could pay for
a randomly selected game, but that procedure is not free of problems either (e.g., [34]). Finally, in the
experiment a subject decided as the sender in the Dictator Game, but also was a recipient of another

1In our analyses, we assume that subjects report their average beliefs, which we think is a natural response for most
subjects. Theoretically, incentivising beliefs with a quadratic loss function would ensure reporting average beliefs. We opted
for a linear but “spline-like” loss fuction rather than a quadratic loss function to make the incentive structure more accessible
to the subjects. We do not think this is a major issue as the exact incentive function does not seem to influence the distribution
of beliefs to a great extent. For example, [14] compares the distributions of incentivized and non-incentivized beliefs and
reports some but not substantial differences.
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person. This was done not to reduce the sample size by half. This feature of the design does not make
the game strictly one-person and may potentially have some consequences. Yet, we believe that this
does not influence our results in a substantial way. First of all, the recipient and the sender for whom the
subject was a recipient were both randomly selected subjects, i.e., they were not necessarily the same
person. Moreover, our parameter estimates are quite similar to those found in other studies and as we
discuss below the statistical model fits data quite well. An otherwise finding would make us suspect such
potential design effects. We will revisit these methodological issues in the discussion.

3. Theoretical Model: Other-Regarding Preferences and Beliefs

3.1. Other-Regarding Preferences

We use the following utility function for distributional other-regarding preferences. For an outcome
allocation for the self (x) and the other (y), the (random) utility for actor i is:

U r(x, y;αi, βi) = U(x, y;αi, βi) + ε

= x− αi max(0, y − x)− βi max(0, x− y) + ε ε ∼ N(0, τ 2). (1)

Following Charness and Rabin [18], for subjects with 0 < β < α, this function reduces to the inequity
aversion model of [3], where α and β capture the utility losses due to disadvantageous and advantageous
inequity, respectively. Subjects with β < 0 and α > 0 are competitive, that is, they prefer to receive
higher outcomes than the other. Subjects with β > 0 and α < 0 are motivated by so called “social
welfare”, that is, their utility increases in the outcomes of the other, irrespective of the other earns more
or less than self, yet with different weights. Finally, those with β = α = 0 are selfish. To be able
to use this utility function for statistical purposes, we included a stochastic term ε [35] in the function,
which is assumed to be normally distributed with zero mean, independent across subjects, evaluations,
and alternatives in the games. Then, the probability that actor i chooses option A over option B in a
binary Dictator Game j will be,

Pr(U r
ijA > U r

ijB) =

Pr
(
U r
jAB(αi, βi) > 0

)
= Pr (U(xjA, yjA;αi, βi)− U(xjB, yjB;αi, βij + (εijA − εijB) > 0)

= Pr (∆jx − αi ·∆jyx − βi ·∆jxy + ∆ijε > 0)

= Φ

(
∆jx − αi ·∆jyx − βi ·∆jxy√

2τ

)
. (2)

where xjA is the outcome for the self in option A, yjB is the outcome for the other in option B, ∆jyx =

max(0, yjA − xjA) − max(0, yjB − xjB), ∆jxy = max(0, xjA − yjA) − max(0, xjB − yjB), ∆ijε =

εjA − εjB ∼ N(0, 2τ 2) for subject i in game j, and Φ is the cumulative standard normal distribution.
Note that this probability is equivalent to the Quantal Response Equilibrium prediction with normal
distributed evaluation errors [36].
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3.2. Beliefs

For each of the 18 Dictator Games, subjects guessed the percentage of other participants who preferred
option A over option B. Let pij be subject i’s stated belief about the percentage of others choosing option
A in Dictator Game j. We define πij as i’s belief about the probability that (2) holds. We assume that
actor i’s beliefs about others’ α and β, (α̃i, β̃i), are represented by a multivariate normal distribution(
α̃i

β̃i

)
∼ N

((
µα̃i

(αi)

µβ̃i(βi)

)
,

(
σ2
α̃i

(αi) ρα̃i,β̃i

ρα̃i,β̃i
σ2
β̃i

(βi)

))
, where µα̃i

(αi) and µβ̃i(βi) are i’s beliefs about

the means of α and β, σ2
α̃i

(αi) and σ2
β̃i

(βi) are i’s beliefs about the variance of α and β, and ρα̃i,β̃i
is i’s

belief about the correlation between α and β.2 Then πij satisfies

πij = Pr

(
U r
AB(α̃, β̃) > 0

∣∣∣∣∣
(
α̃

β̃

)
∼ N

((
µα̃i

(αi)

µβ̃i(βi)

)
,

(
σ2
α̃i

(αi) ρα̃i,β̃i

ρα̃i,β̃i
σ2
β̃i

(βi)

)))

Φ−1(πij) =
∆jx − µα̃i

(αi) ·∆jyx − µβ̃i(βi) ·∆jxy√
2τ̃ 2 + σ2

α̃i
(αi) ·∆2

jyx + σ2
β̃i

(βi) ·∆2
jxy + 2ρα̃i,β̃i

σ(α̃i)σ(β̃i) ·∆jyx∆jxy

(3)

where 2τ̃ 2 is the variance of ε̃A− ε̃B, the variance of the difference of random disturbances and Φ−1 is the
inverse cumulative normal distribution. Ignoring boundary cases, we model Φ−1(pij) = Φ−1(πij) + εij

and assume that εij is normally distributed with zero mean, thus

Φ−1(pij) = Φ−1(πij) + εij εij ∼ N(0, τ 2p ) (4)

Moreover, we model the moments of the subjective belief distribution given in (3) as polynomial
functions of own social preference parameters. More precisely:

µα̃i
(αi) = ba0 + ba1αi + εαi εαi ∼ N(0, τ 2α)

µβ̃i(βi) = bb0 + bb1βi + εβi εβi ∼ N(0, τ 2β)

lnσ2
α̃i

(αi) = bsa0 + bsa1αi + bsa2α
2
i

lnσ2
β̃i

(βi) = bsb0 + bsb1βi + bsb2β
2
i

ρα̃i,β̃i
= bc0. (5)

In (5), µα̃i
(αi) and µβ̃i(βi) depend on α and β in a linear form, whereas lnσ2

α̃i
(αi) and lnσ2

β̃i
(βi)

depend on α and β in a curvilinear form. We also performed analyses with higher order polynomial
terms, but the functional forms above in (5) are sufficient to describe our main results. We will discuss
this issue below in the results section.

Also note that there are stochastic error terms εαi and εβi in the equation. For convenience, we assume
that εαi and εβi are independent. These error terms capture the possibility that two subjects who have

2In our theoretical model for own preferences, we assume that (α, β) is multivariate normal. We ascertained that this
normality assumption for own (α, β) is reasonable by estimating (α, β) with fixed effects, that is, without assuming normality.
As own (α, β) is normal, we see no reason to assume a different distribution for beliefs.



Games 2013, 4 73

the same values for (α, β) may have different beliefs about average (α, β) in the population.3 It is in
principle possible to add similar error terms for lnσ2

α̃i
(αi) and lnσ2

β̃i
(βi). We tried to do so. However

adding so many random terms complicate analysis yielding estimation and convergence problems. Thus
we included error terms only for µα̃i

(αi) and µβ̃i(βi).

4. Analyses and Results

We will first discuss the analyses and the results for other-regarding preferences without introducing
beliefs. In a subsequent step, we will provide the simultaneous analysis of other-regarding preferences
and beliefs.

4.1. Bayesian and Frequentist Analysis of Other-Regarding Preferences

We assume a multivariate normality for β and α in our subject pool. Consequently, (2) yields a
multilevel probit model with random coefficients for α and β. The dependent variable is a subject’s
choice between options A and B, and the independent variables are the differences between the outcomes
for the self and the two terms for outcome differences in options A and B as given in (2). Note that
the coefficient of ∆jx is 1. The parameters of (2) to be estimated are the means and (co)variances
of (αi, βi) and the variance of evaluation error τ 2. Since (2) yields a fairly standard multilevel probit
model with random coefficients, it can be fitted using the frequentist Maximum Likelihood approach
as well as the Bayesian framework. To facilitate comparison and show indeed that the Bayesian
approach with uninformative priors yield very similar results as the frequentists Maximum Likelihood
approach, we present the results of both estimation procedures. When we introduce beliefs later on,
however, estimation using the frequentist approach becomes infeasible, thus will provide only the
Bayesian solution.

We fitted (2) with Maximum Likelihood using the Stata software GLLAMM [37] (also see: [2]). The
hierarchical Bayesian estimation requires a more elaborate description, firstly because scholars are less
familiar with it, and secondly it involves three main elements each of which should be described clearly.
Thus, we spare somewhat more space for the Bayesian procedure. The three main elements of a Bayesian
analysis are the prior distributions of the parameters, the likelihood of data, and the MCMC method to
obtain the posterior distribution of the parameters. We used the following standard uninformative priors
for the parameters of (2). The prior for the covariance matrix of (α, β) is an inverse Wishart with 2
degrees of freedom with a scale matrix of 102 · I2 where I2 is the 2 × 2 identity matrix [38]. For
the mean vector of (α, β), we used a multivariate normal prior with zero means and 10 · I2 variances.
For the variance of the evaluation error τ 2, we used a Gamma(10,10) prior. The likelihood of data is
implied by (2). We used OpenBugs [29], a freely available program, to obtain (draws from) the posterior
distribution of the parameters. The estimated posterior distribution comprised 22.000 draws from two
chains after a burn-in of 30.000 draws and recording every 10th draw in each chain [39]. Convergence
was confirmed by visual inspection of the history of the draws from the two chains as well as using
the [40] R̂ statistics. If the model has converged, the chains started from different values should mix and

3Besides these error terms, the means of the belief distribution depend only on (αi, βi). However, the model could be
easily adapted to include other subject level covariates, such as age, gender, study field etc.
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the posterior distribution should stabilize. This can be seen from figure 1, which includes the history
of the draws for the parameters of (2) until the 10.000th iteration. In fact convergence is achieved as
early as after a few hundred iterations. In addition, values of [40] R̂ statistics for the parameters after
excluding the burn-in iterations are all smaller than 1.05, in fact all are virtually 1.

Figure 1. History of draws from the posterior distribution of parameters per 103 iterations to
assess convergence.

Table 1 includes the results of the frequentist and the Bayesian estimations, as well as the bivariate
scatter plot of individual (αi, βi) estimates obtained as empirical posterior means. For the Bayesian
procedure Table 1-a includes the posterior means (P.M.) as point estimates of the parameters and
posterior standard deviations (P.SD.) as standard errors of those point estimates [28]. The first thing to
note is the extreme similarity of the Maximum Likelihood and Bayesian results. This is not surprising,
given that we used uninformative priors. When uninformative priors are used, the results of Bayesian
procedures converge to the frequentist results for relatively large samples [26]. Note that the Bayesian
procedure yields an entire posterior distribution, not only posterior means or standard deviations. This is
demonstrated in figure 2, which presents the posterior density plots of the parameters.

Both the frequentist and Bayesian results show that the estimated mean of β is roughly .14. Also,
there is significant variation among subjects with respect to β. The mean of αi is estimated as -.01,
which is statistically “insignificant”, that is the estimate is not significantly different from zero (ML
result), and the posterior density of the parameter is centered around zero (Bayesian result). However,
albeit small, the estimated variance of αi is statistically significant. Thus, although, on average, α is about
zero, subjects differ significantly in terms of their α values. We also find a moderate negative correlation
between α and β. Note, however, that the uncertainty/precision of this correlation parameter is somewhat
high, reflected as a wider density strip (see Figure 2), and a larger posterior standard deviation and
standard error (see Table 1).
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Table 1. (a) Hierarchical Maximum Likelihood (ML) and hierarchical Bayesian estimates
and their standard errors for the means and standard deviations of the other-regarding
preference parameters (α, β) and the standard deviation of the evaluation error (τ ). (b)
Bivariate scatter plot of empirical Bayes estimates of (α, β).

(a)

ML Bayesian

parameter Coef. S.E. P.M. P.SD.

mean(βi ) .140 .022 .134 .019
mean(αi) -.007 .016 -.010 .015

sd(βi) .208 .023 .211 .024
sd(αi) .163 .015 .166 .013

corr(αi, βi) -.303 .010 -.304 .093
τ .211 .013 .212 .007

N(decision) = 3366, N(subject) = 187

(b)
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The utility function that we use is an extension of Fehr and Schmidt’s inequity aversion model, thus,
we can assess to what extend the assumptions of Fehr and Schmidt hold. Our estimates show that the
typical assumptions of Fehr & Schmidt on the distributions of α and β, e.g., α > 0, β > 0, and α > β,
do not hold in the Dictator Games (see also Table 1-b). For example, a substantial portion of our sample
has negative α estimates, and for quite some of our subjects α < β. Although our results point to such
deviations from the original assumptions of Fehr & Schmidt, they are in fact very close to the estimates
obtained for the same utility function in a study that used a representative Dutch sample [16]. [16],
for instance, also report negative α values for a large portion of their sample. Another recent study
that estimates (αi, βi) with Maximum Likelihood in a Swiss sample also yields a very similar (α, β)

distribution as ours where for may subjects β > α and for quite some α < 0 [41]. [9] also reports that
the assumptions of Fehr and Schmidt on the distribution of α, β are violated in a battery of games. This
shows the usefulness of Charness and Rabin extension of the Fehr and Schmidt model.

As a side, we find no evidence of quadratic/nonlinear preferences; i.e., when added to the model, the
coefficients of ∆2

xy and ∆2
yx were not significant. Additionally, remember that each subject received the

18 Dictator Games in random order. We checked whether the order that a subject received these games
mattered and concluded that the game order did not influence the social preference parameters. The only,
albeit small, order effect was that the variance of evaluation error, τ , decreased in the number of previous
decisions. Yet, including this order effect on evaluation error in our models did not change our results in
any substantial way. We will discuss below the fit of the other-regarding preference model in detail.

Figure 2. Density strips of the posterior distribution of parameters: [1]=µα, [2]=µβ , [3]=σα,
[4]=σβ , [5]=Corr(α, β), [6]=

√
2τ .
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4.2. Bayesian Analysis of Other-Regarding Preferences and Beliefs

When the beliefs are entered in the model, statistical analysis becomes significantly difficult. First of
all, now the analysis involves fitting four simultaneous equations, namely (2), (3), (4), and (5). Secondly,
these four equations include highly nonlinear forms. If one wants to stay within the frequentist approach,
options are very limited and those limited options are problematic, too [2]. The first option is a two-step
procedure: in the first step fitting (2) and obtaining individual (α, β) estimates as posterior means [37];
in the second step fitting (3), (4), and (5) with the nonlinear least squares method, feeding in individual
estimates of (α, β) obtained in the first stage as observed variables. This approach, however, would yield
incorrect estimates, because in the second step the measurement error in (α, β) is ignored. Moreover,
in this two stage approach it is impossible to include the two error terms in (5), namely εαi and εβi. In
other words, individual variation in beliefs has to be ignored, yielding potentially important biases. A
second frequentist alternative is turning to (multilevel) structural equation modeling (SEM), which is a
natural tool to solve for simultaneous equations within the frequentist framework [42]. Yet, it proves
to be impossible to obtain convergence due to high number of unknowns and highly non-linear forms
in equations (2), (3), (4), and (5). Thus, we do not discuss further the frequentist solutions for the
simultaneous analysis of other-regarding preferences and beliefs.

The hierarchical Bayesian approach, on the other hand, is very flexible. The likelihood of data is
given by (2), (3), (4), and (5). One still needs to assign priors to the unknowns in those equations and
the strong MCMC tools incorporated in the Bayesian framework, i.e., MCMC and the Gibbs sampler
take care of obtaining (draws from) the posterior distribution of the parameters. We now describe this
procedure. As above, we used rather uninformative priors. The priors for the parameters of (2) are given
in the previous subsection. The priors for the b• parameters in (5) are univariate normals with zero mean
and 102 variance, except bc0 to which a Uniform[-1,1] prior is assigned. For the variances of error terms,
τ•, in (5) and (4) we assigned Gamma(10,10) priors.4 As above after 30.000 burn-in draws from two
MCMC chains and recording every 10th draw in each chain, a final posterior distribution with 56.000
draws is obtained using OpenBugs. As explained above, convergence is ascertained by visual inspection
of the history of the draws from the two chains as well as using the [40] R̂ statistics. Table 2 shows the
posterior means (P.M.) and posterior standard deviations (P.SD.) of the parameters of Equation 5.5

The strong positive relationship between own other-regarding preferences and expected average
other-regarding preferences is apparent in Table 2 for both α and β. Those with larger other-regarding
preference parameters also believe that the average other-regarding preferences in the population is
higher. The variances of individual errors in average other-regarding preferences, τα and τβ , are
estimated as .77 and .08, respectively with relatively low standard errors/high precision. Thus, although
beliefs depend on own preferences, there is significant variance in beliefs that cannot be totally explained
by own preferences. One finding to be noted is the slope of αi on µα̃i

(αi), which is 5.6. Although this
slope seems higher than what one would expect, in fact the variation in αi is small. The difference
between the two standard deviations below and above the average αi, that is the difference between

4We fix 2τ̃2 in (3) to zero, otherwise the MCMC procedure failed to converge. We performed a sensitivity analysis and
observed that assigning different fixed values for 2τ̃2 hardly influenced the parameters of interest.

5Note again that the Bayesian results include not only P.M.s and P.SD.s but the entire posterior distributions of parameters.
Thus, as in Figure 2, it is possible to obtain posterior density strips of all parameters which we omit for brevity.
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Table 2. Beliefs about others’ other-regarding preferences: Points estimates (posterior
means) of the parameters of Equation 5. Posterior standard deviations are given in
parentheses below as the standard errors of posterior means. N(decision) = 3366, N(subject)
= 187.

µα̃i
(αi) = −.737 +5.596αi +εαi ∼ N(0, .7702)

(.105) (.991) (.107)

µβ̃i(βi) = −.117 + .747βi +εβi ∼ N(0, .0752)

(.024) (.143) (.018)

lnσ2
α̃i

(αi) = 1.020 −1.788αi +9.516α2
i

(.115) (.732) (4.203)

lnσ2
β̃i

(βi) = −1.076 −1.622βi −3.325β2
i

(.103) (2.406) (7.103)

ρα̃i,β̃i
= .650

(.106)

Figure 3. Expected other-regarding preferences versus own other-regarding preferences
based on the posterior means of the parameters in Table 2. Grey shaded areas represent the
relationship between expected variance (uncertainty) in others’ other-regarding preferences
and own other-regarding preferences; i.e., the boundaries of the grey areas are: µ(α̃) ±
1.65σ(α̃) and µ(β̃) ± 1.65σ(β̃). Note that ±1.65σ(β̃) refer to 90% confidence intervals.
The solid lines within these areas represent the relationship between average expected
other-regarding preferences and own other-regarding preferences.
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the lowest and highest likely αi values is only about 0.64. Thus, although the slope is high, the
difference in predicted µα̃i

(αi) is not that high due to the small size and variance of αi estimates. The
U-shaped association between own other-regarding preferences and beliefs about the variance in others’
other-regarding preferences for the α parameter is also apparent. The estimated polynomial function
relating σ2(α̃) and α is lnσ2(α̃) = 1.02 − 1.79α + 9.52α2. The global minimum of this function
is 0.09. In other words, those who have larger absolute values of α expect much more variation in the
population than those with smaller absolute values of α. The relationship between σ2(β̃) and β, however,
is statistically insignificant.

Figure 3 describes the nature of the relationship between other-regarding preferences and beliefs in a
graphical form. Figure 3 is obtained using the posterior means displayed in Table 2 as point estimates
of the parameters. This curvilinear relationship between own other-regarding preferences and expected
variance in others’ other-regarding preferences for the α parameter is depicted in Figure 3, with wider
grey regions as absolute own other-regarding preferences increases. Although the variance in beliefs
about β seems to decrease in own β, the relationship is highly insignificant. Note that the variance in
beliefs is in general higher for the α parameter than for the β parameter.

To report, the estimate of ρα̃i,β̃i
, which is the belief regarding the correlation between α and β, is .65

with a posterior standard deviation of 0.11. τp is estimated as 1.19 with a posterior standard deviation
of 0.02.

It is possible to improve the model in Table 2 by adding higher-order polynomial terms to
Equation 5. For example, a representation where µ(α̃) is a third-order polynomial function of α yields a
better fit. Yet, in this alternative representation, results still indicate a monotonic and increasing, though
non-linear, relationship between µ(α̃) and α. Similarly, a model where lnσ2

α̃i
(αi) is a fourth-order

polynomial function of α yields a better fit. But, again, the results of this model also indicate
a U-shaped relationship between lnσ2(α̃) and α, with an almost identical local minimum. Thus,
although it is possible to obtain a better fit with more complex polynomial representations, the model in
Table (2) is sufficient to describe our main results. In the discussion below, we provide some insights on
why this particular shape between other-regarding preferences and beliefs about others’ other-regarding
preferences emerges.

4.3. Bayesian Assessment of Fit: Posterior Predictive Checking

The question examined here is how well our model for other-regarding preferences and beliefs fits
data. If the discrepancy between our model and data is too high, then the results discussed above might
be misleading. Consider the following discrepancy statistics for the choice of subject i in game j:

Dcij =
(yij − Pr(U r

ijA > U r
ijB))2

(Pr(U r
ijA > U r

ijB))(1− Pr(U r
ijA > U r

ijB))
(6)

where Pr(U r
ijA > U r

ijB) is the predicted probability of choosing option A in a game j for subject i (cited
from Equation 2), and yij is the observed choice for i in game j. Statistics (6) is chosen for its similarity
to Pearson’s χ2 statistics, a widely used statistics to assess fit. We construct an overall fit statistic, D̄c++,
by averaging over all i and j.
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A similar discrepancy statistics can be constructed for beliefs as below:

Dpij = (Φ−1(pij)− Φ−1(πij))
2 (7)

where Φ−1(πij) is the predicted inverse cumulative probability for subject i in game j that (2) holds and
Φ−1(pij) is the observed inverse cumulative probability (see Equations 3 and 4). As above, an overall fit
statistic, D̄p++, is constructed by averaging over all i and j.

Had we known the theoretical distributions of D̄c++ and D̄p++ under the null hypothesis that
our model fits data, we could compare the D̄c++ and D̄p++ scores in our sample to the theoretical
distributions and calculate a p-value for each discrepancy score. These p-values then would show how
likely it is to observe the calculated or higher D̄c++ and D̄p++ scores, given that our model fits. However,
only for very few such discrepancy statistics the theoretical distribution under the null is known and D̄c++

and D̄p++ are not among those few cases. Fortunately, the Bayesian framework offers an alternative, i.e.,
posterior predictive checking. Below we briefly describe this procedure and refer to [27] and [43] for a
fuller treatment of the topic.

For each draw from the Markov Chain used to fit our model, we create a replicated dataset given our
model. For each replicated dataset, we calculate the D̄c++ and D̄p++ scores, which we call D̄rep

c++ and
D̄rep
p++, respectively. Subsequently, we obtain the discrepancy p-values for the parts of the model that

explains the choices and beliefs of subjects by calculating Pr(D̄rep
c++ > D̄c++) and Pr(D̄rep

p++ > D̄p++).6

This procedure is very general and could be used for any (discrepancy) statistics. In fact, we used a
slightly different smoother discrepancy statistics for choices of subjects, to deal with the boundary cases
usingDc2ij =

(yij−Pr(Ur
ijA>U

r
ijB))2

(0.1+0.8Pr(Ur
ijA>U

r
ijB))(0.9−0.8Pr(Ur

ijA>U
r
ijB))

. The exact form of the discrepancy statistics does
not matter to calculate a p-value, since for any statistics posterior predictive samples could be created.

Figure 4 shows the distributions of D̄rep
c2++−D̄c2++ and D̄rep

c++−D̄c++, as well as pc++ = Pr(D̄rep
c2++ >

D̄c2++) and pp++ = Pr(D̄rep
c++ > D̄c++). The discrepancy p-values are pc++ = 11% and pp++ = 50%.

Neither of these figures is low, which means that under the null hypothesis that the model fits, neither of
the discrepancy statistics is extremely unlikely. In other words, we do not find much evidence against
the hypothesis that the model fits, thus conclude that overall our model fits data relatively well.

It is also possible to obtain person fit statistics as D̄ci+, that is, for each subject averaging the
discrepancy statistics over all games. Similarly, it is possible to obtain item fit statistics D̄c+j by
averaging the discrepancy statistics over all subjects for each Dictator Game [44]. Subsequently,
discrepancy p-values could be calculated for each subject and each Dictator Game, using posterior
predictive sampling. This way, subjects whose choices and beliefs are not captured by the model or
games in which choices and beliefs of subjects deviate from the predictions of the model can be detected.
Since the overall fit of our model is rather satisfactory, we do not pursue assessing fit at lower levels.
However, we would like to stress that this aspect of posterior predictive sampling on assessing individual
level and item/game level discrepancies is potentially very useful to assess fit at different levels.

6Note also that within the Bayesian framework the discrepancy statistics D̄c++ and D̄p++ are not single scores, but each
has an entire posterior distribution.
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Figure 4. Posterior predictive checking: Distributions of D̄rep
c2++−D̄c2++ and D̄rep

p++−D̄p++,
as well as corresponding discrepancy p-values.

(a) Distribution of D̄rep
c2++ −

D̄c2++

(b) Distribution of D̄rep
p++ −

D̄p++

5. Discussion and Conclusions

In this study, we investigate the relationship between an actor’s beliefs about others’ other-regarding
preferences and her own other-regarding preferences using a hierarchical Bayesian method. We
estimated the other-regarding preferences parameters, α and β, of actors using choice data from binary
Dictator Games. Simultaneously, we estimated the distribution of actors’ beliefs about others’ α and β,
conditional on own α and β, with incentivized belief elicitation. We demonstrated some advantages of
the Bayesian method over its hierarchical frequentist counterparts including its flexibility in dealing with
relatively complex models with many free parameters, as well as the possibility of a sound assessment
of model fit even for complex models using posterior predictive sampling.

Besides describing the benefits of the hierarchical Bayesian method, the paper presents interesting
results. We found that there is a positive monotonic relationship between own other-regarding
preferences and the belief about average other-regarding preferences. This is not an unprecedented
finding (e.g., [8]), although our study is perhaps novel in demonstrating this relationship in light
of a specific preference model. What is probably more novel is that we also found a strong
U-shaped association between own other-regarding preferences and variance in beliefs about others’
other-regarding preferences for the α parameter. This result can also be interpreted in the following
way. Selfish actors, i.e., those with approximately zero α, also expect most others to be selfish as well.
Thus, these selfish actors fit the classical economic model in terms of both their preferences and their
beliefs. As α deviate from selfishness, however, actors expect more variation in the population while
still expecting others to be similar to themselves on average. The association between preferences and
variance in beliefs for the β parameter however is insignificant. Another finding to be noted is that
variance in beliefs is in general much higher for the α parameter than for the β parameter.

Why beliefs vary with own type and mechanisms yielding the particular relationships between own
motives and beliefs that we describe in this paper is an open question. This question is tackled mainly
within social psychology. We hope that our study will bring the social psychological literature on the
relationship between types and beliefs about others’ types to the attention of experimental economists.
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The positive relationship between own preferences and beliefs about preferences in the population is
in line with what social psychologists call the “false” consensus effect [6].7 The consensus effect
literature typically does not investigate variance in beliefs (or uncertainty) about others’ preferences.
Consequently, our result on the relationship between own other-regarding preferences and expected
variance of others’ preferences is as novel in the social psychological literature as it is for economics.
The triangle hypothesis [7], structured assumed similarity bias [47], and the cone model [1] are three
hypotheses proposed in the social psychological literature each of which indirectly proposes a certain
relationship between own preferences and expected variance in others’ preferences. We refer to [2] for
a detailed description of those hypotheses. Among those three hypotheses, our results support partially
the cone model. The cone effect, as discussed by [1] is caused by several factors. We apply those factors
to the context of this paper. First, in line with the consensus effect all types –actors with certain values of
(α, β)– expect their own type to be more common in the population. Secondly, in addition to their own
types, all types expects selfishness to be another common type in the population, because selfishness is a
common stereotype about others. These two effects overlap when the expectations of selfish people are
considered. As a result, expected variance is smaller for selfish people. We should note, however, that
the cone effect is observed for the α parameter. For the β parameter variance in beliefs is stable, that
is, it does not depend on own β. Without further research, we can only speculate why the cone pattern
emerges for the α parameter but not for the β parameter. As the social psychological literature shows,
biases in beliefs such as the cone or the consensus effects are stronger for situations where information is
scarce and uncertainty is high [6]. Our findings show that uncertainty about others’ preferences is much
higher for the α parameter than that for the β parameter as the variance in beliefs is smaller for β than for
α. In line with this, also the relationship between own other-regarding preferences and the belief about
average other-regarding preferences is much stronger for α than for β. Thus, probably the cone and the
consensus effects are stronger for the α parameter because subjects are more uncertain about others’ α
than others’ β.

Irrespective of the exact causal mechanisms, these clear associations between own other-regarding
preferences and beliefs about others’ other-regarding preferences that we document in this paper call for
more elaborate and accurate application of other-regarding utility models. In the experimental economics
literature, beliefs are typically assumed to be rational. That is, actors are assumed to know the actual
distribution of preferences, and this distribution is independent of own preferences. We showed that
these assumptions are problematic. If one disregards egocentric biases in beliefs by assuming rational
expectations, one may obtain misleading results, such as incorrect predictions or inflated/incorrect
estimates of social motives. Without modeling beliefs, modeling social preferences is not enough to
derive accurate behavioral predictions for many interaction situations. We also hope that our findings
on the distribution of own other-regarding preferences, beliefs about others’ other-regarding preferences,
and the relationship between the two will provide an empirical basis for future theoretical work that may
incorporate these biases in beliefs into more complex game-theoretic models.

7[45] and [46] show that this effect is not necessarily false. That is, people use information on others’ choices and even
assign higher weights to others’ choices than one’s own choice in forming beliefs. A truly false consensus effect would
require ignoring information about others’ choices. In our case subjects did not receive feedback about others’ choices prior
to belief elicitation.
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Before closing, we want to address some methodological caveats. As we explicitly discuss in
the methods section, in our experimental design subjects decide in multiple binary Dictator Games.
Additionally, a subject is paired with multiple other subjects as a recipient. We pay for all decisions,
dictator and recipient. We analyze data assuming that subjects treat each Dictator Game as a one-shot
game, rather than all games as one big game. This is a potentially problematic assumption. We believe
that this feature of our design corresponds to a more general and important methodological issue in the
literature. To estimate other-regarding preference parameters with good statistical precision, one needs
several conditionally independent observations from each subject and a relatively large subject pool.
Similarly, constraining subjects to play in a single decision role, e.g., the dictator or the recipient role
reduces the sample size substantially. Paying for all decisions has the potential drawback that a subject
may not treat a particular game independent from other games, e.g., maximize utility over all sets of
games. It is possible to devise statistical models to analyze choices taking potential dependence between
games. Yet, we think it is unlikely that subjects are maximizing utility over all games. Thus, even
one could adapt the statistical model to include potential dependences between a subjects’ choices over
several games, such a model would be implausible, at least for most subjects. An alternative payment
protocol, paying for a randomly selected game instead of all games may solve this potential dependence
problem. In simple single person setups, paying for all or paying for a randomly selected game does not
seem to matter [48]. However, paying for a randomly selected game has its own problems in situations
that involve more than 1-person, such as Dictator Game. For example, [48] shows that introducing a
random payment scheme may reduce the influence of game outcomes on choice by introducing potential
path-dependent utility. Thus, it is not clear if random payment protocol solves the problem at all. We
think that this is an important methodological issue and leave the discussion to future research that will
systematically compare the repercussions of using alternative designs and payment methods.

6. Appendix

A. Dictator Games used in the Study

In the experiment, 18 binary Dictator Games, shown in Table 3, were used to measure other-regarding
preferences and beliefs about others’ other-regarding preferences. We choose the outcomes in these 18
Dictator Games to facilitate the statistical estimation of the parameters α and β. In 16 out of 18 games,
one option includes an equal distribution, whereas the other option includes an unequal distribution.
Because of this characteristic of the games, in each of these games there is a critical value of either
α or β such that a subject with α or β exceeding that threshold would choose the equal distribution
option. These threshold values are shown in the last two columns of Table 3. We chose these particular
critical α and β values to capture more variation by considering the empirical distributions of α and β
parameters reported in the literature, e.g., [3,16,41]. When choosing these thresholds, we also included
negative values because [16] and [41] also report negative α and β. For the two games in which both
options include unequal distributions (Game 17 and 18), there is no single critical α or β value but a
critical linear combination of the two. Table 3 includes those linear combinations such that a subject
who satisfies the condition chooses option A.
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Table 3. 18 Dictator Games used to measure other-regarding preferences and beliefs
about others’ other-regarding preferences and some descriptive statistics. Columns 6 and
7 include the associated critical α or β values such that a subject with α or β exceeding
that threshold would choose the equal distribution option. The last four columns include
average A-choices, average belief about %A choices, standard deviation of beliefs about
%A-choices, and the Pearson’s correlation between A-choice and belief about % A-choices
(N-subject=187). All correlations given in the last column are statistically significant
–p(2-sided)<0.05.

Design Prediction Descriptives
Game Option A Option B Threshold Threshold Mean Mean belief S.D. belief Corr

You get Other gets You get Other gets α β A-choice %A-choice %A-choice (choice,belief)

1 320 320 300 280 . -1 .963 91.241 15.073 0.522
2 410 410 400 370 . -.333 .973 89.797 16.189 0.450
3 500 400 550 550 . -.5 .043 30.326 37.692 0.174
4 450 450 400 525 -.4 . .957 83.000 18.887 0.413
5 350 350 300 475 -.286 . .936 81.759 19.086 0.370
6 630 630 600 735 -.222 . .893 80.984 19.021 0.421
7 640 640 680 920 .167 . .134 42.471 36.078 0.317
8 660 750 630 630 .333 . .866 80.257 23.313 0.600
9 420 420 440 455 1.333 . .086 37.091 35.587 0.298

10 640 640 680 695 2.667 . .096 35.888 36.482 0.352
11 700 715 650 650 3.333 . .904 84.139 21.971 0.626
12 480 40 440 440 . .091 .476 56.754 28.022 0.586
13 540 540 580 340 . .167 .412 44.572 28.692 0.354
14 310 310 320 290 . .333 .278 44.738 30.982 0.403
15 310 310 320 305 . .667 .187 40.332 31.020 0.330
16 700 650 650 650 . 1 .952 89.679 16.097 0.430
17 540 500 540 555 3α− 8β > 0 .198 44.733 30.379 0.422
18 650 600 650 685 7α− 10β > 0 .273 46.380 31.023 0.509

B. Instructions

Please consider Example 1 below. In this table, you see 2 pairs of points to be allocated between
yourself and another person. In this part of the experiment, you will receive a number of such pairs. For
each pair you need to choose one of the options that you prefer. According to your choice, the points
attached to that choice will be given to you and another person who will be randomly selected from all
participants in this experiment. For example, if you choose option A in the example below, then you will
receive 100 points and a randomly selected other participant will receive 200 points. Similarly, if you
chose option B, then you will receive 100 points, and a randomly selected other participant will receive
1 points.

Moreover, for each of the pairs, we ask you to guess the choices of other participants. Again, you will
earn points depending on the accuracy of your guess. We will compute the actual percentages from the
decisions of all other participants. The closer your guess is to the actual percentages, the more points
you will earn. In particular, if your guess is exactly equal to the actual percentage, then you will earn
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500 points. For each percentage point deviation from the actual percentage, you will earn 20 points less.
If your guess in a given situation is off more than 25 percentage points, then you earn 0 points from that
situation.

For each of the pairs that you will see next, please indicate your choice by marking one of the check
boxes given below the options, and state your guess about the percentage of participants who you think
would chose option A by writing a number between 0 and 100 in the space given.

Note also that for each pair, other participants in this experiment will also state their choices; where
you will be the other person for a randomly selected participant. You will also earn points depending on
this randomly selected person’s choice.

Example 1 Option A Option B

You get 100 100
Other participant gets 200 1

Your choice [ ] [ ]
% participants who choose option A: [ ]
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