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Abstract: This paper describes the “Bounded Memory, Inertia, Sargplamd
Weighting” (BI-SAW) model, which won the http://sites.ggle.com/site/gpredcomp/Market
Entry Prediction Competition in 2010. The BI-SAW model renthe I-SAW Model
(Erevet al.[1]) by adding the assumption of limited memory span. In patég we assume
when players draw a small sample to weight against the aggaygpff of all past experience,
they can only recall 6 trials of past experience. On the otfaerd, we keep all other key
features of the I-SAW model: (1) Reliance on a small sampleast experiences, (2) Strong
inertia and recency effects, and (3) Surprise triggers ghakiVe estimate this model using
the first set of experimental results run by the competitiqganizers, and use it to predict
results of a second set of similar experiments later ran @ptganizers. We find significant
improvement in out-of-sample predictability (against H®AW model) in terms of smaller
mean normalized MSD, and such result is robust to resamfiiegredicted game set and
reversing the role of the sets of experimental results. Canletls performance is the best
among all the participants.

Keywords: learning; market entry game; prediction competition

1. Introduction

Studying and modeling human learning behavior in the laiboyahas always been an important
research topic in economics (See Chapter 6 of Came2grfdr a review). For example,
Erev and Roth3] consider reinforcement models, while Camerer and #apnsider a hybrid model
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of belief-based and reinforcement learning. However, neegticles had shown that experimental
environment variation and relatively small datasets andeteohad brought difficulties into the literature
(see, for example, Salmob]). Different experimental environment and setting maydléa learning
behavior worlds apart. Most previous studies focused oativel small datasets, therefore making
it difficult to obtain a general model. Erest al. organized a model estimation contest in 2009,
attempting to solve this using a large dataset and uniforpemental setups. Results were reported in
Erevet al.[6]. However, their setup considered only the environmemntakutainty individuals face and
restricts payoff feedbacks to obtained payoff. In otherdsosubjects do not know what their forgone
payoffs are.

Erev et al. [1] further held a second prediction competition to invedeganodel variation on the
addition of uncertainty due to information asymmetries amiwrmation on forgone payoff. This
competition is based on the market entry game, which is arpiclaoice game where players face a
safe choice and a risky option. Both choices include enwiremtal uncertainty, but the payoff of the
risky choice will be affected by other players. The payoffshe chosen and forgone options were both
shown to the subjects in this competition.

The competition organizers ran experiments to generatséigof experimental data, the estimation
game set and the competition game set. Seeing the expealmestilts of the estimation game set,
participants of the competition are asked to predict thebien of the competition game set when only
several given game parameters were known, but not the aeg@dnses of the experimental subjects.

Based on the results of the previous competition, Eteal. [1] introduced the best baseline model
called the inertia, sampling and weighting (I-SAW) moddieT-SAW model consists of three different
modes, exploration, exploitation and inertia mode. A playethe exploration mode would enter
randomly with a fixed probability that varies across sulgedn the market entry game, exploration
mode is the resemblance of decision without experience.eltiet exploitation mode, subjects make
decision based on past experiences. Specifically, subigratsthe Estimate Subjective Value (ESV) by
calculating a weighted average between the sample meamudlasample of past history and the grand
mean of all past experience. The Inertia mode signifies thsopal beliefs of players. In this mode,
players act the same as the immediate past. The probalilégtering the exploration mode is fixed
among subjects, whereas the probability of entering thetignenode is decided by past experiences, the
more surprise a payoff is, the less one will enter the inenime. If a player does not enter either the
exploration or the inertia mode, she will enter the expt@mtamode. Each player has some underlying
parameters to reflect individual differences, which is drdéem a population distribution.

However, we believe that the “perfect recall” assumptiornhi@ exploitation mode is not realistic.
Specifically, the exploitation mode says that while sangpliom the past, all past periods are considered
regardless of the size of gap between now and a certain pasiSirAon [/] first proposed, “global
rationality” may not be “. .. actually possessed by orgamsisncluding man, in the kinds of environments
in which such organisms exist.” The assumption of memonyenal to the unlimited past is not solid
on human being.

In fact, we find that the participants tend to choose the lespianse in the recent periods. Specifically,
we calculate the percentages of choice in the current pérjddat coincide with the best response in a
previous periodi{— z), and present it in Figurgé. As shown in the figure with different colors, there are
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three levels of best response percentage (1, 2 to 9, and Xi).ta Bis difference proves our suspicion
toward “perfect recall”! 2

Figure 1. Best response percentage.
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Therefore, we introduce the concept of bounded memory ngd-SAW model to avoid this unlimited
reminiscence problem. In particular, players will be alledcall exact payoffs only from some near
past, though they should be able to have some vague idealimgieabout a general past of a choice.
Hence, we set the sample mean to be sampled from some neaatpasthan sampling from all history,
while maintaining the I-SAW assumption that the grand meahe average of all past experiences. This
modification captures the intuition that an elder may knaoat bier birthday has been great all her life, but
it is rare for an old lady to tell about what she got on her tiheltfirthday, even though her recollection
of last year’s birthday present may be precise.

We estimate the modified model of Bounded memory, Inertimy@iag and Weighting (BI-SAW) by
grid search. The grid search method seeks the best fit pagassttunder a particular chosen criterion
and data. The criterion we utilize is exactly the one usechégrediction competition, the average
of six normalized mean square deviations. This critericcuées on the model’s prediction ability in
terms of game entry rate, efficiency rate and alternatian e estimated the BI-SAW model by using
experimental data of the estimation game set provided bydah®petition organizers. For each parameter
set of interest we perform ten thousand simulations of themasion game set. This number was chosen
to be large enough to eliminate the effect of randomnessamté the BI-SAW population model which

We use the data from the estimation game set.
2In order to observe a large range of lag} @p to 20, only periodst] 21 to 50 are included. Also note that our result is
different from the one shown in Eret al.[1] because they use periods 13 to 50.
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draws a set of parameters for each individual. We follow Eteal. [1] and model this set of individual
parameters as independent and identical draws from a omidiastribution with lower bounds of zero
(one for discrete parameters), and upper bounds set asgbigpuparameters of the modelOn the
other hand, though also estimated from data, we specifiechémeory limitation to be constant among
all players for simplicity.

In the prediction competition, the BI-SAW model with a boeddnemory limitation of 6 periods
predicts data of the competition game set better than thehoeark 1-SAW model, as well as other
models submitted by 13 groups of contestdntBue to the random nature of the competition, we
perform three tests concerning the randomness of outcaam®s get selection, and parameter estimation
game set. All three results favor the BI-SAW model. In patte, the BI-SAW model significantly
outperforms the benchmark I-SAW model in repeated simuiatof the outcome. Also, the BI-SAW
model predicts significantly better than the I-SAW modelrewden the prediction target is a resample
of the competition game set. Thirdly, the BI-SAW model gpdirforms better than the I-SAW model
even after we reverse the role of the estimation and congretifame sets. To sum up, the BI-SAW
model is precise and robust in the market entry game.

The remaining of the article is organized as follows: Sectbdescribes the BI-SAW model,
Section3 describes the market entry game designed for the predictiorpetition, Sectiod presents
our estimation method, Secti@presents the results, and Sectéooncludes.

2. TheBI-SAW Modd

The Bounded Memory, Inertia, Sampling and Weighted (BI-§AWbdel is a type of explorative
sampler model that features strong inertia, recency effesttrprise triggers change, and a restriction
on individual's ability of recalling past payoffs when saling. To be specific, the BI-SAW model
dictates that in every trial each individual enters one ef3hresponse modes (Exploration, Exploitation
or Inertia) based on randomness and her past experiencasscinprise. The probability of choosing a
specific action under each mode is then determined by specéaetermined rules that are also based
on past experiences and randomness. The idea is that peopld enter different mindsets when
facing different payoff histories and the same historiel$ also determine the action people choose in
each mindset.

2.1. Three Response Modes

Individual i (= 1,...,n) enters the exploration mode with probability 1 in the firgltrande; (a
trait of 7) in all other trials. In this mode, the individual chooses &etion according to an exogenous
distribution Fy. For instance, if the individual faces a binary choice of A@nd P, = (po, 1 — po),
she would choose 0 with probabiliyy, and choose 1 with probabilityl — p,). Notice thatF, is
homogeneous across individuals.

3 The uniformly distributed individual parameters and thiplications can be reviewed in Eretal.[1].
4 Even if we use a bounded memory limitation of 7 periods, th&BW model still outperforms all other models.
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2.2. Inertia Mode

If the exploration mode was not chosen, individuanters the inertia mode at trials { 1) with
probability 7; to the power of Surprige), 7>"P"S®) wherer, € [0,1] is the lowest probability
of entering the inertia mode (when there is maximum surpris@d Surprisg) € [0,1] is the
surprise individual feels after receiving the payoff of trial This reflects how individuals stick to
“business-as-usual”’ unless they encounter a big shocleinlife (surprise).

To define this surprise, we shall first define the payoffs gap wéspect to GrandMt), the average
payoff from choosing action (= 1,...,k) in all the previous trials. Theayoff gap Gagt), is the
average difference between payoffs received (or forgaone) thoosing each action in trigand ¢ — 1),
and between trial and the average payoff from choosing that action:

k k
Gapt) = i [Z |payoff;(t — 1) — payoff;(¢)| + Z |GrandM (t) — payoff(t)|

where payoff(t) is the payoff one obtained or would have obtained from chapsat trial .
Therunning average of the payoff gag

0.00001 ift=0,
MeanGapt)(1 — 1/r) + Gap(t)(1/r) olw
wherer is the (expected) numbers of total trials.

Based on Gafp) and MeanGap(t), we can now define theurpriseat trial ¢:

MeanGapt + 1) = {

_ B Gap(t)
Surprisét) = MeanGap(t) + Gap(t)

Sincemr; ranges from 0 to 1, less surprise will trigger more inertiad &ice versa. Also, notice that
the Surprisé) is normalized to between 0 and 1, thus the probability oftiaés betweenr; and 1.

2.3. Exploitation Mode

If neither the exploration mode nor the inertia mode wereseng an individual will enter the
exploitation mode. To be specific, the probability of emtgrthis mode is O in the first trial, and in
all other trials is’

(1—e) <1 B WiSUfpfiS@t—l))

°Notice that, as we saw in the inertia modgs,urpr'set_l) is not defined in the second trial. Therefore, in trial 2,
individual i can only enter either the exploration mode or the explaitethode.
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Under this mode, individualfirst calculates the Estimated Subjective Value (ESV) faheaction,
in the trial¢ (> 1), and chooses the action with the highest ESV:

ESVi(j,t) = (1 — w;)(SampleM(t)) + w;(GrandM;(t))

where “SampleM(t)” is the average payoff of choosing actignfrom a fixed number ;) of small
sample drawn from the most recent” “trials. This sampling process is independent and with
replacement. Each draw has probabilitypptthoosing the most recent trial € 1), otherwise all trials
from (¢ — 1) to (¢t — b) are chosen with equal probability.

2.4.

Interpreting BI-SAW

We summarize our parameters and their interpretationdlasvfo

¢; is the chance of entering the exploration mode starting fiteersecond trial. Since we assume,
under this mode, people all choose their actions accordirggfixed distribution independent of

experience, this parameter can be interpreted as peoghelsicy to explore different possibilities.

In our setting (the market entry game), since we assumeidhdils would choose the risky choice

with high probabilities in the exploration mode, this alswlies the tendency to take risk.

P, is the distribution of actions an individual follows whenterng the exploration mode, and is
the same for all individuals.

m; Is the lower bound for the probability of entering the in@mnode starting from the third trial.
Higher; means a higher possibility for the individual to repeat fast thoice, and also a lower
probability for entering the exploitation mode. When= 1, unless the exploration mode was
chosen, individual will stick to her last choice startingrfr the third trial.

w; measures the weight placed on the grand average payoff phstlexperiences, instead of
the small sample average payoff. Highersuggests that individualputs more weight on the
grand average, rather than relying on the small sample geeM/henw,; = 1, for example, the
individual will simply choose the action which gives her thighest grand average payoff.

p; measures the tendency to select the most recent trial wimeplisg. Higherp; suggests that
the payoff from the most recent trial will have a bigger imipai the individual. Whemp; = 1
andw; = 0, individual will consider only the most recent trial whennclucting the small-size
sampling in the exploitation mode.

i; 1s the number of trials an individual samples when she cateslthe small sample average.
Higher u; implies more trials of experiences were considered whenimgattecisions. When
w; = oo andp; = 0, the small sample average will converge to the grand averageff.

b measures individual’s ability of recalling past payoffstenms of the number of trials. Thus,
higherb naturally implies a better working memory, or a better tegha for memorizing payoffs.
Since previous literature (Millerg]) reports a memory capacity of 5 to 6 chunks with a small
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variance among individuals, we assume all individuals hheesame, instead of allowing them
to have different,.

2.5. From Individual Model to Population Prediction

We have thus defined an individual BI-SAW model where eachviddal is represented by a
parameter vectofe;, Py, m;, w;, p;, 11, b). To form a population prediction, we draw each individual
parameter from a uniform distribution with a fixed lower bddrFor the population model, we estimate
the upper bounds for the 5 individual parametersantfe do not estimaté);, but use the average initial
entry rate in the data instead. We then generate our outcoedécpon by simulating 5000 times and
take the average.

3. TheMarket Entry Game

The market entry game we study in this paper exhibits enmental and strategic uncertainty in
which four players each face a binary choice in each trigierémg a risky market or staying out (a safe
prospect). After making their choices, each player willeige feedback including the payoff they just
earned and the payoff they would have earned had they chiosatiérnative.

The payoff of entering the risky markét (¢)) will depend on the number of entering playefs @nd
the realization of a binary gambi&;:

V() =10—k+ E+ G,

wherek is a fixed positive integer, an@d, = H (> 0) or L(< 0).
The probability that H will be realized in a trial is given by:
—L
=
Hence, EG;), the expected payoff of this binary gamble equals to Zero.

The payoff of staying out depends 6#} and a safety parametef> 1), which equals td+,/s or
—@ /s, round to the nearest integer, with equal probability. €fene, the expected payoff of staying
out equals to zero and its variance is smaller than that ofnbering payoff.

Notice that the exact payoff structure described above khown to players. What they know is:
their payoff in each trial depends on “their choices, theéestd nature and on the choices of the other
participants (such that the more people enter the less gayeif from entry).” (Erewet al.[1])

Although parameters are the same in a gamyegnd £ may vary from trial to trial in the same game,
serving as environmental and strategic uncertainty in tagkeat respectively.

This market entry game is a stylized representation of a cometonomic problem: the utility of
undertaking a particular activity depends on the enviramiend decreases as the number of participants
increases. For example, when choosing to go to the amusg@axgnbne’s utility depends on not only the
weather, but also how many visitors there are. Thereforth &ovironmental and strategic uncertainty
are taken into consideration when making decisions.

6 Except forb and Py, which are the same for all individuals.
'B(Gy)=Pg+H+(1—Pg)*xL=|-L/(H—-L)|*H+[H/(H—L)]*L=0.
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4. Estimation M ethodology

The competition organizers randomly draw 40 sets of gamanpeters(k, H, L, s) to form the
estimation game set, and conduct experimental sessiohsuth®0 trials for each game. They then
randomly draw another 40 sets of game parameters from the dass of market entry games to form the
competition game set, and then conduct experiments thatahs50 trials for each game. Experimental
subjects were recycled to participate in several diffegames, but the exact subset of games subjects
participated were not revealed, so we can only treat playfezach game as independent.

The prediction competition uses mean normalized mean sqiarnation (MNMSD) scores as the
criterion when comparing predictions of different modelghis mean normalized MSD score is the
average of mean square deviations (MSD) between expemineata and model prediction in three
aspects: entry rate, efficiency level and alternation rEterefore, we need three MSDs to calculate the
MNMSD score: entry MSD, efficiency MSD, and alternation M3@oreover, we divide each game’s
data into two blocks, block 1 (trials 1-25) and block 2 (i&@6-50), and calculate the three MSDs
for each block. To obtain the MNMSD score of a certain modetisdiction, we calculate the entry,
efficiency and alternation MSD for block 1 and 2, normalizestasix numbers to make them comparable,
and take the averade.

Here, the entry MSD for a certain model (in a given block of atipalar game) is the squared
difference of the predicted and actual entry rate (frequesfcentry divided by the total number of
decisions in the block). We then derive the overall entry M8[@aking the average of the entry MSD
in every game. The alternation MSD is similarly defined. @jirwe calculate the efficiency MSD of
each game by dividing total decision gain by total numberemfisions, and average across games.

We do not estimate the probability of entering under expionamode f,). Instead, we set it equals
to the average entry rate in all first trials of the estimagame set.

Table 1. Parameter estimation range.

Parameters Estimation Range Precisions

¢ [0.1,0.4] 0.01
w [0,1] 0.1
7 [0,1] 0.1
7 [0,1] 0.1
f [1,5] 1

b [1,25] 1

On the other hand, we estimate the population BI-SAW modeLlith grid search to look for the best
of a given set of games. Based on the best fit of the I-SAW mdttel(et al.[1]), we choose an initial
range listed in Tabld. Since MSD varies for the population model (due to samplihgndividual

8See Ereet al.[1] for details.
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parameters), we simulate the outcome 10,000 times for egabf parameters, and choose the set that
minimizes the average MNMSD for these 10,000 tirfies.

5. Empirical Results

We first report the results of our estimation and model fit, #reh discuss the significance of the
bounded memory assumption.

5.1. Basic Estimation and Model Fit

Table 2. Estimated parameters and the normalized MSD scores of $#&\-and BI-SAW
model.

Model [-SAW  BI-SAW [-SAW  BI-SAW

Estimated with Estimation game set Competition game set

Entry Rate normalized MSD (block 1)

1.5443 1.2763 1.1627 5101
Entry Rate normalized MSD (block 2) 1.1495 1.1500 0.8621 3978
Efficiency normalized MSD (block 1) 1.3106 1.0746 0.7105 367
Efficiency normalized MSD (block 2) 1.4899 1.3454 0.8218 8038
Alternation normalized MSD (block 1) 1.4192 1.3802 0.7130 .7108
Alternation normalized MSD (block 2) 1.2913 1.2456 0.7437 .8382
In-sample MNMSD 1.3674 1.2454 0.8356 0.8589

Prediction on Competition game set  Estimation game set

Entry Rate normalized MSD (block 1)

1.7353 1.4009 1.6043 133
Entry Rate normalized MSD (block 2) 1.6431 1.3385 1.6608 8116
Efficiency normalized MSD (block 1) 0.8878 0.7650 1.0480 3BO
Efficiency normalized MSD (block 2) 1.1714 1.0078 2.1256 639
Alternation normalized MSD (block 1) 0.7507 0.6808 1.8640 .79%1
Alternation normalized MSD (block 2) 0.8571 0.8979 1.4367 .3666
Out-of-sample MNMSD 1.1742 1.0151 1.6232 1.6092
Estimated Parameters
€ 0.24 0.25 0.20 0.20
w 0.8 0.8 0.6 0.6
D 0.2 0.8 1.0 1.0
T 0.6 0.6 0.6 0.6
m 3 3 2 2
b - 6 - 8

9 Reduce this sampling error is important as the MNMSD of caingemodels differ only by+0.05 (Figure?2).
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To obtain the 6 normalized MSD scores, we use the parametgnsated using the estimation game
set, and simulate the experimental results of the competgame set for 5000 times. We then take the
average of the 5000 simulation results, and normalize them.

Table2 reports the 6 normalized MSD scores of the BI-SAW model (et&D, efficiency MSD, and
alternation MSD for each of the two blocks), and comparestivih those of the I-SAW model (the best
baseline model reported in Eret al. [1]) when both models are estimated using the estimation game
set. The BI-SAW model's 6 normalized MSD scores are all sendhian those of the I-SAW model,
for the estimation game set, especially for the entry MSD tredefficiency MSD of block 1. The
MNMSD score of the BI-SAW model is 1.2454 and the MNMSD scadréhe I-SAW model is 1.3674.
Hence, the BI-SAW model has a better in-sample fit than the limeseline model in the literature (the
[-SAW model).

Moreover, the BI-SAW model outperforms the I-SAW model irgiicting out-of-sample data (the
competition game set). TabRalso reports the 6 normalized MSD scores of the BI-SAW andWwS
model for the competition game set. We can see that the Bl-&ftfel’'s normalized MSD scores are
always smaller than the I-SAW model’s normalized MSD scepse®pt for the alternation MSD of block
2 (0.8979 vs. 0.8571). The MNMSD score of the BI-SAW model.&151, and the MNMSD score of
the I-SAW model is 1.1742. This result provides strong enadethat the BI-SAW model predicts new
experimental results better than the I-SAW model.

5.2. The Significance of the Bounded Memory Assumption

Figure 2. The distribution of MNMSD scores for the I-SAW and BI-SAW neid
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Since MNMSD is an abstract number, we use the following thwags to test the significance of
the bounded memory assumption, which is the only differdrateeen the BI-SAW and I-SAW model:
outcome simulation on the competition game set, prediciioresampled game sets, and reversing the
role of the estimation and competition game sets.
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Figure 3. Resampling game set MNMSD scores for the I-SAW and BI-SAW ehod
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5.3. Outcome Simulation on the Competition Game Set

There is randomness in the 6 normalized MSD scores due tometsimulation, so we have to make
sure the BI-SAW model performs better not only because f thhdomness. For this purpose, we
repeat the simulation procedure described in Se@&iafor 100 times. Figur@ shows the distributions
of MNMSD scores for both models. Itis clear that the MNMSDres0of the BI-SAW model are always
smaller than those of the I-SAW model. Results of the Wilcog@mned-rank test and the paired t-test
are both significant with p-value = 0.00%.

5.4. Prediction on Resampled Game Sets

To test whether the BI-SAW model’s prediction power is rakdosdifferent game sets, we draw 40
games with replacement from the competition game set to fonew game set, and see if our estimated
BI-SAW model still predicts well in the new game set. Thisapling procedure is justified by the fact
that the parameters of each game in both the estimation angetdion game sets were also randomly
drawn by the organizers of the competition. We repeat treameéing process for 100 times and use both
the I-SAW and BI-SAW model to simulate results of these 13@nepled game sets. FigiBshows the
MNMSD scores of the 100 resampled game sets of both models MNIMSD scores of the BI-SAW
model are never larger than those of the I-SAW model in abhmgsed game sets. Consequently, the
results of the Wilcoxon signed-rank test and paired t-tesbath significant with p-value = 0.000.

5.5. Reversing the Role of Estimation and Competition Gagte S

Finally, to test whether our estimated BI-SAW model pregligell only in the estimation game set,
we reverse the roles of the estimation and competition gatse Jhat is, we estimate the parameters

101  is allowed to have individual differences, and drawn fromoanmal distribution with mean 6 and s.d. 2.5 (truncated
below 0), the MNMSD scores could be reduced to 0.9832. (Wimast the s.d. by using the estimation game set.) Moreover,
a similar horse race reveals that this modified version afgpas the original BI-SAW model. Results of the Wilcoxon
signed-rank test and the paired t-test are both significahtpwalue = 0.000.
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using the original competition game set, and use it to ptedecresults of the original estimation game
set. In other words, the original competition game set is m@wed as in-sample data, and the original
estimation game set is now viewed as out-of-sample datde Pateports the 6 new normalized MSD
scores of the I-SAW and BI-SAW model. Note that the paranseiez now estimated from the (original)
competition game set. The estimated parameters of the I-8AMBI-SAW model differ largely from
the original ones. The MNMSD score of the I-SAW model is everaker than that of the BI-SAW
model for the original competition game set (now in-sampi@ayl Notwithstanding, the BI-SAW model
still outperforms the I-SAW model out of sample. In partenylthe MNMSD score of the BI-SAW
model, 1.6092, is still smaller than the MNMSD score of tf#&A%W model, which is 1.6232.

6. Conclusions

In this paper, we propose the “Bounded Memory, Inertia, Seng@and Weighted (BI-SAW)” model
in which the subjects’ ability of recalling past experiens@assumed to be limited. This assumption is
crucial when modeling how people make decisions based anphst experience. We test if it improves
models’ prediction power in a market entry game setting witategic and environmental uncertainty,
in which each player receives feedback regarding earnefoagoine payoffs after each decision.

To evaluate the significance of the bounded memory assumpt® verify that the prediction power
of the BI-SAW model is consistently stronger than the beratkn-SAW model by comparing model
performance using the mean normalized mean square deviMiNMSD) criterion in the following
three settings. First of all, we repeatedly simulate theaue of the two models for the competition
game set for 100 times to see if the difference between MNME&@es is significant. Secondly,
we use 100 resampled game sets (by repeatedly drawing 40 arewsgfrom the competition game
set) to check whether the prediction power of BI-SAW modehiependent of game sets. Thirdly,
we reverse the role of the estimation game set and the caimopegiame set, and perform the same
estimation-and-prediction exercise. In all three casesBil-SAW model outperforms the I-SAW model,
by having lower out-of-sample MNMSD scores. These resutdion the robustness of the BI-SAW
model performance. Thus, by incorporating the bounded mgrassumption, the BI-SAW model
integrates realistic limitations of the human brain intomaemic modeling, and commands a better ability
in predicting subjects’ choices.

There are still several open questions to be resolved induitork. The most obvious one is to
generalize the BI-SAW model to cope with different informatsettings. For instance, it would be
interesting to see if the BI-SAW model also outperform tH&AW model in games in which forgone
payoffs are unknown (such as those reported in Eteal. [6]).

Another area that deserves further investigation is exmjoother possible specifications and
extensions of the bounded memory assumption. In partionassume that all subjects recall payoffs
of the lastb trials. One could use other criteria to determine which mgnave recalled, such as
frequency of encountering the same situatiett, Adding such extension should create a better way
to predict how people play games in experimental settind,eventually how they make decisions in
daily life.
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