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Abstract: This paper describes the “Bounded Memory, Inertia, Sampling and

Weighting” (BI-SAW) model, which won the http://sites.google.com/site/gpredcomp/Market

Entry Prediction Competition in 2010. The BI-SAW model refines the I-SAW Model

(Erevet al. [1]) by adding the assumption of limited memory span. In particular, we assume

when players draw a small sample to weight against the average payoff of all past experience,

they can only recall 6 trials of past experience. On the otherhand, we keep all other key

features of the I-SAW model: (1) Reliance on a small sample ofpast experiences, (2) Strong

inertia and recency effects, and (3) Surprise triggers change. We estimate this model using

the first set of experimental results run by the competition organizers, and use it to predict

results of a second set of similar experiments later ran by the organizers. We find significant

improvement in out-of-sample predictability (against theI-SAW model) in terms of smaller

mean normalized MSD, and such result is robust to resamplingthe predicted game set and

reversing the role of the sets of experimental results. Our model’s performance is the best

among all the participants.
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1. Introduction

Studying and modeling human learning behavior in the laboratory has always been an important

research topic in economics (See Chapter 6 of Camerer [2] for a review). For example,

Erev and Roth [3] consider reinforcement models, while Camerer and Ho [4] consider a hybrid model
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of belief-based and reinforcement learning. However, recent articles had shown that experimental

environment variation and relatively small datasets and models had brought difficulties into the literature

(see, for example, Salmon [5]). Different experimental environment and setting may lead to learning

behavior worlds apart. Most previous studies focused on relative small datasets, therefore making

it difficult to obtain a general model. Erevet al. organized a model estimation contest in 2009,

attempting to solve this using a large dataset and uniform experimental setups. Results were reported in

Erevet al. [6]. However, their setup considered only the environmental uncertainty individuals face and

restricts payoff feedbacks to obtained payoff. In other words, subjects do not know what their forgone

payoffs are.

Erev et al. [1] further held a second prediction competition to investigate model variation on the

addition of uncertainty due to information asymmetries andinformation on forgone payoff. This

competition is based on the market entry game, which is a binary choice game where players face a

safe choice and a risky option. Both choices include environmental uncertainty, but the payoff of the

risky choice will be affected by other players. The payoffs of the chosen and forgone options were both

shown to the subjects in this competition.

The competition organizers ran experiments to generate twosets of experimental data, the estimation

game set and the competition game set. Seeing the experimental results of the estimation game set,

participants of the competition are asked to predict the behavior of the competition game set when only

several given game parameters were known, but not the actualresponses of the experimental subjects.

Based on the results of the previous competition, Erevet al. [1] introduced the best baseline model

called the inertia, sampling and weighting (I-SAW) model. The I-SAW model consists of three different

modes, exploration, exploitation and inertia mode. A player in the exploration mode would enter

randomly with a fixed probability that varies across subjects. In the market entry game, exploration

mode is the resemblance of decision without experience. Under the exploitation mode, subjects make

decision based on past experiences. Specifically, subjectsform the Estimate Subjective Value (ESV) by

calculating a weighted average between the sample mean of a small sample of past history and the grand

mean of all past experience. The Inertia mode signifies the personal beliefs of players. In this mode,

players act the same as the immediate past. The probability of entering the exploration mode is fixed

among subjects, whereas the probability of entering the inertia mode is decided by past experiences, the

more surprise a payoff is, the less one will enter the inertiamode. If a player does not enter either the

exploration or the inertia mode, she will enter the exploitation mode. Each player has some underlying

parameters to reflect individual differences, which is drawn from a population distribution.

However, we believe that the “perfect recall” assumption inthe exploitation mode is not realistic.

Specifically, the exploitation mode says that while sampling from the past, all past periods are considered

regardless of the size of gap between now and a certain past. As Simon [7] first proposed, “global

rationality” may not be “. . . actually possessed by organisms, including man, in the kinds of environments

in which such organisms exist.” The assumption of memory retrieval to the unlimited past is not solid

on human being.

In fact, we find that the participants tend to choose the best response in the recent periods. Specifically,

we calculate the percentages of choice in the current period(t) that coincide with the best response in a

previous period (t− x), and present it in Figure1. As shown in the figure with different colors, there are
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three levels of best response percentage (1, 2 to 9, and 10 to 20). This difference proves our suspicion

toward “perfect recall”.1 2

Figure 1. Best response percentage.
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Therefore, we introduce the concept of bounded memory into the I-SAW model to avoid this unlimited

reminiscence problem. In particular, players will be able to recall exact payoffs only from some near

past, though they should be able to have some vague idea or feelings about a general past of a choice.

Hence, we set the sample mean to be sampled from some near pastrather than sampling from all history,

while maintaining the I-SAW assumption that the grand mean is the average of all past experiences. This

modification captures the intuition that an elder may know that her birthday has been great all her life, but

it is rare for an old lady to tell about what she got on her twelfth birthday, even though her recollection

of last year’s birthday present may be precise.

We estimate the modified model of Bounded memory, Inertia, Sampling and Weighting (BI-SAW) by

grid search. The grid search method seeks the best fit parameter set under a particular chosen criterion

and data. The criterion we utilize is exactly the one used in the prediction competition, the average

of six normalized mean square deviations. This criterion focuses on the model’s prediction ability in

terms of game entry rate, efficiency rate and alternation rate. We estimated the BI-SAW model by using

experimental data of the estimation game set provided by thecompetition organizers. For each parameter

set of interest we perform ten thousand simulations of the estimation game set. This number was chosen

to be large enough to eliminate the effect of randomness inherent in the BI-SAW population model which

1We use the data from the estimation game set.
2In order to observe a large range of lags (x) up to 20, only periods (t) 21 to 50 are included. Also note that our result is

different from the one shown in Erevet al. [1] because they use periods 13 to 50.
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draws a set of parameters for each individual. We follow Erevet al. [1] and model this set of individual

parameters as independent and identical draws from a uniform distribution with lower bounds of zero

(one for discrete parameters), and upper bounds set as population parameters of the model.3 On the

other hand, though also estimated from data, we specified thememory limitation to be constant among

all players for simplicity.

In the prediction competition, the BI-SAW model with a bounded memory limitation of 6 periods

predicts data of the competition game set better than the benchmark I-SAW model, as well as other

models submitted by 13 groups of contestants.4 Due to the random nature of the competition, we

perform three tests concerning the randomness of outcome, game set selection, and parameter estimation

game set. All three results favor the BI-SAW model. In particular, the BI-SAW model significantly

outperforms the benchmark I-SAW model in repeated simulations of the outcome. Also, the BI-SAW

model predicts significantly better than the I-SAW model even when the prediction target is a resample

of the competition game set. Thirdly, the BI-SAW model stillperforms better than the I-SAW model

even after we reverse the role of the estimation and competition game sets. To sum up, the BI-SAW

model is precise and robust in the market entry game.

The remaining of the article is organized as follows: Section 2 describes the BI-SAW model,

Section3 describes the market entry game designed for the predictioncompetition, Section4 presents

our estimation method, Section5 presents the results, and Section6 concludes.

2. The BI-SAW Model

The Bounded Memory, Inertia, Sampling and Weighted (BI-SAW) model is a type of explorative

sampler model that features strong inertia, recency effects, surprise triggers change, and a restriction

on individual’s ability of recalling past payoffs when sampling. To be specific, the BI-SAW model

dictates that in every trial each individual enters one of the 3 response modes (Exploration, Exploitation

or Inertia) based on randomness and her past experience suchas surprise. The probability of choosing a

specific action under each mode is then determined by specificpredetermined rules that are also based

on past experiences and randomness. The idea is that people would enter different mindsets when

facing different payoff histories and the same histories will also determine the action people choose in

each mindset.

2.1. Three Response Modes

Individual i (= 1, . . . , n) enters the exploration mode with probability 1 in the first trial, andǫi (a

trait of i) in all other trials. In this mode, the individual chooses her action according to an exogenous

distributionP0. For instance, if the individual faces a binary choice of 0 or1 andP0 = (p0, 1 − p0),

she would choose 0 with probabilityp0, and choose 1 with probability(1 − p0). Notice thatP0 is

homogeneous across individuals.

3 The uniformly distributed individual parameters and theirimplications can be reviewed in Erevet al. [1].
4 Even if we use a bounded memory limitation of 7 periods, the BI-SAW model still outperforms all other models.
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2.2. Inertia Mode

If the exploration mode was not chosen, individuali enters the inertia mode at trials (t + 1) with

probability πi to the power of Surprise(t), π
Surprise(t)
i , whereπi ∈ [0, 1] is the lowest probability

of entering the inertia mode (when there is maximum surprise), and Surprise(t) ∈ [0, 1] is the

surprise individuali feels after receiving the payoff of trialt. This reflects how individuals stick to

“business-as-usual” unless they encounter a big shock in their life (surprise).

To define this surprise, we shall first define the payoffs gap with respect to GrandMj(t), the average

payoff from choosing actionj (= 1, . . . , k) in all the previous trials. Thepayoff gap, Gap(t), is the

average difference between payoffs received (or forgone) from choosing each action in trialt and (t−1),

and between trialt and the average payoff from choosing that action:

Gap(t) =
1

2k

[

k
∑

j=1

|payoffj(t− 1)− payoffj(t)|+
k

∑

j=1

|GrandMj(t)− payoffj(t)|

]

where payoffj(t) is the payoff one obtained or would have obtained from choosing j at trial t.

Therunning average of the payoff gapis:

MeanGap(t+ 1) =

{

0.00001 if t = 0,

MeanGap(t)(1− 1/r) + Gap(t)(1/r) o/w

wherer is the (expected) numbers of total trials.

Based on Gap(t) and MeanGap(t), we can now define thesurpriseat trial t:

Surprise(t) =
Gap(t)

MeanGap(t) + Gap(t)

Sinceπi ranges from 0 to 1, less surprise will trigger more inertia, and vice versa. Also, notice that

the Surprise(t) is normalized to between 0 and 1, thus the probability of inertia is betweenπi and 1.

2.3. Exploitation Mode

If neither the exploration mode nor the inertia mode were chosen, an individual will enter the

exploitation mode. To be specific, the probability of entering this mode is 0 in the first trial, and in

all other trials is5

(1− ǫi)
(

1− π
Surprise(t−1)
i

)

5Notice that, as we saw in the inertia mode,π
Surprise(t−1)
i

is not defined in the second trial. Therefore, in trial 2,

individual i can only enter either the exploration mode or the exploitation mode.
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Under this mode, individuali first calculates the Estimated Subjective Value (ESV) for each action,

in the trialt (> 1), and chooses the action with the highest ESV:

ESVi(j, t) = (1− wi)(SampleMj(t)) + wi(GrandMj(t))

where “SampleMj(t)” is the average payoff of choosing actionj from a fixed number (µi) of small

sample drawn from the most recent “b” trials. This sampling process is independent and with

replacement. Each draw has probability ofρi choosing the most recent trial (t − 1), otherwise all trials

from (t− 1) to (t− b) are chosen with equal probability.

2.4. Interpreting BI-SAW

We summarize our parameters and their interpretations as follow:

• ǫi is the chance of entering the exploration mode starting fromthe second trial. Since we assume,

under this mode, people all choose their actions according to a fixed distribution independent of

experience, this parameter can be interpreted as people’s tendency to explore different possibilities.

In our setting (the market entry game), since we assume individuals would choose the risky choice

with high probabilities in the exploration mode, this also implies the tendency to take risk.

• P0 is the distribution of actions an individual follows when entering the exploration mode, and is

the same for all individuals.

• πi is the lower bound for the probability of entering the inertia mode starting from the third trial.

Higherπi means a higher possibility for the individual to repeat her last choice, and also a lower

probability for entering the exploitation mode. Whenπi = 1, unless the exploration mode was

chosen, individual will stick to her last choice starting from the third trial.

• wi measures the weight placed on the grand average payoff of allpast experiences, instead of

the small sample average payoff. Higherwi suggests that individuali puts more weight on the

grand average, rather than relying on the small sample average. Whenwi = 1, for example, the

individual will simply choose the action which gives her thehighest grand average payoff.

• ρi measures the tendency to select the most recent trial when sampling. Higherρi suggests that

the payoff from the most recent trial will have a bigger impact on the individual. Whenρi = 1

andwi = 0, individual will consider only the most recent trial when conducting the small-size

sampling in the exploitation mode.

• µi is the number of trials an individual samples when she calculates the small sample average.

Higher µi implies more trials of experiences were considered when making decisions. When

µi = ∞ andρi = 0, the small sample average will converge to the grand averagepayoff.

• b measures individual’s ability of recalling past payoffs interms of the number of trials. Thus,

higherb naturally implies a better working memory, or a better technique for memorizing payoffs.

Since previous literature (Miller [8]) reports a memory capacity of 5 to 6 chunks with a small
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variance among individuals, we assume all individuals havethe sameb, instead of allowing them

to have differentbi.

2.5. From Individual Model to Population Prediction

We have thus defined an individual BI-SAW model where each individual is represented by a

parameter vector(ǫi, P0, πi, wi, ρi, µi, b). To form a population prediction, we draw each individual

parameter from a uniform distribution with a fixed lower bound.6 For the population model, we estimate

the upper bounds for the 5 individual parameters andb. We do not estimateP0, but use the average initial

entry rate in the data instead. We then generate our outcome prediction by simulating 5000 times and

take the average.

3. The Market Entry Game

The market entry game we study in this paper exhibits environmental and strategic uncertainty in

which four players each face a binary choice in each trial: entering a risky market or staying out (a safe

prospect). After making their choices, each player will receive feedback including the payoff they just

earned and the payoff they would have earned had they chosen the alternative.

The payoff of entering the risky market (V (t)) will depend on the number of entering players (E) and

the realization of a binary gambleGt:

V (t) = 10− k ∗ E +Gt

wherek is a fixed positive integer, andGt = H(> 0) orL(< 0).

The probability that H will be realized in a trial is given by:

PH =
−L

H − L

Hence, E(Gt), the expected payoff of this binary gamble equals to zero.7

The payoff of staying out depends onGt and a safety parameters(> 1), which equals toGt/s or

−Gt/s, round to the nearest integer, with equal probability. Therefore, the expected payoff of staying

out equals to zero and its variance is smaller than that of theentering payoff.

Notice that the exact payoff structure described above is unknown to players. What they know is:

their payoff in each trial depends on “their choices, the state of nature and on the choices of the other

participants (such that the more people enter the less is thepayoff from entry).” (Erevet al. [1])

Although parameters are the same in a game,Gt andE may vary from trial to trial in the same game,

serving as environmental and strategic uncertainty in the market respectively.

This market entry game is a stylized representation of a common economic problem: the utility of

undertaking a particular activity depends on the environment, and decreases as the number of participants

increases. For example, when choosing to go to the amusementpark, one’s utility depends on not only the

weather, but also how many visitors there are. Therefore, both environmental and strategic uncertainty

are taken into consideration when making decisions.

6 Except forb andP0, which are the same for all individuals.
7E(Gt) = PH ∗H + (1− PH) ∗ L = [−L/(H − L)] ∗H + [H/(H − L)] ∗ L = 0.
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4. Estimation Methodology

The competition organizers randomly draw 40 sets of game parameters(k,H, L, s) to form the

estimation game set, and conduct experimental sessions that run 50 trials for each game. They then

randomly draw another 40 sets of game parameters from the same class of market entry games to form the

competition game set, and then conduct experiments that also run 50 trials for each game. Experimental

subjects were recycled to participate in several differentgames, but the exact subset of games subjects

participated were not revealed, so we can only treat playersof each game as independent.

The prediction competition uses mean normalized mean square deviation (MNMSD) scores as the

criterion when comparing predictions of different models.This mean normalized MSD score is the

average of mean square deviations (MSD) between experimental data and model prediction in three

aspects: entry rate, efficiency level and alternation rate.Therefore, we need three MSDs to calculate the

MNMSD score: entry MSD, efficiency MSD, and alternation MSD.Moreover, we divide each game’s

data into two blocks, block 1 (trials 1-25) and block 2 (trials 26-50), and calculate the three MSDs

for each block. To obtain the MNMSD score of a certain model’sprediction, we calculate the entry,

efficiency and alternation MSD for block 1 and 2, normalize these six numbers to make them comparable,

and take the average.8

Here, the entry MSD for a certain model (in a given block of a particular game) is the squared

difference of the predicted and actual entry rate (frequency of entry divided by the total number of

decisions in the block). We then derive the overall entry MSDby taking the average of the entry MSD

in every game. The alternation MSD is similarly defined. Thirdly, we calculate the efficiency MSD of

each game by dividing total decision gain by total number of decisions, and average across games.

We do not estimate the probability of entering under exploration mode (p0). Instead, we set it equals

to the average entry rate in all first trials of the estimationgame set.

Table 1. Parameter estimation range.

Parameters Estimation Range Precisions

ǫ [0.1,0.4] 0.01

w [0,1] 0.1

ρ [0,1] 0.1

π [0,1] 0.1

µ [1,5] 1

b [1,25] 1

On the other hand, we estimate the population BI-SAW model through grid search to look for the best

upper bounds:ǫ,w, ρ, π, µ, (for the distribution of individual parameters) andb that minimizes MNMSD

of a given set of games. Based on the best fit of the I-SAW model (Erevet al. [1]), we choose an initial

range listed in Table1. Since MSD varies for the population model (due to sampling of individual

8See Erevet al. [1] for details.
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parameters), we simulate the outcome 10,000 times for each set of parameters, and choose the set that

minimizes the average MNMSD for these 10,000 times.9

5. Empirical Results

We first report the results of our estimation and model fit, andthen discuss the significance of the

bounded memory assumption.

5.1. Basic Estimation and Model Fit

Table 2. Estimated parameters and the normalized MSD scores of the I-SAW and BI-SAW

model.

Model I-SAW BI-SAW I-SAW BI-SAW

Estimated with Estimation game set Competition game set

Entry Rate normalized MSD (block 1) 1.5443 1.2763 1.1627 1.1510

Entry Rate normalized MSD (block 2) 1.1495 1.1500 0.8621 0.8357

Efficiency normalized MSD (block 1) 1.3106 1.0746 0.7105 0.7352

Efficiency normalized MSD (block 2) 1.4899 1.3454 0.8218 0.8818

Alternation normalized MSD (block 1) 1.4192 1.3802 0.7130 0.7118

Alternation normalized MSD (block 2) 1.2913 1.2456 0.7437 0.8382

In-sample MNMSD 1.3674 1.2454 0.8356 0.8589

Prediction on Competition game set Estimation game set

Entry Rate normalized MSD (block 1) 1.7353 1.4009 1.6043 1.6133

Entry Rate normalized MSD (block 2) 1.6431 1.3385 1.6608 1.6811

Efficiency normalized MSD (block 1) 0.8878 0.7650 1.0480 1.0334

Efficiency normalized MSD (block 2) 1.1714 1.0078 2.1256 2.1659

Alternation normalized MSD (block 1) 0.7507 0.6808 1.8640 1.7951

Alternation normalized MSD (block 2) 0.8571 0.8979 1.4367 1.3666

Out-of-sample MNMSD 1.1742 1.0151 1.6232 1.6092

Estimated Parameters

ǫ 0.24 0.25 0.20 0.20

w 0.8 0.8 0.6 0.6

ρ 0.2 0.8 1.0 1.0

π 0.6 0.6 0.6 0.6

µ 3 3 2 2

b - 6 - 8

9 Reduce this sampling error is important as the MNMSD of competing models differ only by±0.05 (Figure2).
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To obtain the 6 normalized MSD scores, we use the parameters estimated using the estimation game

set, and simulate the experimental results of the competition game set for 5000 times. We then take the

average of the 5000 simulation results, and normalize them.

Table2 reports the 6 normalized MSD scores of the BI-SAW model (entry MSD, efficiency MSD, and

alternation MSD for each of the two blocks), and compares them with those of the I-SAW model (the best

baseline model reported in Erevet al. [1]) when both models are estimated using the estimation game

set. The BI-SAW model’s 6 normalized MSD scores are all smaller than those of the I-SAW model,

for the estimation game set, especially for the entry MSD andthe efficiency MSD of block 1. The

MNMSD score of the BI-SAW model is 1.2454 and the MNMSD score of the I-SAW model is 1.3674.

Hence, the BI-SAW model has a better in-sample fit than the best baseline model in the literature (the

I-SAW model).

Moreover, the BI-SAW model outperforms the I-SAW model in predicting out-of-sample data (the

competition game set). Table2 also reports the 6 normalized MSD scores of the BI-SAW and I-SAW

model for the competition game set. We can see that the BI-SAWmodel’s normalized MSD scores are

always smaller than the I-SAW model’s normalized MSD scoresexcept for the alternation MSD of block

2 (0.8979 vs. 0.8571). The MNMSD score of the BI-SAW model is 1.0151, and the MNMSD score of

the I-SAW model is 1.1742. This result provides strong evidence that the BI-SAW model predicts new

experimental results better than the I-SAW model.

5.2. The Significance of the Bounded Memory Assumption

Figure 2. The distribution of MNMSD scores for the I-SAW and BI-SAW model.
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Since MNMSD is an abstract number, we use the following threeways to test the significance of

the bounded memory assumption, which is the only differencebetween the BI-SAW and I-SAW model:

outcome simulation on the competition game set, predictionon resampled game sets, and reversing the

role of the estimation and competition game sets.
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Figure 3. Resampling game set MNMSD scores for the I-SAW and BI-SAW model.
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5.3. Outcome Simulation on the Competition Game Set

There is randomness in the 6 normalized MSD scores due to outcome simulation, so we have to make

sure the BI-SAW model performs better not only because of this randomness. For this purpose, we

repeat the simulation procedure described in Section5.1for 100 times. Figure2 shows the distributions

of MNMSD scores for both models. It is clear that the MNMSD scores of the BI-SAW model are always

smaller than those of the I-SAW model. Results of the Wilcoxon signed-rank test and the paired t-test

are both significant with p-value = 0.000.10

5.4. Prediction on Resampled Game Sets

To test whether the BI-SAW model’s prediction power is robust to different game sets, we draw 40

games with replacement from the competition game set to forma new game set, and see if our estimated

BI-SAW model still predicts well in the new game set. This resampling procedure is justified by the fact

that the parameters of each game in both the estimation and competition game sets were also randomly

drawn by the organizers of the competition. We repeat the resampling process for 100 times and use both

the I-SAW and BI-SAW model to simulate results of these 100 resampled game sets. Figure3 shows the

MNMSD scores of the 100 resampled game sets of both models. The MNMSD scores of the BI-SAW

model are never larger than those of the I-SAW model in all resampled game sets. Consequently, the

results of the Wilcoxon signed-rank test and paired t-test are both significant with p-value = 0.000.

5.5. Reversing the Role of Estimation and Competition Game Sets

Finally, to test whether our estimated BI-SAW model predicts well only in the estimation game set,

we reverse the roles of the estimation and competition game sets. That is, we estimate the parameters

10If b is allowed to have individual differences, and drawn from a normal distribution with mean 6 and s.d. 2.5 (truncated

below 0), the MNMSD scores could be reduced to 0.9832. (We estimate the s.d. by using the estimation game set.) Moreover,

a similar horse race reveals that this modified version outperforms the original BI-SAW model. Results of the Wilcoxon

signed-rank test and the paired t-test are both significant with p-value = 0.000.
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using the original competition game set, and use it to predict the results of the original estimation game

set. In other words, the original competition game set is nowviewed as in-sample data, and the original

estimation game set is now viewed as out-of-sample data. Table 2 reports the 6 new normalized MSD

scores of the I-SAW and BI-SAW model. Note that the parameters are now estimated from the (original)

competition game set. The estimated parameters of the I-SAWand BI-SAW model differ largely from

the original ones. The MNMSD score of the I-SAW model is even smaller than that of the BI-SAW

model for the original competition game set (now in-sample data). Notwithstanding, the BI-SAW model

still outperforms the I-SAW model out of sample. In particular, the MNMSD score of the BI-SAW

model, 1.6092, is still smaller than the MNMSD score of the I-SAW model, which is 1.6232.

6. Conclusions

In this paper, we propose the “Bounded Memory, Inertia, Sampling and Weighted (BI-SAW)” model

in which the subjects’ ability of recalling past experienceis assumed to be limited. This assumption is

crucial when modeling how people make decisions based on their past experience. We test if it improves

models’ prediction power in a market entry game setting withstrategic and environmental uncertainty,

in which each player receives feedback regarding earned andforgone payoffs after each decision.

To evaluate the significance of the bounded memory assumption, we verify that the prediction power

of the BI-SAW model is consistently stronger than the benchmark I-SAW model by comparing model

performance using the mean normalized mean square deviation (MNMSD) criterion in the following

three settings. First of all, we repeatedly simulate the outcome of the two models for the competition

game set for 100 times to see if the difference between MNMSD scores is significant. Secondly,

we use 100 resampled game sets (by repeatedly drawing 40 new games from the competition game

set) to check whether the prediction power of BI-SAW model isindependent of game sets. Thirdly,

we reverse the role of the estimation game set and the competition game set, and perform the same

estimation-and-prediction exercise. In all three cases, the BI-SAW model outperforms the I-SAW model,

by having lower out-of-sample MNMSD scores. These results confirm the robustness of the BI-SAW

model performance. Thus, by incorporating the bounded memory assumption, the BI-SAW model

integrates realistic limitations of the human brain into economic modeling, and commands a better ability

in predicting subjects’ choices.

There are still several open questions to be resolved in future work. The most obvious one is to

generalize the BI-SAW model to cope with different information settings. For instance, it would be

interesting to see if the BI-SAW model also outperform the I-SAW model in games in which forgone

payoffs are unknown (such as those reported in Erevet al. [6]).

Another area that deserves further investigation is exploring other possible specifications and

extensions of the bounded memory assumption. In particular, we assume that all subjects recall payoffs

of the lastb trials. One could use other criteria to determine which memory are recalled, such as

frequency of encountering the same situation,etc. Adding such extension should create a better way

to predict how people play games in experimental setting, and eventually how they make decisions in

daily life.
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