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Abstract: The asymptotical properties of a special dynamic two-person game are examined under best-
response dynamics in both discrete and continuos time scales. The direction of strategy changes by the
players depend on the best responses to the strategies of the competitors and on their own strategies.
Conditions are given first for the local asymptotical stability of the equilibrium if instantaneous data
are available to the players concerning all current strategies. Next, it is assumed that only delayed
information is available about one or more strategies. In the discrete case, the presence of delays has
an effect on only the order of the governing difference equations. Under continuous scales, several
possibilities are considered: each player has a delay in the strategy of its competitor; player 1 has
identical delays in both strategies; the players have identical delays in their own strategies; player 1
has different delays in both strategies; and the players have different delays in their own strategies. In
all cases, it is assumed that the equilibrium is asymptotically stable without delays, and we examine
how delays can make the equilibrium unstable. For small delays, the stability is preserved. In the
cases of one-delay models, the critical value of the delay is determined when stability changes to
instability. In the cases of two and three delays, the stability-switching curves are determined in the
two-dimensional space of the delays, where stability becomes lost if the delay pair crosses this curve.
The methodology is different for the one-, two-, and three-delay cases outlined in this paper.

Keywords: delay two-person game; stability switching; single and multiple delays; delay differential
equation; best reply dynamics

1. Introduction

Game theory is one of the most frequently studied fields in mathematical economics.
Its foundation and main concepts are discussed in many textbooks and monographs, for
example, Dresher (1961), Szép and Forgó (1985), Vorob’ev (1994), and Matsumoto and
Szidarovszky (2016) [1–4]. These include both two-person and general n-person games. In
the earliest decades, the existence and uniqueness of the Nash equilibrium were the central
research issues (von Neumann and Morgenstern, 1944; Nash, 1951; Fudenberg and Tirole,
1991; Rosen, 1965) [5–8], and then the dynamic extensions of these static games received
increasing attention (Okuguchi, 1976; Hahn, 1962) [9,10]. Models have been developed
and examined in both discrete and continuous time scales. In most studies, the dynamic
processes are driven by either gradient adjustments or best-response dynamics. In the first
case, only interior equilibria are the steady states of the resulting dynamic systems. In the
second case, this difficulty is avoided; however, the construction of the dynamic processes
requires knowledge of the best responses of the players (Bischi et al., 2010) [11]. In both
cases, the asymptotical stability of the equilibrium in examined by applying the Lyapunov
theory (Cheban, 2013, Saeed, 2017) [12,13] or local linearization (Bischi et al., 2010) [11].
In the discrete case, the theory of noninvertable maps and critical sets is a commonly
used approach for nonlinear discrete systems (Gumowski and Mira, 1980; Mira et al.,
1996) [14,15], while for continuous systems Bellman (1969), LaSalle (1968), and Sánchez
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(1968) [16–18] can be suggested as the main references. After developments in the stability
theory of differential equations, time delays were added to dynamic models, in which it
is usually assumed that the players make decisions based on delayed information about
their own and others’ actions. This additional assumption makes the models more realistic,
since data collection, determining the best decision alternatives, and their implementation
need time (Bellman and Cooke, 1963) [19]. Delay systems have many applications in
population dynamics (Kuang, 1993; Cushing, 1977) [20,21]; economics (Gori et al., 2014;
Ösbay et al., 2017) [22,23]; and engineering (Berezowski, 2001; Wang et al., 1999) [24,25],
among other disciplines.

A two-person continuous game is considered, in which the strategy sets S1 and S2 are
compact intervals and the payoff functions ϕk(x1, x2) (k = 1, 2) are continuous and strictly
concave in xk, which is the strategy of player k. Under these conditions, ϕk(x1, x2) has a
unique maximizer Rk(x`) for all x` ∈ S` (` 6= k). This function is called the best response
of player k. At each time period, the players select strategies to move closer to their best
responses. In the discrete case, this concept is realized by the difference equation system

x1(t + 1) = x1(t) + α1[R1(x2(t))− x1(t)], (1)

x2(t + 1) = x2(t) + α2[R2(x1(t))− x2(t)], (2)

where α1 and α2 are positive adjustment coefficients. In order to avoid overshooting, it is
assumed that both are less than unity. In the continuous case, the following differential
equation system describes the dynamic evolution of the strategies:

ẋ1(t) = α1[R1(x2(t))− x1(t)], (3)

ẋ2(t) = α2[R2(x1(t))− x2(t)], (4)

where α1, α2 > 0.
We provide one example here. Consider a duopoly, when two firms produce the same

product and sell their outputs in the same market. Let x1 and x2 denote the production
levels of the firms. The production costs are

C1(x1) = a1x1 + b1 and C2(x2) = a2x2 + b2,

and the selling unit price is

p(x1 + x2) = A− B(x1 + x2).

The profit of firm i (i = 1, 2) is given as the difference between its revenue and cost:

ϕi(x1, x2) = xi
(

A− Bxi − Bxj
)
− (aixi + bi) (i 6= j).

It is a natural assumption that firm i does not have instantaneous information on the
output level of the competitor, so at time t, it believes that the output of the competitor is
xj(t− τj). The marginal profit of the firm is clearly

∂ϕi(x1, x2)

∂x1
= A− 2Bxi − Bxj − ai.

Hence, at time t, the best believed response of firm i is

Ri(xj(t− τj)) =


A− ai − Bxj(t− τj)

2B
if numerator is positive,

0 otherwise.
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The best response dynamics have the following forms:

xi(t + 1) = xi(t) + αi
[
Ri(xj(t− τj))− xi(t)

]
for i = 1, 2

in the discrete-time case, and

ẋi(t) = αi
[
Ri(xj(t− τj))− xi(t)

]
for i = 1, 2

in the continuous-time case, leading to a delay difference and differential equations.
In this paper, a special two-person game is examined with best-response dynamics in

discrete and continuous time scales. The main question we try to answer is the following:
How does the presence of time delays affect the asymptotical properties of a dynamics
extension of a special stable two-person game? In the case of one delay, the stability interval
or intervals are determined when the stability of the equilibrium is still preserved. In the
case of multiple delays, the stability regions in the delay space are determined, where the
equilibrium is still stable. This paper introduces a mathematical methodology to find the
stability intervals and regions.

The paper is developed as follows. Section 2 considers discrete time scales and is
divided into two parts: models with and without time delays. The structure of Section 3 is
similar, with two subsections. Section 4 introduces and examines alternative models, and
Section 5 offers concluding remarks and further research areas.

2. Discrete Systems
2.1. Stability without Time Delays

Assuming the differentiability of the best-response functions, we can linearize Equations (1)
and (2) about an equilibrium that is also a steady state of the system. Let x∗1 and x∗2 denote the
equilibrium strategies and let

x̄1(t) = x1(t)− x∗1 and x̄2(t) = x2(t)− x∗2

be the discrepancies of the strategies from their equilibrium levels. Linearizing Equations (1)
and (2) around (x∗1 , x∗2) gives the following:

x̄1(t + 1) = (1− α1)x̄1(t) + α1R′1(x∗2)x̄2(t) (5)

and
x̄2(t + 1) = (1− α2)x̄2(t) + α2R′2(x∗1)x̄1(t). (6)

This is a linear system. The asymptotic behavior of the state trajectories depends on the
locations of the eigenvalues of the system. For finding the eigenvalues, we consider expo-
nential solutions x̄1(t) = λtu and x̄2(t) = λtv. Substituting them into Equations (5) and (6),
we see that

λt+1u = (1− α1)λ
tu + α1R′1(x∗2)λ

tv,

λt+1v = (1− α2)λ
tv + α2R′2(x∗1)λ

tu.

After simplifying both equations by λt, a linear algebraic system is obtained for u and
v, and nonzero solutions exist if and only if the determinant of the system is zero:

0 = det

(
1− α1 − λ α1R′1(x∗2)

α2R′2(x∗1) 1− α2 − λ

)
= λ2 − λ(2− α1 − α2) + (1− α1)(1− α2)− α1α2R′1(x∗2)R′2(x∗1).

(7)

This is a quadratic polynomial λ2 + a1λ + a2 with

a1 = −(2− α1 − α2) and a2 = (1− α1)(1− α2)− α1α2R′1(x∗2)R′2(x∗1).
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It is well known (see, for example, Appendix F of Bischi et al., 2010) [11] that its roots
are inside the unit circle if and only if

1 + a1 + a2 > 0,
1− a1 + a2 < 0,

a2 < 1.

In our case, these conditions can be written as

R′1(x∗2)R′2(x∗1) < 1,

R′1(x∗2)R′2(x∗1) < 1 +
4− 2α1 − 2α2

α1α2
,

R′1(x∗2)R′2(x∗1) > 1− α1 + α2

α1α2
.

Since α1 and α2 are below unity, the first inequality is stronger than the second one, so
we have the following:

Proposition 1. The equilibrium is locally asymptotically stable if and only if

1− α1 + α2

α1α2
< R′1(x∗2)R′2(x∗1) < 1. (8)

Notice that
α1 + α2

α1α2
=

1
α2

+
1
α1

> 2,

so the left-hand side of condition (8) is negative and below −1.

2.2. Stability with Delays

It is now assumed that the players have access only to delayed information about the
strategies of the others. We can select the time unit as the length of the common delay.
Thus, in Equation (1), x2(t) is replaced by x2(t− 1), and in (2), x1(t) is replaced by x1(t− 1).
Assuming again exponential solutions x̄1(t) = λtu and x̄2(t) = λtv, we have

λt+1u = (1− α1)λ
tu + α1R′1(x∗2)λ

t−1v,

λt+1v = (1− α2)λ
tv + α2R′2(x∗1)λ

t−1u.

After simplifying by λt−1, the resulting algebraic system has the form

λ2u = (1− α1)λu + α1R′1(x∗2)v,

λ2v = (1− α2)λv + α2R′2(x∗1)u.

A nonzero solution of u and v exists if and only if

0 = det

(
(1− α1)λ− λ2 α1R′1(x∗2)

α2R′2(x∗1) (1− α2)λ− λ2

)
= λ4 − λ3(2− α1 − α2) + (1− α1)(1− α2)λ

2 − α1α2R′1(x∗2)R′2(x∗1).

This is a quartic equation λ4 + a1λ3 + a2λ2 + a3λ + a4 with

a1 = −(2− α1 − α2), a2 = (1− α1)(1− α2), a3 = 0 and a4 = −α1α2R′1(x∗2)R′2(x∗1).
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Farebrother (1973) [26] showed that the sufficient and necessary conditions to only
have roots inside the unit circle are as follows:

a4 < 1,
3 + 3a4 > a2,

1 + a1 + a2 + a3 + a4 > 0,
1− a1 + a2 − a3 + a4 > 0,

(1− a4)(1− a2
4)− a2(1− a4)

2 + (a1 − a3)(a3 − a1a4) > 0.

Notice that the first four inequalities are linear in a4 as well as in R′1(x∗2)R′2(x∗1);
however, the last inequality is cubic in a4, so it is difficult to find simple stability conditions.
Nevertheless, the first four inequalities give necessary stability conditions. They can be
written as

R′1(x∗2)R′2(x∗1)



> − 1
α1α2

,

<
α1 + α2 − α1α2 + 2

3α1α2
,

< 1,

< 1 +
4− 2α1 − 2α2

α1α2
.

Notice that
− 1

α1α2
< −1

α1 + α2 − α1α2 + 2
3α1α2

=
1
3

(
1
α2

+
1
α1

)
− 1

3
+

2
3

1
α1α2

> 1

and
1 +

4− 2α1 − 2α2

α1α2
> 1.

Hence, the necessary conditions are

− 1
α1α2

< R′1(x∗2)R′2(x∗1) < 1. (9)

In this case,
−α1α2 < a4 < 1.

Let F(a4) denote the left-hand side of last stability condition. Notice that

F(1) = −a2
1 < 0 and F(0) = 1− a2 > 0,

so its sign is indeterminate in general.
We will now examine the addition condition F(a4) > 0 in interval (−α1α2, 1). Clearly,

F(a4) = (1− a4)(1− a2
4)− a2(1− a4)

2 − a2
1a4

= a3
4 + a2

4(−1− a2) + a4(−1 + 2a2 − a2
1) + 1− a2.

Notice first that
−1− a2 ≤ −1, 1− a2 ≥ 0

and
−1 + 2a2 − a2

1 = −(α1 − 1)2 − (α2 − 1)2 − 1 ≤ −1.

Since
F′(a4) = 3a2

4 + 2a4(−1− a2) + (−1 + 2a2 − a2
1),
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the stationary points of F(a4) are

a±4 =
1
6

[
2(1 + a2)±

√
D
]
,

where
D = 4(1 + a2)

2 + 12(1− 2a2 + a2
1) ≥ 4(1 + a2)

2 + 12 ≥ 16,

implying that a+4 > 0 and a−4 < 0. Clearly,

a+4 >
1
6
[2 + 4] = 1,

being outside the range of the necessary condition. Additionally,

F′(a4) > 0 for a4 < a−4 and a4 > a+4 ,

and
F′(a4) < 0 for a−4 < a4 < a+4 .

Notice that
F(0) = 1− a2 ≥ 0 and F(1) = −a2

1 ≤ 0,

and so F(a4) has three real roots: one before a−4 , one between 0 and 1, and one after 1.
Consequently, if a∗4 denotes the negative root and a∗∗4 the positive root between 0 and 1,
then F(a4) > 0 if

a∗4 < a4 < a∗∗4

or

−
a∗∗4

α1α2
< R′1(x∗2)R′2(x∗1) < min

{
1,−

a∗4
α1α2

}
. (10)

Proposition 2. A necessary condition for the local asymptotical stability of the equilibrium in the
delayed model is condition (9). A sufficient and necessary condition is the simultaneous satisfaction
of (9) and (10).

3. Continuous Systems
3.1. Stability without Time Delays

We will now examine the stability of systems (3) and (4). Similarly to the discrete case,
we linearize the system around the equilibrium (x∗1 , x∗2) to have the following:

ẋ1(t) = −α1x1(t) + α1R′1(x∗2)x2(t), (11)

ẋ2(t) = α1R′2(x∗1)x1(t)− α2x2(t), (12)

where overbar is avoided for simple notation. In order to find the eigenvalues, we look for
the solutions in exponential forms as before:

x1(t) = eλtu and x2(t) = eλtv.

The substitution of these solutions into Equations (11) and (12) gives

λeλtu = −α1eλtu + α1R′1(x∗2)e
λtv,

λeλtv = α2R′2(x∗1)e
λtu− α2eλtv.

After simplifying both equations by eλt, the resulting algebraic system for u and v has
nonzero solutions if and only if
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0 = det

(
−α1 − λ α1R′1(x∗2)

α2R′2(x∗1) −α2 − λ

)
= λ2 + λ(α1 + α2) + α1α2 − α1α2R′1(x∗2)R′2(x∗1).

This is a quadratic polynomial, λ2 + a1λ + a2, with

a1 = α1 + α2 and a2 = α1α2
(
1− R′1(x∗2)R′2(x∗1)

)
.

It is well known (Bischi et al., 2010) [11] that the real parts of the roots of this quadratic
equation are negative if and only if both a1 and a2 are positive, which implies the following:

Proposition 3. The equilibrium with dynamics (3) and (4) is locally asymptotically stable if

R′1(x∗2)R′2(x∗1) < 1 (13)

and unstable if R′1(x∗2)R′2(x∗1) > 1.

In comparing conditions (8), (9), (10), and (13), it is clear that the stability of the equi-
librium with the continuous model is implied by its stability for the discrete cases with and
without delays. In comparing the two discrete cases, notice that the sufficient and neces-
sary stability condition of the no-delay case implies the necessary conditions for the delay
case since

− 1
α1α2

< 1− α1 + α2

α1α2

or
(1− α2)(α1 − 1) < 0.

3.2. Stability with Delays

Assume again that both players face delays, τ1 and τ2, in the information about the
strategies of the others. Therefore, in Equation (3), x2(t) is replaced by x2(t− τ1), and in
(4), x1(t) is replaced by x1(t− τ2). The linearized equations can therefore be written as
follows:

ẋ1(t) = −α1x1(t) + α1R′1(x∗2)x2(t− τ2), (14)

ẋ2(t) = α1R′2(x∗1)x1(t− τ1)− α2x2(t). (15)

The eigenvalues clearly depend on the lengths of the delays. Searching for exponential
solutions

x1(t) = eλtu and x2(t) = eλtv

and substituting them into these equations, we obtain

λeλtu = −α1eλtu + α1R′1(x∗2)e
λ(t−τ2)v,

λeλtv = α2R′2(x∗1)e
λ(t−τ1)u− α2eλtv.

After simplifying by eλt, the resulting algebraic equations for u and v have nonzero
solutions if and only if

0 = det

(
−α1 − λ α1R′1(x∗2)e

−λτ2

α2R′2(x∗1)e
−λτ1 −α2 − λ

)

= λ2 + λ(α1 + α2) + α1α2

(
1− R′1(x∗2)R′2(x∗1)e

−λ(τ1+τ2)
)

.

(16)

Notice first that the characteristic equation does not depend on the individual values
of τ1 and τ2—it depends on only τ = τ1 + τ2. We know that at τ1 = τ2 = 0 (no-delay case),
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the equilibrium is locally asymptotically stable if (13) holds. By increasing the value of
τ from zero, the stability might be lost. In this case, an eigenvalue has a zero real part,
λ = iω. Since the complex conjugate of an eigenvalue is also an eigenvalue, we can assume
that ω > 0. Substituting this eigenvalue into the characteristic Equation (16), we have
the following:

−ω2 + iω(α1 + α2) + α1α2
(
1− R′1(x∗2)R′2(x∗1)(cos ωτ − i sin ωτ)

)
= 0.

The separation of the real and imaginary parts shows that

α1α2R′1(x∗2)R′2(x∗1) cos ωτ = −ω2 + α1α2, (17)

α1α2R′1(x∗2)R′2(x∗1) sin ωτ = −ω(α1 + α2). (18)

By adding the squares of these equations, we have

ω4 + ω2
(

α1
2 + α2

2

)
+ α2

1α2
2

[
1−

(
R′1(x∗2)R′2(x∗1)

)2
]
= 0. (19)

If
∣∣R′1(x∗2)R′2(x∗1)

∣∣ ≤ 1, then no stability switch occurs. If −1 ≤ R′1(x∗2)R′2(x∗1) < 1,
then the equilibrium remains locally asymptotically stable for all τ > 0. If R′1(x∗2)R′2(x∗1) =
1, then the characteristic equation of the no-delay case has a negative and a zero eigenvalue.
Thus, no conclusion can be drawn about stability, and the same is the case for all τ > 0.

Assume next that R′1(x∗2)R′2(x∗1) > 1. In this case, Equation (19) has two real roots
for ω2,

ω2
± =

−(α2
1 + α2

2)±
√

D
2

,

where
D = (α2

1 + α2
2)

2 − 4α2
1α2

2

[
1−

(
R′1(x∗2)R′2(x∗1)

)2
]
> (α2

1 + α2
2)

2,

implying that ω2
+ > 0 and ω2

− < 0. Thus, we have a unique solution ω+. From (17) and
(18), we see that sin ωτ < 0 and

cos ωτ


> 0 if ω2

+ < α1α2,

= 0 if ω2
+ = α1α2,

< 0 if ω2
+ > α1α2.

Therefore, we have the critical values of the delay:

τn =
1

ω+

[
2nπ − cos−1

(
−ω2

+ + α1α2

α1α2R′1(x∗2)R′2(x∗1)

)]
for n = 1, 2, . . . (20)

The direction of the stability switches can be determined by Hopf bifurcation. For this
purpose, we select τ as the bifurcation parameter and consider the eigenvalues as functions
of τ: λ = λ(τ). Implicitly differentiating the characteristic Equation (16) with respect to τ,
we have

2λλ′ + λ′(α1 + α2)− α1α2R′1(x∗2)R′2(x∗1)e
−λτ(−λ− λ′τ) = 0,

implying that

λ′
[
2λ + α1 + α2 + α1α2τR′1(x∗2)R′2(x∗1)e

−λτ
]
+ α1α2R′1(x∗2)R′2(x∗1)λe−λτ = 0.

From Equation (16), we know that

α1α2R′1(x∗2)R′2(x∗1)e
−λτ = λ2 + λ(α1 + α2) + α1α2,
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implying that
1
λ′

= − 2λ + α1 + α2

λ[λ2 + λ(α1 + α2) + α1α2]
− τ

λ
.

Notice that the real parts of λ′ and 1/λ′ have the same sign and at τ = iω, the last
term is a pure imaginary number with a zero real part. At λ = iω, the first term equals

− 2iω + α1 + α2

iω[−ω2 + iω(α1 + α2) + α1α2]
= − 2iω + α1 + α2

−ω2(α1 + α2) + iω(−ω2 + α1α2)
.

The real part of this expression has the same sign as

ω2(α1 + α2)
2 − 2ω2(−ω2 + α1α2) = ω2

(
α1

2 + α2
2 + 2ω2

)
> 0,

implying that at any critical value, at least one eigenvalue changes the sign of its real
part from negative to positive. Consequently, stability cannot be regained with delayed
information.

Assume next that R′1(x∗2)R′2(x∗1) < −1. The equilibrium is locally asymptotically stable
without delays. From Equations (17) and (18), we see that sin ωτ > 0 and

cos ωτ


> 0 if ω2

+ > α1α2,

= 0 if ω2
+ = α1α2,

< 0 if ω2
+ < α1α2.

Hence, the critical values are

τ̄n =
1

ω+

[
cos−1

(
−ω2

+ + α1α2

α1α2R′1(x∗2)R′2(x∗1)

)
+ 2nπ

]
for n = 0, 1, 2, . . . , (21)

and at the smallest critical value τ̄0, stability is lost.
In summary, we have the following results:

Proposition 4. (a) If R′1(x∗2)R′2(x∗1) < −1, then the equilibrium is locally asymptotically stable
for τ < τ̄0. At τ = τ̄0, the stability is lost via Hopf bifurcation. (b) If −1 ≤ R′1(x∗2)R′2(x∗1) < 1,
then the equilibrium is locally asymptotically stable for all τ ≥ 0. (c) If R′1(x∗2)R′2(x∗1) > 1, then
the equilibrium is unstable for all τ ≥ 0. (d) If R′1(x∗2)R′2(x∗1) = 1, then no stability result can be
determined for τ ≥ 0.

4. Alternative Models
4.1. One-Delay Models

Consider first the case where the first player faces delays in its own and the other
player’s strategy. In this case, Equations (3) and (4) are modified as follows:

ẋ1(t) = α1[R1(x2(t− τ))− x1(t− τ)], (22)

ẋ2(t) = α2[R2(x1(t))− x2(t)]. (23)

Linearization around the equilibrium gives

ẋ1(t) = −α1x1(t− τ) + α1R′1(x∗2)x2(t− τ), (24)

ẋ2(t) = α2R′2(x∗1)x1(t)− α2x2(t). (25)

Assuming again exponential solutions,

x1(t) = e−λtu and x2(t) = e−λtv,
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and substituting them into the linearized equations, we have

λeλtu = −α1eλ(t−τ)u + α1R′1(x∗2)e
λ(t−τ)v,

λeλtv = α2R′2(x∗1)e
λtu− α2eλtv.

After simplifying with eλt, the resulting algebraic equations have nonzero solutions if
and only if

0 = det

(
−α1e−λτ − λ α1R′1(x∗2)e

−λτ

α2R′2(x∗1) −α2 − λ

)
= λ2 + λα2 + e−λτ

[
α1α2 + α1λ− α1α2R′1(x∗2)R′2(x∗1)

]
.

(26)

We showed earlier that the equilibrium is locally asymptotically stable if R′1(x∗2)R′2(x∗1) <
1 and unstable if R′1(x∗2)R′2(x∗1) > 1. By increasing the value of τ from zero, stability might
be lost or regained when λ = iω. Substituting this eigenvalue into Equation (26), we have

−ω2 + iωα2 + (cos ωτ − i sin ωτ)
(
iωα1 + α1α2

(
1− R′1(x∗2)R′2(x∗1)

))
= 0.

The separation of the real and imaginary parts shows that

α1α2
(
1− R′1(x∗2)R′2(x∗1)

)
cos ωτ + ωα1 sin ωτ = ω2,

−α1α2
(
1− R′1(x∗2)R′2(x∗1)

)
sin ωτ + ωα1 cos ωτ = −ωα2.

Adding up the squares of these equations, we have[
α1α2

(
1− R′1(x∗2)R′2(x∗1)

)]2
+ ω2α2

1 = ω4 + ω2α2
2. (27)

There is a positive solution for ω2,

ω2
+ =

α2
1 − α2

2 +
√

D
2

,

with
D =

(
α1

2 − α2
2

)2
+ 4
[
α1α2

(
1− R′1(x∗2)R′2(x∗1)

)]2 ≥ (α1
2 − α2

2

)2
.

For the sake of notational convenience, let

A = α1α2
(
1− R′1(x∗2)R′2(x∗1)

)
and B = ωα2

in order to give
A cos ωτ + B sin ωτ = ω2, (28)

−A sin ωτ + B cos ωτ = −ωα2, (29)

implying that

cos ωτ =
ω2 − B sin ωτ

A
.

Thus,

−A sin ωτ +
Bω2 − B2 sin ωτ

A
= −ωα2

or

sin ωτ =
ω(Bω + Aα2)

A2 + B2 , (30)

and

cos ωτ =
ω(Aω− Bα2)

A2 + B2 . (31)
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If A > 0, then sinωτ > 0 and

cos ωτ



> 0 if ω >
Bα2

A
,

= 0 if ω =
Bα2

A
,

< 0 if ω <
Bα2

A
,

and the critical values are

n′n =
1

ω+

(
cos−1 ω+(Aω+ − Bα2)

A2 + B2 + 2nπ

)
for n = 0, 1, 2, . . . (32)

If A = 0, then nothing can be concluded about stability in the no-delay case. From (27),
the nonzero solution is

ω2 = α2
1 − α2

2.

Thus, if α1 ≤ α2, then no stability switch occurs, and if α1 > α2, then

ω+ =
√

α2
1 − α2

2.

From (30) and (31), we know that sin ωτ > 0 and cos ωτ < 0, implying that the critical
values are also given by (32).

If A < 0, then the equilibrium is unstable without delays. In this case, cos ωτ < 0 and

sin ωτ



> 0 if ω > −Aα2

B
,

= 0 if ω = −Aα2

B
,

< 0 if ω < −Aα2

B
.

The critical values are as follows:

τ∗n =


1

ω+

(
cos−1 ω+(Aω+ − Bα2)

A2 + B2 + 2nπ

)
if sin ωτ > 0 for n = 0, 1, 2, . . .

1
ω+

(
− cos−1 ω+(Aω+ − Bα2)

A2 + B2 + 2nπ

)
if sin ωτ > 0 for n = 1, 2, . . .

(33)

The directions of the stability switches are determined by Hopf bifurcation. Assuming
that λ = λ(τ), we differentiate implicitly Equation (26) with respect to τ to obtain

2λ′λ + λ′α2 + e−λτα1 + (α1λ + A)e−λτ(−λ′τ − λ) = 0,

implying that

λ′
[
2λ + α2 − (α1λ + A)e−λττ

]
+ e−λτ

(
α1 − α1λ2 − Aλ

)
= 0.

From (26), we know that

e−λτ = −λ2 + λα2

λα1 + A
,

implying that

λ′
[
2λ + α2 +

(
λ2 + λα2

)
τ
]
=

λ2 + λα2

λα1 + A
[α1 − λ(α1λ + A)],
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from which we have

1
λ′

=
(λα1 + A)

[
2λ + α2 +

(
λ2 + λα2

)
τ
]

λ(λ + α2)[α1 − λ(α1λ + A)]
.

At λ = iω, this expression becomes

(iωα1 + A)
[
2iω + α2 +

(
−ω2 + iωα2

)
τ
]

iω(iω + α2)[α1 − iω(iωα1 + A)]
.

We first simplify the numerator,

N =
[

Aα2 − Aω2τ − α1ω(2ω + ωα2τ)
]

+i
[
α1α2ω− α1ω3τ + 2Aω + ωα2τA

]
.

The denominator is the following:

D =
(
−α1ω2 − α1ω4 + α2 Aω2

)
+i
(

Aω3 + α1α2ω + α1α2ω3
)

.

After multiplying both N and D by the complex conjugate of D, the denominator
becomes positive, and the real part of the numerator becomes(

Aα2 − Aω2τ − 2α1ω2 − α1α2ω2τ
)(
−α1ω2 − α1ω4 + a2 Aω2

)
(34)

+
(

α1α2ω− α1ω3τ + 2Aω + ωα2τA
)(

Aω3 + α1α2ω + α1α2ω3
)

.

It can be shown that (34) can be simplified as

ω6
(

2α2
1

)
+ ω4

(
Aα1τ + 2α2

1 + α2
1α2

2 + 2A2
)
+ ω2

(
Aα1α2 + A2α2

2 + α2
1α2

2 + Aα1α2
2τ
)

,

which is positve if A > 0. Thus, if the equilibrium is stable with A > 0 in the no-delay case,
then stability is lost at τ∗0 , and stability cannot be regained with larger values of delay.

Another model is obtained if we assume that both players have delays in their own
strategies. Then, Equations (3) and (4) become

ẋ1(t) = α1[R1(x2(t))− x1(t− τ)],

ẋ2(t) = α2[R2(x1(t))− x2(t− τ)].

The linearized equations are

ẋ1(t) = −α1x1(t− τ) + α1R′1(x∗2)x2(t), (35)

ẋ2(t) = α2R′2(x∗1)x1(t)− α2x2(t− τ). (36)

Substituting exponential solutions as before, we have

λeλtu = −α1eλ(t−τ)u + α1R′1(x∗2)e
λtv,

λeλtv = α2R′2(x∗1)e
λtu− α2eλ(t−τ)v.

After simplifying with eλt, the resulting algebraic system for u and v has nonzero
solutions if and only if
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0 = det

(
−α1e−λτ − λ α1R′1(x∗2)

α2R′2(x∗1) −α2e−λτ − λ

)
= λ2 + λe−λτ(α1 + α2) + α1α2

[
e−2λτ − R′1(x∗2)R′2(x∗1)

]
.

Multiplying these equations by eλt, we obtain

λ2eλτ + λ(α1 + α2) + α1α2e−λτ − α1α2R′1(x∗2)R′2(x∗1)e
λτ = 0. (37)

Assuming again that the eigenvalue has a zero real part, λ = iω, we substitute it into
this equation to obtain

0 = −ω2(cos ωτ + i sin ωτ) + iω(α1 + α2) + α1α2(cos ωτ − i sin ωτ)

−α1α2R′1(x∗2)R′2(x∗1)(cos ωτ + i sin ωτ).

Separating the real and imaginary parts, we have[
−ω2 + α1α2

(
1− R′1(x∗2)

)
R′2(x∗1)

]
cos ωτ = 0, (38)

[
−ω2 − α1α2

(
1 + R′1(x∗2)

)
R′2(x∗1)

]
sin ωτ = −ω(α1 + α2). (39)

Now, we have two cases:

(a) cos ωτ = 0.

Then, sinωτ = ±1. If sinωτ = 1, from (39),

ω2 −ω(α1 + α2) + α1α2
(
1 + R′1(x∗2)R′2(x∗1)

)
= 0,

with roots

ω± =
α1 + α2 ±

√
D

2
,

where
D = (α1 + α2)

2 − 4α1α2
(
1 + R′1(x∗2)R′2(x∗1)

)
.

If D < 0, no stability switch occurs. If D = 0, then the unique solution is

ω+ =
α1 + α2

2
,

and if D > 0 and 1 + R′1(x∗2)R′2(x∗1) ≤ 0, then we have again one positive solution, ω+.
Otherwise, both ω+ and ω− are solutions. In the case of one solution, the critical values are

τn =
1

ω+

(π

2
+ 2nπ

)
for n = 0, 1, 2, . . . , (40)

and in the case of two solutions,

τn+ =
1

ω+

(π

2
+ 2nπ

)
for n = 0, 1, 2, . . . (41)

and
τn− =

1
ω−

(π

2
+ 2nπ

)
for n = 0, 1, 2, . . . (42)

Assume next that sin ωτ = −1; then, Equation (39) implies that

ω2 + ω(α1 + α2) + α1α2
[
1 + R′1(x∗2)R′2(x∗1)

]
= 0,
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with roots

ω± =
−(α1 + α2)±

√
D

2
.

If D ≤ 0, then no stability switch occurs. If 1+ R′1(x∗2)R′2(x∗1) ≥ 0, then D ≤ (α1 + α2)
2,

implying that there is no stability switch. Otherwise, there is a unique positive root,

ω+ =

√
D− (α1 + α2)

2
.

Then, the critical values are

τn =
1

ω+

(
3π

2
+ 2nπ

)
for n = 0, 1, 2, . . .

(b) cos ωτ 6= 0

−ω2 + α1α2 − α1α2R′1(x∗2)R′2(x∗1) = 0. (43)

The multiplier of sin ωτ in (43) can be rewritten as

−ω2 + α1α2 − α1α2R′1(x∗2)R′2(x∗1)− 2α1α2 = −2α1α2.

From (43),
ω2
+ = α1α2

(
1− R′1(x∗2)R′2(x∗1)

)
.

If R′1(x∗2)R′2(x∗1) < 1, then the equilibrium is locally asymptotically stable without
delay, and we have a positive ω value,

ω+ =
√

α1α2
(
1− R′1(x∗2)R′2(x∗1)

)
Furthermore, the critical values are

τ∗n+ =
1

ω+

[
sin−1

(
ω+(α1 + α2)

2α1α2

)
+ 2nπ

]
for n = 0, 1, 2, . . .

and

τ∗n− =
1

ω+

[
π − sin−1

(
ω+(α1 + α2)

2α1α2

)
+ 2nπ

]
for n = 0, 1, 2, . . .

In the special case, when R′1(x∗2)R′2(x∗1) = 1, Equation (43) shows that ω = 0 is the
only solution implying that no stability switch occurs.

4.2. Two-Delay Model

Assume next that player 1 faces different delays in the data of its own strategy and
that of the other player. The associated dynamic equations have the forms

ẋ1(t) = α1
[
R′1(x2(t− τ2))− x1(t− τ1)

]
, (44)

ẋ2(t) = α2
[
R′2(x1(t))− x2(t)

]
, (45)

and the corresponding linearized system is as follows:

ẋ1(t) = α1
[
R′1(x∗2)x2(t− τ2)− x1(t− τ1)

]
,

ẋ2(t) = α2
[
R′2(x∗1)x1(t)− x2(t)

]
.

Substituting exponential solutions again into these equations, after simplifying by eλt,
we have

λu = α1

[
R′1(x∗2)e

−λτ2 v− e−λτ1 u
]
,
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λv = α2
[
R′2(x∗1)u− v

]
,

with determinant equation

0 = det

(
λ + α1e−λτ1 −α1R′1(x∗2)e

−λτ2

−α2R′2(x∗1) λ + α2

)
= λ2 + e−λτ1(α1λ + α1α2) + α2λ− α1α2R′1(x∗2)R′2(x∗1)e

−λτ2 ,

= P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 ,

(46)

where
P0(λ) = λ2 + α2λ,

P1(λ) = α1λ + α1α2,

P2(λ) = −α1α2R′1(x∗2)R′2(x∗1).

In order to guarantee that Equation (46) is the characteristic equation of a delay system,
we assume the following:

(a) deg(P0(λ)) ≥ max{deg(P1(λ)), deg(P2(λ))}, so there are finitely many eigenvalues
on C+. This clearly holds.

(b) P0(0) + P1(0) + P2(0) 6= 0, which holds if R′1(x∗2)R′2(x∗1) 6= 1, as is assumed in the
following.

(c) Polynomials P0(λ), P1(λ), and P2(λ) have no common roots. This is obvious if R′1(x∗2)
R′2(x∗1) 6= 0. If R′1(x∗2)R′2(x∗1) = 0, then λ = −α2 is a common root, which does not
remove stability.

(d)

lim
λ→∞

[∣∣∣∣P1(λ)

P0(λ)

∣∣∣∣+ ∣∣∣∣P2(λ)

P0(λ)

∣∣∣∣] < 1,

which is again obvious, since P0(λ) is quadratic, P1(λ) is linear, and P2(λ) is constant.

We will now follow the suggestions given by Gu et al. (2005) [27]. Dividing both sides
of (46) by P0(λ), we obtain

1 + a1(λ)e−λτ1 + a2(λ)e−λτ2 = 0, (47)

where

a1(λ) =
P1(λ)

P0(λ)
=

α1

λ

and

a2(λ) =
P2(λ)

P0(λ)
=
−α1α2R′1(x∗2)R′2(x∗1)

λ2 + α2λ
.

We are looking for pure complex solutions, λ = iω. If P0(iω) = 0, then from (46), we
have

P1(iω) + P2(iω)e−iω(τ2−τ1) = 0,

implying that

τ2 − τ1 =
1
ω

[
arg
(
−P2(iω)

P1(iω)

)
+ 2nπ

]
.

However, if P1(iω) = 0 as well, then P2(iω) 6= 0 implies no solution, and P2(iω) = 0
implies that arbitrary positive τ1 and τ2 values are solutions. Notice that this case cannot
occur, since P0(iω) has only two real roots, λ = 0 and λ = −α2.

Consider next the case of P0(iω) 6= 0. Then, notice that the complex vectors 1,
a1(iω)e−iωτ1 , and a2(iω)e−iωτ2 form a triangle in the complex plane, as shown in Figure 1.
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Figure 1. Triangle constructed by these vectors.

In the special case of a1(iω) = 0, (47) implies that

1 + a2(iω)e−iωτ2 = 0,

so τ1 is arbitrary and

τn
2 =

1
ω
[arg(−a2(iω)) + 2nπ].

If a2(iω) = 0, then, similarly,

1 + a1(iω)e−iωτ1 = 0,

implying that τ2 is arbitrary and

τm
1 =

1
ω
[arg(−a1(iω)) + 2mπ].

If a1(iω) and a2(iω) are nonzero, then the three vectors form a triangle if and only if

|a1(iω)|+ |a2(iω)| ≥ 1, (48)

−1 ≤ |a1(iω)| − |a2(iω)| ≤ 1. (49)

In our case,
a1(iω) = −i

α1

ω
so |a1(iω)| = α1

ω
,

a2(iω) =
−α1α2R′1(x∗2)R′2(x∗1)
−ω2 + iωα2

so |a2(iω)| =
α1α2

∣∣R′1(x∗2)R′2(x∗1)
∣∣

ω
√

ω2 + α2
2

.

Relations (48) and (49) are quartic inequalities. In general, they cannot be solved, but if
the numerical values are known, then the roots of the quartic equations can be determined,
and certain segments between the roots provide solutions. The law of cosine can be used to
find angles θ1 and θ2:

θ1 = cos−1

(
1 + |a1(iω)|2 − |a2(iω)|2

2|a1(iω)|

)
,

and

θ2 = cos−1

(
1 + |a2(iω)|2 − |a1(iω)|2

2|a2(iω)|

)
.
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The triangle can be placed above and under the horizontal axis, so from Figure 1, we
have

arg[a1(iω)]−ωτ1 ± θ1 = π

and
arg[a2(iω)]−ωτ2 ∓ θ2 = π,

implying that the critical values are as follows:

τn±
1 (ω) =

1
ω
[arg[a1(iω)] + (2n− 1)π ± θ1] (50)

and
τm±

2 (ω) =
1
ω
[arg[a2(iω)] + (2m− 1)π ∓ θ2]. (51)

Let Ω denote the set of all solutions of conditions (48) and (49), which consists finitely
of many intervals:

Ωk (k = 1, 2, . . . N).

For k = 1, 2, . . . N, we define

Tk±
n,m =

{(
τn±

1 (ω), τm±
2 (ω)

) ∣∣ ω ∈ Ωk
}

and
Tk = ∪n ∪m (Tk+

n,m ∪ Tk−
n,m) ∩ R2

+.

The set T of all stability-switching curves is the union of all sets Tk. By not restricting
arg[a1(iω)] and arg[a2(iω)] to interval [0, 2π], we make them continuous functions of ω in
Ωk, so with fixed n and m, Tk+

n,m and Tk−
n,m also become continuous curves.

Notice that any left endpoint ω`
k and right endpoint ωr

k of Ω satisfy at least one of the
conditions (48) and (49) by equality, so one of the following equalities must hold:

|a1(iω)|+ |a2(iω)| = 1, (52)

|a2(iω)| − |a1(iω)| = 1, (53)

|a1(iω)| − |a2(iω)| = 1, (54)

and the case of ω`
k = 0 and ωr

k = ∞ are also possible. If (52) holds, then θ1 = θ2 = 0
and Tk+

n,m is connected with Tk−
n,m at this endpoint. If (53) holds, then similarly, θ1 = π

and θ2 = 0, so Tk+
n,m is connected with Tk−

n+1,m at this endpoint, and if (54) is satisfied, then
θ1 = 0 and θ2 = π, showing that at this endpoint Tk+

n,m is connected with Tk−
n,m−1. If ω`

k = 0,
then as ω → 0, both Tk+

n,m and Tk−
n,m converge to infinity. This discussion shows that the

stability-switching curve T is the intersection of R2
+ and conforms to one of the following

types:

(i) A series of closed curves;
(ii) A series of spiral-like curves with either horizontal, vertical, or diagonal axes;
(iii) A series of open-ended curves with endpoints converging to infinity.

If a point (τ1, τ2) crosses the stability-switching curve, then stability switching might
occur. Before discussing the direction of stability switching (stability loss or gain), some
comments are in order.

The direction of a curve is positive if it corresponds to an increasing value of ω. The
direction is reversed if a curve is passing through an endpoint. Moving along a curve in
the positive direction, the region on the left-hand side is called the region on the left, and
the region on the right right is similar. We define for any point on T the following:

R` = Re
[

a`(iω)e−iωτ`
]

and I` = Im
[

a`(iω)e−iωτ`
]

for ` = 1, 2 and ω ∈ Ω.
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The following result is given by Gu et al. (2005) [27].

Theorem 1. Let ω ∈ Ωk and (τ1, τ2) ∈ Tk such that λ = iω is a simple pure complex eigenvalue.
As a point (τ1, τ2) moves from the right to the left of the corresponding curve of Tk, a pair of
eigenvalues cross the imaginary axes to the right (stability loss) if R2 I1− R1 I2 > 0. If the inequality
is reversed, then the crossing is from right to left (stability gain).

4.3. Three-Delay Model

Consider next the case in which the players have different delays in the data about
their own strategies. In this case, the delay equations become

ẋ1(t) = α1[R1(x2(t))− x1(t− τ1)],

ẋ2(t) = α2[R2(x1(t))− x2(t− τ2)].

By linearizing these equations around the equilibrium, we obtain

ẋ1(t) = −α1x1(t− τ1) + α1R′1(x∗2)x2(t), (55)

ẋ2(t) = α2R′2(x∗1)x1(t)− α2x2(t− τ2). (56)

Substituting the exponential solutions

x1(t) = eλtu and x2(t) = eλtv

into these equations, we have

λeλtu = −α1eλ(t−τ1)u + α1R′1(x∗2)e
λtv,

λeλtv = α2R′2(x∗1)e
λtu− α2eλ(t−τ2)v.

After simplifying these equations by eλt, an algebraic equation system is obtained for
u and v, and nonzero solutions exist if and only if

0 = det

(
λ + α1e−λτ1 −α1R′1(x∗2)

−α2R′2(x∗1) λ + α2e−λτ2

)
= λ2 + α1λe−λτ1 + α2λe−λτ2 − α1α2R′1(x∗2)R′2(x∗1) + α1α2e−λ(τ1+τ2),

which can be written as

P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 + P3(λ)e−λ(τ1+τ2) = 0, (57)

where
P0(λ) = λ2 − α1α2R′1(x∗2)R′2(x∗1),

P1(λ) = α1λ, P2(λ) = α2λ and P3(λ) = α1α2.

The following assumptions are made to guarantee that (57) can be the characteristic
equation of a delay system and to exclude some trivial cases:

(a) There are a finite number of eigenvalues on C+ when

deg(P0(λ)) ≥ max{deg(P1(λ)), deg(P2(λ)), deg(P3(λ))}.

This holds, since P0(λ) is quadratic, while P1(λ) and P2(λ) are linear and P3(λ)
is constant.

(b) The zero frequency λ = 0 is not an eigenvalue with any τ1 and τ2,

P0(0) + P1(0) + P2(0) + P3(0) 6= 0.
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This condition holds if R′1(x∗2)R′2(x∗1) 6= 1, so we have to assume this relation in the
following discussion.

(c) Polynomials P0(λ), P1(λ), P2(λ), and P3(λ) have no common roots, which is trivial
in our case.

(d)

lim
[∣∣∣∣P1(λ)

P0(λ)

∣∣∣∣+ ∣∣∣∣P2(λ)

P0(λ)

∣∣∣∣+ ∣∣∣∣P3(λ)

P0(λ)

∣∣∣∣] < 1,

which also holds, since P0(λ) is quadratic and the others have lower degrees.

In examining the stability switches with Equation (57), we will follow the ideas of Lin
and Wang (2012) [28]. We can rewrite Equation (57) at λ = iω as follows:

P0(iω) + P1(iω)e−iωτ1 +
(

P2(iω) + P3(iω)e−iωτ1
)

e−iωτ2 = 0. (58)

Since
∣∣e−iωτ2

∣∣ = 1,∣∣∣P0(iω) + P1(iω)e−iωτ1
∣∣∣ = ∣∣∣P2(iω) + P3(iω)e−iωτ1

∣∣∣
or (

P0 + P1e−iωτ1
)(

P̄0 + P̄1eiωτ1
)
=
(

P2 + P3e−iωτ1
)(

P̄2 + P̄3eiωτ1
)

, (59)

where an overbar indicates a complex conjugate and the arguments of P0, P1, P2, and P3
are omitted for simple notation. A simple calculation shows that (59) has the equivalent
form,

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(ω) cos ωτ1 − 2B1(ω) sin ωτ1, (60)

where

A1(ω) = Re(P2P̄3 − P0P̄1) and B1(ω) = Im(P2P̄3 − P0P̄1).

With any value of ω, this is a trigonometric equation for τ1. In our case,

P0(iω) = −ω2 − α1α2R′1(x∗2)R′2(x∗1),

P1(iω) = iωα1,

P2(iω) = iωα2,

P3(iω) = α1α2.

Thus,

A1(ω) = Re
[
iωα1α2

2 +
(

ω2 + α1α2R1
′(x2

∗)R2
′(x1

∗)
)
(−iωα1)

]
= 0

and
B1(ω) = ωα1α2

2 − α1ω3 − α2
1α2ωR′1(x∗2)R′2(x∗1).

Similarly,

|P0|2 + |P1|2 − |P2|2 − |P3|2

=
(

ω2 + α1α2R′1(x∗2)R′2(x∗1)
)2

+ (α1ω)2 − (α2ω)2 − (α1α2)
2

= ω4 + ω2
[
2α1α2R′1(x∗2)R′2(x∗1) + α2

1 − α2
2

]
− (α1α2)

2
[
1−

(
R′1(x∗2)R′2(x∗1)

)2
]
.
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(A) We assume first that ω is a solution of equation P2P̄3 − P0P̄1 = 0. Then, A1(ω) =
B1(ω) = 0, and an arbitrary value of τ1 > 0 is a solution. The corresponding values of τ2
can be obtained from Equation (58) as

τn
2 =

1
ω

[
arg
(
−P2 + P3e−iωτ1

P0 + P1e−iωτ1

)
+ 2nπ

]
. (61)

If the denominator is zero, then (58) implies that the numerator is also zero, so an
arbitrary τ2 > 0 is a solution.

(B) We assume next that P2P̄3 − P0P̄1 6= 0, so A1(ω)2 + B1(ω)2 > 0. Clearly, there is a
φ1(ω) such that

cos(φ1(ω)) =
A1(ω)√

|A1(ω)|2 + |B1(ω)|2
= 0, sin(φ1(ω)) = sign(B1(ω)).

Then, (60) can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
√
|A1(ω)|2 + |B1(ω)|2 cos(φ1(ω) + ωτ1), (62)

and by defining

ψ1(ω) = cos−1

 |P0|2 + |P1|2 − |P2|2 − |P3|2

2
√
|A1(ω)|2 + |B1(ω)|2

 ∈ [0, π]

it becomes clear that
τ±1n =

1
ω
(±ψ1(ω)− φ1(ω) + 2nπ). (63)

From (62), we see that a solution for τ1 exists if and only if∣∣∣|P0|2 + |P1|2 − |P2|2 − |P3|2
∣∣∣ ≤ 2

√
|A1(ω)|2 + |B1(ω)|2, (64)

or in our case(
|P0|2 + |P1|2 − |P2|2 − |P3|2 − 2B1

)(
|P0|2 + |P1|2 − |P2|2 − |P3|2 + 2B1

)
≤ 0.

The two factors must have different signs, or one of them has to be zero. This inequality
and (64) cannot be solved in general, but if numerical values of the model parameters are
available, then computer solutions can present finitely many segments Ωk as the set of all
solutions for ω, which is denoted by Ω. For each ω ∈ Ω, the corresponding critical values
are given by (63), and then from (58), we have

τm
n =

1
ω

[
arg
(
−P2(iω) + P3(iω)e−iωτ1

P0(iω) + P1(iω)e−iωτ1

)
+ 2mπ

]
if the denominator is nonzero. If it is zero, then (58) implies that the numerator is also zero,
so an arbitrary τ2 is the solution.

A more simple method can be suggested by interchanging τ1 and τ2 and repeating the
above procedure for τ2. It can be shown that for each segment Ωk, the critical values form
the curves as follows:

Tk±
n,m =

{(
±ψ1(ω)− φ1(ω) + 2nπ

ω
,
∓ψ2(ω)− φ2(ω) + 2mπ

ω

)∣∣∣∣ω ∈ Ωk

}
,

which is continuous in R2.
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With any left and right endpoints τ`
k and τr

k ,

F(ω`
k) = F(ωr

k) = 0,

where
F(ω) =

(
|P0|2 + |P1|2 − |P2|2 − |P3|2

)2
− 4
(

A1(ω)2 + B1(ω)2
)

;

therefore,
cos
[
ψi(ω

`
k)
]
= δ`i π and cos[ψi(ω

r
k)] = δr

i π,

where δ`k , δr
k ∈ {0, 1}. The connection of the segments of the stability-switching curves can

be given as follows: Tk+
n,m connects Tk−

n+δ`1,m−δ`2
and Tk−

n+δ`1,m−δr
2

at its two ends:

(i) If
(

δ`1, δ`2

)
=
(
δr

1, δr
2
)
, then Tk+

n,m and Tk+
n−δ`1,m−δ`2

form a loop, so the set of stability-

switching curves is a collection of closed continuous curves.
(ii) Otherwise, it is a collection of continuous curves with endpoints on the axes or

extending to infinity in R2.

The direction of stability switching now depends on

R` = Re
[

P`(iω)e−iωτ` + P3(iω)e−iω(τ1+τ2)
]

and
I` = Im

[
P`(iω)e−iωτ` + P3(iω)e−iω(τ1+τ2)

]
,

and Theorem 1 remains valid with these quantities.

5. Conclusions

In engineering, population dynamics, and realistic economies, there are many ex-
amples where only delayed responses can be observed and instantaneous data are not
available. In such cases, the design and decisions are based on delayed data and infor-
mation. In this paper, we presented some important methods to deal with this situation.
Under discrete time scales, it is usually assumed that the lengths of the delays are positive
integers that only increase the order of the governing difference equations (Matsumoto and
Szidarovszky, 2018) [29]. In the continuous case, different methods can be used based on
the number of delays. It is always assumed that the equilibrium is locally asymptotically
stable without delays, and stability is preserved if the delays are sufficiently small based on
the fact that the matrix eigenvalues continuously depend on the matrix elements. How-
ever, by increasing the lengths of the delays, this stability might be lost. In the one-delay
case, the critical value of the delay was determined when stability turns into instability
(Sections 3.2 and 4.1). In the two-delay case, the two-dimensional space of the delays was
considered, and the stability-switching curves were determined (Sections 4.2 and 4.3). If
a pair of delays crosses this curve from the region containing the origin, then stability is
lost. The same is the situation in the three-delay case, when two delays and their sum affect
the dynamic properties of the equilibrium. The mathematical methodology is different in
these cases, which was illustrated in the case of a special two-person game wherein the
dynamic evolution of the strategies was governed by best-response dynamics. Several cases
were used for the presentation of the methodology, which could be very useful in solving
practical problems including one, two, or even three delays. The material of this paper
can be extended in several directions. One could include more players, different dynamic
rules, and more variants of the delayed quantities. In addition, the Bayesian methodology
is used in population dynamics to assess the survival probabilities of competing species
(Dragicevic, 2015) [30] or, in general, to find the probability of the occurence of certain
properties among the players. For the same issues, artificial neural networks could be an
alternative approach (Poulton, 2001; Swingler, 1996) [31,32].
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