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Abstract: We analyze a dynamic bargaining game where parties can agree to implement a policy
change, which is costly (beneficial) in the short-run but beneficial (costly) in the long-run. When the
status-quo is endogenized (at least in some components), we show that the more farsighted party can
induce their rival to accept the short-run costs of policy changes designed to generate benefits in the
long-run. This is more common when players’ asymmetries are less pronounced, the status-quo is
fully endogenized and the state depreciates more quickly.
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1. Introduction

Negotiations often have a dynamic nature, from political parties who need to agree
government budgets to countries negotiating over environmental issues. When agree-
ments over such issues are reached, they are not everlasting, but revisited, as the state
of the environment/economy/budget evolves over time (e.g., stock of CO2 in the atmo-
sphere/capital/government debt). The focus of this paper is on dynamic negotiations,
where the agreements players reach today can affect future bargaining possibilities. By this,
we mean two distinct dynamic features. On the one hand, we allow players the option
of implementing costly actions, which may reduce current benefits, while also leading to
higher future benefit (or vice-versa, they may increase short-run gain at the expenses of
long-term benefits). With this, we aim to capture the feature in many dynamic negotiations
that “investing” (in physical goods or goodwill, for instance) can have an impact on fu-
ture bargaining possibilities. For instance, in COP26, 197 countries revisited the previous
agreement (the Paris climate accord) and agreed to strengthen their current polluting emis-
sions targets, a decision considered costly in the short-run but potentially life-saving in
the long-run1. Conversely, by cutting the overseas aid budget the UK may have softened
the government budget constraint in the short-run, but may also have weakened their
diplomatic leverage in the longer term (according, for instance, to the Financial Times2).
Undoubtedly, also the agreement the UK and EU reached after the Brexit referendum (and
a long impasse) has affected, is affecting and will be affecting their relationship and their
future bargaining possibilities for a long time3.

On the other hand, we allow an agreement (or at least some of its components), once
struck, to become the status-quo, which serves as a threat point in future negotiations.
Hence, in the case of an impasse/disagreement, negotiators implement the status-quo (the
previous agreement in full or in part). The status-quo has been shown to be crucial for
future negotiations in many examples, including trade deals for the UK, following Brexit4.

In this paper, we investigate a (two-player) bargaining game with two dynamic
features of long-run negotiations: (1) apart from agreeing on how to split a surplus for their
own consumption, players need to decide how much to invest (a higher investment today
implies a lower current consumption but a higher surplus next period, and vice-versa); and
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(2) the status-quo is (potentially fully) endogenous. If players cannot strike an agreement,
they implement (at least in part) the previous one (if any, or an initial status-quo).

We adopt the terminology in [1]—this is fully reviewed in the related literature below—
which also endogenizes the status-quo, by investigating mandatory versus discretionary
government spending programs in United States. Mandatory spending in the US govern-
ment budget is expenditure driven by pre-existing law. Hence, it will be implemented in
any spending bill, unless parties agree to change it. When all the spending components of
the bill are mandatory, the status-quo is fully endogenized. Instead, discretionary spending
will have to be negotiated at every spending bill. Hence, in case of disagreement, the
spending for the discretionary components will be 0, even if players struck an agreement
in the past. We use these definitions. Moreover, to fix ideas, in our model the players
can be interpreted in two ways. First, they could be business partners who decide how
to split a current profit, not only for their own consumption, but also on how to re-invest
part of it, where investment affects the profit next period. The (initial) status-quo in this
case is a (pre-bargaining) contract, specifying consumption and/or investment shares. The
partners each period can either implement the contract or another split as long as they both
agree to change the contract. Alternatively, the players are two political parties, as in [1],
deciding on a budget and on whether or not to implement an existing policy (a split with
mandatory/discretionary components)5. The key novelty in our paper is that their policy
choice can affect the size of the surplus next period. The crucial question we aim to address
is under which conditions parties implement changes in policy/contract?

To answer this question we investigate three types of status-quo: (1) the status-quo
is fully endogenous, in other words all the components of the status-quo are mandatory;
(2) only some components of the status-quo, for instance the consumption shares, are
mandatory, while the remaining ones, investment in this case, are discretionary (even if
players agreed to invest today, the status-quo for next period specifies 0 investment); and
(3) differently from the previous two cases, where players can agree to implement any
division (not just the status-quo), in this third case, to facilitate comparative statics, we
consider the case in which some components of the status-quo are either not negotiable
(these are unchangeable components, i.e., the cost of a potential change would be too high)
or can only be increased (as the status-quo specifies only a minimum share).

We show that the status-quo persists, if Pareto efficient, otherwise, players agree to
move to a Pareto superior division. With focus on the dynamics in a two-stage game, we
shows that it is only one party who may benefit from the change. How much this player
can gain depends not only on the consumption shares in the status-quo, but, crucially, also
on how inefficient the status-quo investment is.

To further investigate the case of policy/contract changes, for the more complex case
of asymmetric players, we consider the case in which the status-quo specifies only some
components as mandatory (case 2 above). If only the consumption shares are mandatory,
there is a tension between asymmetric players, as the more patient would ideally invest
more than his rival (i.e., in a consumption-saving problem without bargaining his optimal
investment would be higher). Hence, when bargaining, players make a compromise
(unless they discount future payoffs strongly). The most impatient makes a concession by
investing more than his ideal level, while the patient party makes a concession by reducing
their current consumption to compensate their opponent and prioritize investment. An
impatient opponent would be more willing to accept an offer with higher investment only
if their current consumption is large enough.

However, if a party is sufficiently impatient, their ideal investment is 0. Hence, they
can always exploit a status-quo, where investment is discretionary. When there are strong
asymmetries, compromises do not arise in equilibrium, as impatient parties can always
implement their ideal share of 0 investment. Only when the asymmetry between players
is sufficiently low, are compromises possible, or otherwise it may be even possible for
the most patient player to implement his (higher) ideal investment. This has implications
for instance for costly policy changes. Populist political parties are often described as
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myopic (i.e., with a low discount factor). In this case, costly policy changes, with potentially
long-term benefits, would never be implemented by these parties, but if less myopic,
they may make compromises with more farsighted political rivals, which may give-up
current consumption to compensate the myopic party. Indeed, if we compare the scenario
with mandatory consumption shares with the one in which the consumption shares are
instead unchangeable, compromises are less likely, as now the patient party cannot use the
consumption channel to compensate the impatient player for investing.

Compromises are not an equilibrium phenomenon for the case of mandatory invest-
ment shares, even when the status-quo specifies a minimum investment. The key force is
that responders have no bargaining power, when the status-quo prescribes no consumption
and, therefore, the proposer can extract all the available surplus.

The analysis of the infinite-horizon game focuses on the steady-state. We show that
any Pareto efficient consumption split can arise in equilibrium.

Related Literature—Bargaining theory has typically investigated negotiations charac-
terized by only one of the dynamic features of our model: either the size of the surplus is
fixed and the status-quo is endogenous or players can affect the size of the surplus but the
status-quo is exogenous. A notable exception is [2], which considers a recursive bargaining
game with endogenous status-quo. A crucial difference with our paper is that in [2] players
can consume as much as they wish when they disagree, while in our framework they
implement the previous agreement (/the initial status-quo), as in [1]. While [2] focuses on
the tragedy of the commons (e.g., exploitation of natural resources), our focus is on the
context of agreement changes in long-run negotiations. Also our analysis follows a fully
non-cooperative approach.

Within the endogenous status-quo literature, the paper closest to ours is [1], which
focuses on (mandatory versus discretionary) spending programs in United States, by
investigating a bargaining game with a public good and private transfers, where two
political parties bargain over a fixed government budget, under a take-it-or-leave-it offer.
Medicare is as an example of mandatory spending, while military spending is an example of
discretionary spending, as the latter has to be negotiated at every spending bill (see [1]). We
adopt a similar framework but with two crucial differences. First, while in [1] the surplus
is fixed in every period, in our framework, current policy choices (in particular, on how
much to invest) will determine future surpluses6. This is relevant, as often major economic
reforms (e.g., a more flexible labour market7) can be initially costly but could have long-
term benefits (as it stimulates the economy and leads to higher future budgets). Second, in
our model players may differ in terms of time preferences, while in [1], players are equally
patient (but put different weights on the public good). The assumption of players with
different time preferences is realistic and has been proven to enrich the analysis significantly
(as shown, for instance, in the extensive review of bargaining theory in [4], in [5] in terms
of agenda formation and [6] with focus on environmental issues).

The closest papers in dynamic bargaining are [4,7] (Section 10). The latter is the first
contribution with a focus on a repeated (non-cooperative) bargaining game with investment
decisions in addition to the standard consumption decisions. Since its focus is mainly on
the steady-state of stationary subgame perfect equilibria [8], the investment decisions are
simplified, as parties need to invest as much as necessary to have surpluses of the same
size. Ref. [7] has the main aim of addressing the problem of how much parties invest
in a strategic framework. In this paper, we adopt this framework with two (potentially
heterogeneous) players who need to choose both how much to consume and how much to
invest, but, in addition, we endogenize the status-quo. Hence, players can take actions in
the current agreement which not only affect the size of future surpluses, but also set the
threat point (or at least some of its components in future negotiations).

The paper is organized as follows. In the next section, we present the model. In
Section 3, we solve it for the two-stage game. We focus on the case of symmetric players
in Section 3.2. The case of asymmetric players and mandatory status-quo components is
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presented in Section 3.3. Section 4 covers the analysis of the infinite-horizon game. Section 5
concludes with some final remarks.

2. The Model

We consider a two-player bargaining game. Time is discrete and the horizon is
potentially infinite, t = 0, 1, . . . At each period, a surplus is generated according to the
production function F(kt) = Gkt, where G is the constant gross rate of return and kt is the
capital stock at period t. Once the surplus, F(kt), is generated the players, named 1 and 2,
attempt to divide it. The status-quo at time t is a triple st = (s1t, s2t, ϕst) where ϕst is the
status-quo investment share and sit is Player i’s consumption share over the remaining
surplus with s1t, s2t, ϕst ∈ [0, 1], s1t + s2t 6 1 and i = 1, 2.

At t = 0, the status quo is given and named s = (x, y, ϕ). The capital stock, k0, and
the first surplus, F(k0) = Gk0, are also given. The proposer at t = 0 is randomly selected.
Let p (1− p, respectively) be the probability that Player 1 (2) makes the first offer. The
bargaining procedure consists of a take-it-or-leave-it offer, in which players choose how
much to invest and how to split the remaining surplus for their own consumption. Let ϕit
be the investment share, Player i proposes at time t (with i = 1, 2), while x1t (y2t) is the
share of the remaining surplus Player 1 (2) asks to consume. Hence, an offer by 1 (2), at t, is
the pair o1t = (x1t, ϕ1t) (o2t = (y2t, ϕ2t), respectively) with x1t, y2t, ϕit ∈ [0, 1].

Consider an offer by, say Player 1, at time t, o1t. This can be either accepted or rejected.
First, if it is accepted, the level of investment is I(ϕit, kt) = ϕ1tGkt and the per-period
consumption levels are

c1(o1t, kt) = x1t(1− ϕ1t)Gkt (1)

c2(o1t, kt) = (1− x1t)(1− ϕ1t)Gkt (2)

The per-period utility has a logarithmic form8

ui(o1t, kt) = ln(ci(o1t, kt)) (3)

with i = 1, 2. Moreover, the output available at beginning of the next period, at t + 1, is
F(kt+1), with capital stock kt+1, given by the investment level, e.g., I(ϕit, kt) and the capital
remaining after depreciation (1− λ)kt, where λ is the depreciation rate (0 < λ ≤ 1),9

kt+1 = (1− λ + Gϕ1t)kt

Given the agreement, o1t, at t, this becomes the status quo at t + 1, st+1 = o1t and will
remain the status-quo in all subsequent periods t′, with t′ > t, unless a new agreement is
struck.

Second, if at t the offer o1t by Player 1 is rejected, the status quo st is implemented and
at t + 1 the state remains st. The capital stock is

kt+1 = (1− λ + Gϕst)kt

Players alternate in making offers in each bargaining stage: the proposer at t + 1, say j,
is the player who responded to Player i’s proposal at t (regardless of whether or not this
has been accepted) with i, j = 1, 2, i 6= j and t = 1, 2, . . ..10 Player i’s discount factor is δi.

We focus on Subgame Perfect equilibria (SPE) for the finite-horizon model and Markov
Perfect Equilibria (MPE) for the infinite-horizon case. For the latter, the strategies specify
players’ actions, for each time period t, as a function of the state of the system at the
beginning of that period. The state variables are the status-quo, st (which is either the
previous agreement, if any, or the initial status-quo, s) and the capital stock, kt.

Let Vi(st, kt) (respectively, Wi(st, kt)) be the sum of discounted payoffs to Player i,
when making an offer (responding to an offer) in an arbitrary MPE. Player i has to consider
whether he is better off in making an acceptable offer, oit, or implementing the status-quo,
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st. Similarly, Player j will compare his payoff in case he accepts Player i’s offer oit or rejects
it and therefore the status-quo st will be implemented. The problem can then be written in
the following recursive form,

Vi(st, kt) = max{V′i (st, kt), ln(ci(st, kt)) + δiWi(st+1, kt+1)} (4)

Wj(st, kt) = max{W ′j (st, kt), ln(cj(st, kt)) + δjVj(st+1, kt+1)} (5)

where V′i (st, kt) and W ′j (st, kt) are the sums of discounted payoffs in case of an acceptance,
while the second expression in brackets in (4) and (5) are the discounted payoffs in case of
a rejection. Hence, for i = 1

V′1(st, kt) = max
x1t ,ϕ1t∈[0,1]

ln(x1t(1− ϕ1t)Gkt) + δ1W1(st+1, kt+1)) (6)

s.t. W ′2(st, kt) ≥ ln(s2t(1− ϕst)Gkt) + δ2V2(st+1, kt+1) (7)

W ′2(st, kt) ≡ ln(x2t(1− ϕ1t)Gkt) + δ2V2(st+1, kt+1) (8)

with the equations of motion given by

kt+1 = (1− λ + Gϕ1t)kt if there is an acceptance
kt+1 = (1− λ + Gϕt)kt otherwise

(9)

st+1 = (x1t, x2t, ϕ1t) if there is an acceptance
st+1 = st otherwise

(10)

Similarly, for i = 2 (the subscript 1 and 2 are swapped and x is replaced by y, in (6)–(10). In
the next section, we focus on a simplified model where there are only two periods. The
infinite-horizon case is covered in Section 4.

3. A Two-Period Model

In this section, we assume that the game has only two periods. This allows us to show
some key features of the game and its dynamics. First, in the following section, we show
that the status-quo is preserved, whenever Pareto efficient. This is a result which will be
shown to hold also in the infinite-horizon model and is in line with the existing literature
(Bowen at al. (2014) [1]).

When players agree to change the status-quo, the randomly-chosen first mover can
have an advantage. However, even for the two-period game, it is not straightforward to
determine how exactly players agree to change the status-quo. Hence, in Section 3.2, the
focus is on symmetric players. In this section, we derive the players’ equilibrium demands
and quantify the first mover’s advantage. We will show that this depends not only on the
status-quo consumption shares but also on how inefficient the status-quo investment share
is. We then return to the case of asymmetric players in Section 3.3. In order to investigate
further how players reach a compromise, we focus on the case in which only some elements
of the previous agreement are mandatory.

3.1. Subgame Perfect Equilibrium

Since the game is finite, we use backward induction to identify the SPE. At the end
of the game, any positive level of investment will be wasteful, hence, to avoid artificial
inefficiencies, the status-quo at t = 1 is set as s1 = (s11, s21, 0). Hence, in case of disagree-
ment, there is no investment, even if players have previously agreed a positive level of
investment or the initial status-quo s prescribes a positive share (i.e., ϕi0, ϕ > 0 at t = 0)11.
If Player 1 is the first mover at t = 1, and this offer12 o1 is accepted, then it must be

(x1, ϕ1) = arg max
x1,ϕ1∈[0,1]

ln(x1(1− ϕ1)Gk1) (11)

s.t. ln((1− x1)(1− ϕ1)Gk1) ≥ ln(s21Gk1) (12)
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Moreover, Player 1 must prefer (x1, ϕ1) to the status-quo,

max{u1(x1, ϕ1, k1), ln(s11Gk1)} = ln(x1(1− ϕ1)Gk1)

It is intuitive that in the last period of the game, in equilibrium, there is no investment
and the player making an offer leaves the opponent with the minimum consumption
guaranteed by the status-quo and consumes the remaining surplus. This is formally
shown next.

Proposition 1. At t = 1, the SPE strategies are as follows: Player 1 proposes (1− s21, 0) and
accepts any offer o2 = (y2, 0) with y1 = 1− y2 > s11 and rejects it, if y1 < s11 and/or ϕ2 > 0,
while Player 2 proposes (1− s11, 0) and accepts any offer o1 = (x1, 0) with x2 = 1− x1 > s21 and
rejects it, otherwise.

Proof. See Appendix A.

Next, we solve the problem at t = 0. Given the initial status-quo, s = (x, y, ϕ), if there
is a rejection at this stage, players implement s and the sum of their discounted payoffs are

K1 = ln(x(1− ϕ)Gk0) + δ1 ln(xGk1) (13)

K2 = ln(y(1− ϕ)Gk0) + δ2 ln(yGk1) (14)

with k1 = (1− λ + Gϕ)k0. Therefore, if Player 1 is chosen to make the first offer at t = 0,
the problem is

φ1 = max
x10,ϕ10∈[0,1]

ln(x10(1− ϕ10)Gk0) + δ1 ln(x10(1− λ + Gϕ10)Gk0)

s.t. ln((1− x10)(1− ϕ10)Gk0) + δ2 ln((1− x10)Gk1) ≥ K2

as long as Player 1 prefers to make an acceptable offer

φ1 ≥ K1

Similarly, for Player 2. Next, we show that it is subgame perfect to implement the
status-quo, but only if Pareto efficient. Otherwise, the first player to make an offer will be
able to improve his position by implementing a Pareto superior outcome, which leaves the
opponent indifferent between accepting the offer and implementing the status-quo.

Proposition 2. In equilibrium, players implement the initial status-quo (x, y, ϕ), if this is Pareto
efficient, otherwise, they implement a Pareto efficient division where the first mover is always strictly
better off, while the opponent’s payoff remains at the status-quo level.

Proof. See Appendix B.

The ability of the first mover to extract all the remaining surplus is a feature of the
two-stage game. More interestingly, Proposition 2 (and its proof) shows that although
players will be able to implement a Pareto efficient outcome, ultimately it is not obvious
to determine the features of the equilibrium (for instance, an interior solution is given by
the solution of (A13) for the multiplier m1, which is not obvious). We are interested in the
following questions: will a policy/contract change be implemented and how? To address
these questions, we first look at the simplified case of equally patient players.

3.2. Symmetric Players

For equally patient players (δi = δ for i = 1, 2), we can analytically derive the SPE
strategies, hence, we can identify when players implement the status-quo, when they agree



Games 2023, 14, 35 7 of 20

to change it and how they agree to change it. In the next proposition, we will show that the
first mover has an advantage, summarized by a key factor, f (δ) in (16).

Proposition 3. For δi = δ, with i = 1, 2, players implement the status-quo division (x, y, ϕ)
unless

(x + y) f (δ) 6 1 (15)

where

f (δ) =
(1 + δ)

l

[
(1− ϕ)

(
1− λ + Gϕ

δ

)δ

G

] 1
(1+δ)

(16)

with l = G + 1− λ. Under condition (15), in the SPE, players demand x1 = 1− f (δ)y and
y2 = 1− f (δ)x and invest

ϕi = ϕ∗ =

{
Gδ−(1−λ)

G(1+δ)
for Gδ > (1− λ)

0 otherwise

Proof. For δi = δ for i = 1, 2, FOCs (A8) and (A9) become

x10 =
1

1 + m1

ϕ10 = ϕ∗

where for m1 > 0, the indifference condition (A11) holds:

(1 + δ) ln
(

m1

1 + m1

)
+ ln

(
l

(1 + δ)G

)
+ δ ln

(
δl

1 + δ

)
= (17)

= (1 + δ) ln y + ln(1− ϕ) + δ ln(ϕ)

for l = 1− λ + G. Hence,
m1

1 + m1
= cs

with

cs = y
1 + δ

l

[
(1− ϕ)G

(
1− λ + Gϕ

δ

)δ
] 1

(1+δ)

(18)

or cs = y f (δ), using the definition of f (δ) in (16). This implies m1 = cs
1−cs

. Therefore, the
SPE demand is x10 = 1− cs with cs < 1 for

(1 + δ) ln(1− cs) + ln
(

l
G(1 + δ)

)
+ δ ln

(
δl

1 + δ

)
> (19)

(1 + δ) ln x + ln(1− ϕ) + δ ln(1 + λ + Gϕ)

where (19) ensures Player 1’s payoff when implementing (x10, ϕ10) is not smaller than the
status-quo payoff K1. Condition (19) can also be re-written as

cs 6 1− x f (δ) (20)

which together with cs = y f (δ), implies (15).

The simple two-stage game highlights an important force. How much a proposer can
gain depends on how inefficient the initial status-quo is. The smaller the sum x + y is, the
higher the share a first mover can extract. Moreover, as it is straightforward to show that
f (δ) is maximized for ϕ = ϕ∗ and its maximum value is f (δ) = 113, an implication of
Proposition 3 is that the farther the status-quo investment ϕ is from the efficient share ϕ∗,
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the more the proposer can extract. Regardless of how unequal the status-quo consumption
split is, as long as it is without waste, players will never agree to change it, if the investment
share is efficient.

The factor f (δ), which summarizes how much more a proposer can extract, is af-
fected also by the parameters of the model, λ, G, δ, apart from the status-quo investment
share ϕ. The following corollary focuses on the case of infinitely-patient players and
maximum depreciation.

Corollary 1. For δ→ 1 and λ = 1, players invest efficiently half of their surplus (ϕ∗ = 1/2) and
demand x1 = 1− f (1)y and y2 = 1− f (1)x with

f (1) = 2
√
(1− ϕ)ϕ 6 1

unless the status-quo is already efficient (i.e., ϕ = 1/2 = ϕ∗ and x + y = 1).

Proof. For δ→ 1, f (δ) in (16) tends to 2
√
(1− ϕ)ϕ 6 1, hence players change the status-

quo, unless this is already efficient. If the status-quo is inefficient, following Proposition 3,
players implement ϕ∗ = 1/2 and the first mover’s demands are x1 = 1 − f (1)y and
y2 = 1− f (1)x. If the status-quo is efficient (ϕ = 1/2 = ϕ∗ and x + y = 1), then f (δ) = 1,
cs = y (using (18)) and x1 = 1− y = x and y2 = 1− x = y.

Again, any change in the status-quo consumption will take place only if the split is
wasteful and/or investment inefficient. In the two-stage game, a first mover can fully
extract the potential gain of the change. Also in a longer horizon game, players will agree
to implement an efficient split, however, we would expect that some concessions will take
place in equilibrium.

In the next section, the focus is on asymmetric players and a partially endogenous
status-quo (some components of the status-quo are mandatory, while the remaining, discre-
tionary, components are set to 0 in any period).

3.3. Mandatory Components

In this section we investigate how asymmetry in players’ patience affects the solution.
While in Section 3.1, we have shown that players agree to change the status-quo, if ineffi-
cient, in this section, we are interested in what outcome can arise when the starting status-
quo is inefficient. For instance, the business partners may have signed a pre-bargaining
contract, which makes only the consumption shares mandatory. Then the questions are:
how will players invest? And how does this affect how they split the remaining surplus
(as the mandatory shares are still negotiable)? Similarly, in the government budget in the
United States, only some programs (e.g., Medicare) are mandatory. How will political
parties agree on policies which may change the budget for the next period? Will this affect
the mandatory spending?

The aim of this section is to identify the compromises parties can reach when only some
components of the division are mandatory. We will show under which conditions, parties
are more likely to agree to make costly investments to generate future beneficial gains.

In the next section, the focus is on mandatory consumption shares (while the status-
quo investment share is set to zero in any period). We will show that the patient player
may be able to negotiate an agreement with positive investment with a fairly impatient
opponent, as long as the former can compensate the latter (by leaving the impatient player
a larger consumption share). In Section 3.3.2, we will compare this with the case in which
this compensation cannot take place, as the consumption shares are fixed (unchangeable).
We will show that less flexibility can lead to fewer compromises, however, more investment
will take place when the asymmetry is less pronounced. Section 3.3.3 concludes this part
for the case of (minimum) mandatory investment share. Generally, for this case, we will
show that players implement extreme consumption splits.
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3.3.1. Mandatory Consumption Shares

In this section, we assume that in any period, the status-quo investment share is 0.
Hence, the analysis follows closely the proof of Proposition 2, with the simplification that
ϕ = 0 (we had already set the status-quo investment share at the end of the game equal to
0). To identify how patience asymmetry (and the other parameters of the model) affect the
solution, we look at numerical solutions and present a sample of cases below.

Let φi (µi) be the equilibrium payoff, when Player i makes an offer oi (accepts his
opponent’s offer oj, respectively) at t = 014. Hence, for Player 1:

φ1 = ln(x1(1− ϕ1)Gk0) + δ1 ln(x1(1− λ + Gϕ1)Gk0)

µ1 = ln((1− y2)(1− ϕ2)Gk0)− δ2 ln((1− y2)(1− λ + Gϕ1)Gk0)

Similarly, for Player 2.
Figure 1 shows the effect of an increase in Player 1’s patience (δ1, on the x-axis) on

the SPE demands (first panel) and payoff coefficients (second panel) when the status-quo
is (0.5, 0.5, 0), δ2 = 0.9, G = 2, and λ = 015. In addition, the first panel shows the ideal
investment shares (of the saving-consumption problem without bargaining):

ϕ∗i =

{
Gδi−(1−λ)

G(1+δi)
for Gδi > (1− λ)

0 otherwise

with i = 1, 2. As indicated in the first panel of Figure 1, Player 2’s ideal share is constant,
ϕ∗2 = 0.21, as it is unaffected by changes in Player 1’s patience. Instead, Player 1’s ideal
investment share, ϕ∗1 , is zero for δ1 6 0.5 and increasing for δ1 > 0.5. Moreover, as we
would expect, the ideal investment share is higher for the most patient player (ϕ∗i > ϕ∗j for
δi > δj, with i, j = 1, 2 and i 6= j).
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Figure 1. MPE for (x, y, ϕ) = (0.5, 0.5, 0), G = 2, λ = 0 and δ2 = 0.9.

When we introduce bargaining and Player 1 is sufficiently impatient, i.e., δ1 < 0.25,
players cannot reach any compromise in equilibrium. As a result, they implement the status-
quo, equally splitting the surplus without investing16. As δ1 increases (from δ1 > 0.25),
Player 1 will start investing a positive share. This would be possible only for δ1 > 0.5
without bargaining. Hence, Player 1 is reaching a compromise with Player 2, who values
investment more highly. While Player 1 invests an increasing share (for δ1 > 0.25), Player 1
is also able to extract a larger current consumption share. This is because he can exploit
a trade-off between current and future consumption: by investing today, Player 1 has
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offered a larger surplus tomorrow and his patient opponent can accept to reduce his
current consumption for a larger consumption next period. As shown in Figure 1, the
consumption demands (x1, y2) remain relatively close to the status-quo value (0.5), however,
Player 1’s demand, x1, increases with δ1 (for δ1 6 0.9) while Player 2 initially sacrifices
his consumption demand (y2 decreases up to δ1 = 0.43). Only when players’ asymmetry
becomes less pronounced, his consumption demand, y2, can increase. Indeed, when
Player 1 is the most patient, δ1 > δ2 = 0.9, he prioritizes investment (ϕ1 > ϕ2) and offers to
consume a smaller share than Player 2 would, x1 < y2. Interestingly, even with a strong
asymmetry between players’ patience (and therefore a pronounced difference between
their ideal investment shares, ϕ∗i ), the more patient player invests only marginally more
than the opponent (ϕi > ϕj for δi > δj with i, j = 1, 2 and i 6= j), indicating the crucial
role played by the status-quo: a more impatient player can always reject any offer with
high investment. Only when equally patient (δi = 0.9), will players invest their ideal share
ϕ∗2 = ϕ∗1 (as indicated in Proposition 3).

The second panel in Figure 1 shows the SPE payoffs to the player making the offer (φi),
as Player 1 becomes more patient. The payoff when accepting an offer µi, is omitted from
the figure, as this remains equal to 0 (in this numerical example), the status-quo payoff, for
any δ1. The increasing SPE investment shares are beneficial only to the player making the
offer (both φi, with i = 1, 2, increase). Indeed, the status-quo can be fully exploited by the
first mover (in the two-stage game), as indicated in Proposition 2. Moreover, the increase in
the payoff coefficient φi is higher, for the more patient player.

We next consider the case of a higher depreciation rate, λ. As this results in a smaller
future surplus, we will show that players are more likely to make compromises and change
the status-quo, ceteris paribus. As in Figure 1, Figure 2 shows the effect of an increase
in Player 1’s patience (δ1) on the SPE demands and ideal investment shares, ϕ∗i , (first
panel) and payoff coefficients (second panel), for the same parameters as in the previous
example (i.e., (x, y, 0) = (0.5, 0.5, 0), δ2 = 0.9, G = 2), except for the depreciation rate,
now positive, λ = 1/217. As in the previous example, Player 2’s ideal share is a constant
(ϕ∗2 = 0.34), while Player 1’s ideal investment is zero, when sufficiently impatient (δ1 6 0.25)
and increasing in δ1, otherwise. However, there is a crucial difference between the two
numerical examples. Without bargaining, both players’ would invest more to compensate
the higher capital depreciation. Indeed, ϕ∗2 is now a substantially higher constant (0.34,
instead of 0.21) while Player 1 starts investing a positive share ϕ∗1 earlier (for δ1 > 0.25,
rather than 0.5). Both these elements push the relatively impatient player (1) to invest a
positive share in equilibrium for any δ1 > 0. In turn, the higher investment share allows
Player 1 to extract a larger consumption share, x1, than in the previous example, again by
exploiting the trade-off between current and future consumption.

The second panel in Figure 2 shows the SPE payoffs to the player making/accepting
the offer (φi / µi, respectively) as Player 1 becomes more patient. This shows that if Player 2
is the first mover, then he would be unambiguously better off with an increase in his
opponent’s patience (φ2 increases with δ1). Player 2’s increased bargaining power is due
to a weakening of Player 1’s status-quo (as K1 decreases with δ1)18. Instead, Player 2’s
status-quo payoff is unaffected by changes in δ1 (similarly for µ2). Finally, if we allow
for interpersonal comparisons, Figure 2 shows that the more patient player maintains the
highest bargaining power, both as a proposer and as a responder (φi > φj and µi > µj, for
δi > δj with i, j = 1, 2 and i 6= j), but given the (non-positive) effect on the status-quo, both
players prefer to be first mover rather than responding to an offer (φi > µi with i = 1, 2).

The main conclusion of this analysis is that with mandatory consumption shares and
asymmetry in players’ patience, the more patient/farsighted business partner will be able
to make more substantial concessions (reducing his current consumption) to prioritize
changes in investment. Similarly, for political parties, myopic/populist parties are less
likely to take costly action to make policy changes. When the state depreciates faster
(hence, the future surplus is smaller), even a very myopic party will take some actions to
increase investment.
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Figure 2. MPE for (x, y, ϕ) = (0.5, 0.5, 0), G = 2, λ = 1/2 and δ2 = 0.9.

3.3.2. Unchangeable Consumption Shares

In the previous section, we have shown that players can agree to invest when there
are asymmetries, as long as the patient player can compensate the impatient rival. In
this section, we highlight the incentive to invest when the players cannot change the
consumption share (x and y are fixed, with x, y > 0 and x + y = 1). We will show that
in comparison to the previous section less flexibility may lead to less investment for a
pronounced asymmetry. However, for weaker asymmetries, the more patient player will
invest more than in the case of (negotiable) mandatory consumption shares.

The last stage is straightforward: since players do not invest and the consumption
shares are exogenously given, they implement (x, y, 0). Let ϕi,F be the SPE investment share
proposed by Player i at t = 0, in the case of fixed consumption shares, with i = 1, 2. Then,
Player 1’s problem is

max
ϕ1,F∈[0,1]

ln(x(1− ϕ1,F)Gk0) + δ1 ln(xG(1− λ + Gϕ1,F)k0) (21)

ln(y(1− ϕ1,F)Gk0) + δ2 ln(yG(1− λ + Gϕ1,F)k0) ≥ K2 (22)

with K2 as in (14) with ϕ = 0:

K2 = ln(yGk0) + δ2 ln(yG(1− λ)k0)

The Lagrangian of problem (21)–(22) is

ln(x(1− ϕ1,F)Gk0) + δ1 ln(xG(1− λ + Gϕ1,F)k0) +

−m1{K2 − [ln(y(1− ϕ1,F)Gk0) + δ2 ln(yG(1− λ + Gϕ1,F)k0)]}

The FOC with respect to ϕ1,F is as in (A6):

(δ1 + m1δ2)G
1− λ + Gϕ1,F

6
1 + m1

1− ϕ1,F
; ϕ1,F

(
(δ1 + m1δ2)G
1− λ + Gϕ1,F

− 1 + m1

1− ϕ1,F

)
= 0 (23)

The analysis follows closely the proof of Proposition 2, however, an interior solution
for ϕ1,F, as in (A9), now relies on the following indifferent condition:

ln(1− ϕ1,F) + δ2 ln(1− λ + Gϕ1,F) = δ2 ln(1− λ)
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or, using ϕ1,F in (A9),

ln
(

l(1 + m1)

G f1(m1)

)
+ δ2 ln

(
l(δ1 + m1δ2)

f1(m1)

)
= δ2 ln(1− λ) (24)

with λ < 1. A solution m1 > 0 to (24) defines the optimal (interior) solution for the
investment share in the case of unchangeable consumption share. As shown in the proof of
Proposition 2, however, players may also be able to implement their ideal investment. The
next example show more clearly when the status-quo is changed and how.

Figure 3 compares the SPE investment shares (ϕ1, ϕ2) in Figure 1, where players can
agree to change the status-quo s = (0.5, 0.5, 0), with the case of unchangeable consumption
shares (for the same parameter constellation, G = 2, λ = 0, δ2 = 0.9). In equilibrium, the
relatively impatient Player 1 can always impose his ideal investment ϕi,F = ϕ∗1 (red dotted
curve in Figure 3). However, Player 2 can do so (ϕ∗2 = 0.21) only when the asymmetry in
patience is less pronounced (δ1 > 17/25). To explain these results, consider first the case of
δ1 6 1/2. In this case, Player 1’s ideal investment coincides with the status-quo, ϕ∗1 = 0 = ϕ,
hence Player 2 has no other option than to offer 0 investment, as Player 1 will always reject
any other offer. If, instead, Player 1 is sufficiently patient (δ1 > 17/25), both players have
a positive ideal investment share, ϕ∗i > 0, and they can implement it when making an
offer, as the status-quo is by far an inferior alternative for the opponent. Interestingly, for a
middle range of δ1 values (1/2 < δ1 < 17/25), Player 1’s ideal investment becomes positive
(ϕ∗1 > 0), hence, Player 2 can push Player 1 to accept an increasing investment share, with
ϕ2,F > ϕ∗1 > 0. As δ1 increases and ϕ∗1 increases, Player 2 can move closer to his ideal share
ϕ∗2 , which can be implemented earlier than in Figure 1 (for δ1 > 17/25 instead of δ1 = 0.9).
It is now Player 2 who uses the status-quo as a threat (as no investment becomes highly
costly to Player 1 too).
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Figure 3. MPE with compulsory consumption shares for (x, y, ϕ) = (0.5, 0.5, 0), G = 2, λ = 0 and
δ2 = 0.9.

Figure 3 shows that when the consumption shares are not negotiable, players are able
to implement their ideal investment shares ϕ∗i more often than in the case of mandatory
shares. Player 1 can do so, for any δ1 and Player 2 for δ1 > 17/25, while with mandatory
consumption shares, players must compromise most of the time (i.e., in Figures 1 or 3, ϕ1,
in red diamonds and ϕ2, in green squares, lie between the ideal shares ϕ∗i , with i = 1, 2, for
any δ1 > 0.25). Also, the status-quo with ϕ = 0, is implemented more often by both players,
for δ1 6 1/2 (rather than only δ1 < 0.25 in Figure 1).
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The analysis of this section has highlighted that less flexibility may be preferred by one
player. This can be either the more patient, when he can threaten the relatively impatient
rival with a status-quo costly enough that it will not be implemented in equilibrium or it
can be a very impatient player when his ideal investment coincides with the status-quo.
In the latter, the status-quo will be implemented in equilibrium. The trade-off between
current and future consumption is no longer present: while, with negotiable shares, the
more patient party could leave a larger consumption share to the opponent to compensate
him for accepting greater investment, with fixed consumption shares, this channel is no
longer present.

As a result, with a strong asymmetry, it is less likely, that a compromise can be
reached when the status-quo consumption shares are fixed rather than mandatory, as the
patient/farsighted party has fewer instruments to compensate their opponent. However,
the farsighted player can successfully push for compromises, when the asymmetry in
patience is less pronounced.

3.3.3. Minimum Mandatory Investment

In this final subsection, we consider the case of mandatory investment ϕ > 0. Moreover,
we set ϕ as the the minimum share, hence, player can only agree to increase it. With this
constraint we attempt to capture dynamic negotiations characterized by costly incremental
changes. For instance, in negotiations over environmental issues, typically all parties agree
on the direction of the change (e.g., reduction of polluting emissions), however, given the
high cost only gradual incremental changes are implemented every time. Similarly, in
start-ups, business partners may grow their capital slowly, at least initially19.

The initial status-quo is (0, 0, ϕ). First, we consider the case in which all the components
of the status-quo are mandatory. Hence, although the consumption shares are initially set
to 0, players can agree to increase them and the agreement they strike becomes the status-
quo next period. Second, we will discuss the case in which the consumption shares are
discretionary (the status-quo consumption shares are always equal to 0, even if players
agree to increase consumption in any period). A player making an offer will always exploit
a status-quo which prescribes 0 consumption to the responder. However, the status-quo
will affect the solution significantly20.

Next, we consider a mandatory status-quo (0, 0, ϕ), where all the components can
be changed, with the caveat that ϕ is the minimum investment share. The first mover
faces an unconstrained optimization problem (as the opponent’s acceptance condition is
not binding).

Proposition 4. If the status-quo is endogenous, with a mandatory minimum investment share,
ϕ > 0, the first mover at t=0 behaves as a dictator: increases the investment share to his ideal level
ϕ∗i , if ϕ∗i > ϕ, or keeps it at ϕ, if ϕ∗i 6 ϕ, and consumes all the residual surplus.

Proof. At t = 1, in equilibrium, the proposer leaves the opponent with the minimum
consumption share as defined by the status-quo and consumes the remaining surplus (as
investment is set to 0 at the end of the game). Then, at t = 0, as Ki = −∞ for i = 1, 2,
the acceptance condition is not binding. The first mover can implement his ideal division
(1, ϕ∗i ) if ϕ∗i 6 ϕ or (1, ϕ) otherwise.

This result also extends to the case in which all the initial status-quo components are 0,
x = y = 0 = ϕ21, or the game has a longer horizon.

Second, we consider the case in which the status-quo consumption shares are discre-
tionary (i.e., they remain equal to 0, even if players have previously agreed to consume
a positive amount). In this case, it is obvious that the proposers extract all the available
surplus, however, differently from the previous case (in Proposition 4), a first mover has no
incentive to invest, regardless of his level of patience. To see this, consider the last period,
using Proposition 1, the proposer extracts all the surplus, as the rival’s status-quo consump-
tion share is 0. Then, at the beginning of the game, the proposer’s ideal division would be
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(1, 0), to consume all the available surplus, as, given the alternating-offer procedure, only
his rival would consume a positive share in the next stage. However, since the minimum
mandatory investment share is ϕ > 0, the proposer is constrained to invest ϕ and consumes
all the residual surplus. Therefore, in this case differently from the fully mandatory case in
Proposition 4, both proposers can consume a positive share (but leave the opponent with 0
per-period consumption)22.

4. The Infinite-Horizon Case

In this section, we extend the analysis to the infinite-horizon case. Some of the features
of the finite-horizon model can be re-established. In particular, players can move to a Pareto
superior outcome, if the status-quo is inefficient, this is in line with Bowen et al. (2014).

To see this, consider the problem for the proposer is in (4)–(10). For T = ∞, the state
variables are the status-quo, st (which is either the latest agreement, if any, or the initial
status-quo, s), and the capital stock, kt. If players agree to change the status-quo, then it
must be that the proposer gains, see (4), and using (7), the responder is also (weakly) better
off. Hence, the status-quo is implemented, if Pareto efficient, otherwise players can move
to a Pareto superior outcome.

Next, we show that there is an indeterminacy of equilibria in terms of consumption
divisions in the steady-state. Any Pareto efficient split (x, 1− x) can arise in equilibrium.

Proposition 5. The steady-state MPE is to implement the division (x, y, λ/G), with x, y ∈ [0, 1],
and x + y = 1.

Proof. See Appendix C.

To understand this result, consider the investment I = ϕF(k), first. This must be
equals to the depreciated capital λk, in the steady-state kt = k for any t. With a linear
production function, F(k) = Gk, the investment share is independent of the capital stock,
as ϕ = λ/G.23 The investment and consumption problems are now fully disjoined. Since
any division (x, 1− x) is Pareto efficient, these can all be part of the steady-state MPE.

The indeterminacy in the steady-state is fully driven by the assumption of a linear
production function. On one hand, this assumption allows us to enrich part of the analysis,
as, for instance, differently from the literature, we can consider varying degree of capital
depreciation (see footnote 9). On the other hand, in the steady-state, the investment and
consumption problems become fully disjoined.

Therefore, in this sense, the analysis of the dynamics is more insightful than the one
related to the steady-state of our model. Of course, the two-stage game in our paper is the
simplest set-up dealing with the joint problem of consumption and investment.

5. Concluding Remarks

We have investigated the role of the status-quo in a bargaining game where players can
influence the size of the future surplus. We have shown that even in a simple two-period
model, the status-quo plays a crucial role in determining the extent to which policy changes
can be implemented. Another key determinant is the asymmetry in players’ patience.
Compromises are more likely to take place if a farsighted/patient party can compensate
a myopic one. Moreover, a depreciating state may encourage even myopic parties to
take some steps towards policy reforms. For the infinite-horizon problem, although the
steady-state investment is obvious, we obtain a multitude of possible outcomes in terms
of consumption splits, including extreme ones where a party does not consume anything.
Moreover, it remains open the issue of which dynamics can lead to a specific steady-state
and therefore which mechanisms can encourage more equalitarian agreements.

Another interesting extension would be to relax the simplifying assumption of a
linear production function and investigate richer steady-states where the consumption and
investment problems remain intertwined.
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Finally, we have considered three main types of status-quo, however, others may also
be interesting to explore. For instance, whenever a party rejects an offer, all the available
surplus may be invested automatically. This may create significantly different dynamics
(as now a farsighted party may prefer the status-quo more often) and raises the issue of
which status-quo is superior for society.
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Appendix A. Proof of Proposition 1

The Lagrangian for the optimization problem (11) and (12) is

L1 = max
x1,ϕ1∈[0,1]

ln(x1(1− ϕ1)Gk1)−m1(ln(s21Gk1)− ln(1− x1)(1− ϕ1)Gk1) (A1)

The first order conditions are x1, ϕ1, λ1 > 0 and

1
x1
− m1

1− x1
6 0; x1

(
1
x1
− m1

1− x1

)
= 0 (A2)

− 1 + m1

1− ϕ1
6 0; ϕ1

(
−1 + m1

1− ϕ1

)
= 0 (A3)

ln(s21Gk1)− ln((1− x1)(1− ϕ1)Gk1) 6 0, (A4)

m1[ln(s21Gk1)− ln((1− x1)(1− ϕ1)Gk1)] = 0

It must be that x1 ∈ (0, 1). First, suppose x1 = 0, then (A2) cannot hold. Second,
suppose x1 = 1, then (A4) cannot hold (assuming s21 > 0). Since x1 ∈ (0, 1), then from (A2),
we obtain x1 = (1 + m1)

−1, with m1 > 0. Also for (A3) to hold, it must be ϕ1 = 0. Then,
(A4) becomes

ln(s21Gk1) = ln((1− x1)Gk1)

or x1 = 1− s21. Player 1 has no incentive to make an unacceptable offer at t = 1, as he
would obtain the status-quo share s11 6 1− s21

24. Hence, in equilibrium at t = 1, Player 1
proposes the division (1− s21, s21, 0), accepts any offer (y2, ϕ2) with y1 = 1− y2 > s10 and
ϕ2 = 0 and rejects it, otherwise. The same reasoning holds for Player 2.

Appendix B. Proof of Proposition 2

Without loss of generality, we focus on the case in which the first mover is Player 1.
Using the result of last-period solution, the Lagrangian for Player 1 at t = 0 is

ln(x10(1− ϕ10)Gk0) + δ1 ln(x10(1− λ + Gϕ10)Gk0) +

−m1[K2 − ln((1− x10)(1− ϕ10)Gk0)− δ2 ln((1− x10)Gk1)]
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The first order conditions are x10, ϕ10, m1 > 0 and

1 + δ1

x10
6 m1

1 + δ2

1− x10
; x10

(
1 + δ1

x10
−m1

1 + δ2

1− x10

)
= 0 (A5)

(δ1 + m1δ2)G
1− λ + Gϕ10

6
1 + m1

1− ϕ10
; ϕ10

(
(δ1 + m1δ2)G
1− λ + Gϕ10

− 1 + m1

1− ϕ10

)
= 0 (A6)

ln(1− x10)(1− ϕ10)Gk0 + δ2 ln(1− x10)Gk1 ≥ K2; (A7)

m1
[
K2 − ln((1− x10)(1− ϕ10)Gk0)− δ2 ln((1− x10)Gk1)

]
= 0

We next distinguish the case in which the status-quo payoff to the responder is finite
or not.

Case A. K2 is finite (y > 0, ϕ < 1).
It must be that x10 ∈ (0, 1). If x10 = 0, then condition (A5) is violated. If x10 = 1, then

condition (A7) is violated (as K2 is finite). From (A5) we obtain

x10 =
1 + δ1

1 + δ1 + m1(1 + δ2)
(A8)

with m1 > 0. Since m1 > 0, then the indifference condition (i.e., the equation in (A7)) must
hold. Any agreement in equilibrium is payoff-equivalent to Player 2 and equal to K2.

Next, we focus on the investment share. In equilibrium, it must be ϕ10 < 1. If ϕ10 = 1,
then (A7) cannot hold. Then in equilibrium ϕ10 can be either 0 or positive.

Case A1: ϕ10 > 0.
From condition (A6) we obtain

ϕ10 =
G(δ1 + m1δ2)− (1− λ)(1 + m1)

G(1 + m1 + δ1 + m1δ2)
(A9)

This case requires
G(δ1 + m1δ2) > (1− λ)(1 + m1) (A10)

(e.g., λ = 1 or Gδi > (1− λ) for any i). From the indifference condition (A7), we obtain

(1 + δ2) ln(1− x10) + ln(1− ϕ10) + δ2 ln(1− λ + Gϕ10) = (A11)

= (1 + δ2) ln y + ln(1− ϕ) + δ2 ln(1− λ + Gϕ)

By using (A8) and (A9), (A11) becomes

(1 + δ2) ln
(

m1(1 + δ2)

f1(m1)

)
+ ln

(
l(1 + m1)

G f1(m1)

)
+ δ2 ln

(
l(δ1 + m1δ2)

f1(m1)

)
=

= (1 + δ2) ln y + ln(1− ϕ) + δ2 ln(1− λ + Gϕ) (A12)

or
m1+δ2

1 (1 + m1)(δ1 + m1δ2)
δ2

f1(m1)2(1+δ2)
=

(
y

l(1 + δ2)

)1+δ2

(1− ϕ)(1− λ + Gϕ)δ2 (A13)

with

f1(m1) = 1 + δ1 + m1(1 + δ2)

l = G + 1− λ
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Hence, a solution m1 > 0 to (A13) determines the SPE demands (x10, ϕ10) in (A8)
and (A9), as long as Player 1’s payoff φ1 is not smaller than the status-quo payoff K1,
which implies

(1 + δ1) ln(x10) + ln(1− ϕ10) + δ1 ln(1− λ + Gϕ10) > (A14)

(1 + δ1) ln x + ln(1− ϕ) + δ1 ln(1− λ + Gϕ)

as Player 1 can always implement the status-quo division

1− x10 = y

ϕ10 = ϕ

since (A11) and (A14) would be obviously satisfied. Hence, if the status-quo is not Pareto
efficient, the first mover can improve his position by implementing (A8) and (A9) while
keeping his opponent’s payoff at the status-quo level (as (A11) holds), instead, if the status-
quo is Pareto efficient it will be implemented as Player 1 cannot implement a division
which would give Player 1 a higher payoff, without making Player 2 worse off. Note that
we can also exclude the existence of two solutions payoff-equivalent to Player 1 but where
Player 2 is better off in one of them. To see this, assume, by contradiction, the existence of
these 2 equilibria. If one is strictly superior to Player 2, then the acceptance condition is not
binding, m1 = 0 and Player 1 can consume all the surplus, which is a contradiction.

Case A2: ϕ10 = 0.
This case requires that (A10) does not hold

G(δ1 + m1δ2) ≤ (1− λ)(1 + m1) (A15)

(e.g., 1 − λ > δiG for any i, hence ϕ∗i = 0). As m1 > 0 (K2 is finite), the indifference
condition, (A7), with ϕ10 = 0 implies

(1 + δ2) ln(1− x10) = ln(y(1− ϕ)) + δ2 ln(y(1− λ + Gϕ))− δ2 ln(1− λ)

Hence, the optimal demand is

x10 = 1− c2

with

c2 = y

[
(1− ϕ)

(
1− λ + Gϕ

1− λ

)δ2
] 1
(1+δ2)

for c2 < 1. Using (A8), then

1− c2 =
1 + δ1

1 + δ1 + m1(1 + δ2)

Therefore,

m1 =
c2(1 + δ1)

(1− c2)(1 + δ2)

Condition (A15) becomes

(1− λ− δ1G)(1− c2)(1 + δ2) + c2(1 + δ1)(1− λ− δ2G) > 0

As for case 1A, it must be that Player 1 prefers the division (1− c2, 0) rather than
implementing the status quo (condition (A14) must hold for x10 = 1− c2 and ϕ10 = 0),
otherwise players implement the status-quo.

Case B: K2 = −∞ (y = 0 and/or ϕ = 1).
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If Player 2 has no consumption in the status-quo, then Player 1’s optimization problem
is unconstrained, m1 = 0. Using (A8) and (A9), Player 1 demands all the residual surplus,
x10 = 1, and invests his ideal level ϕ∗1 (the optimum in a standard consumption-saving
problem, without bargaining)

ϕ∗1 =

{
Gδ1−(1−λ)

G(1+δ1)
for Gδ1 > (1− λ)

0 otherwise
(A16)

In Case B, the status-quo is implemented only if this is already the first mover’s ideal
division, (1, 0, ϕ∗1), otherwise the first mover will be able to change the status-quo and
implement (1, 0, ϕ∗1) while the responder’s payoff remains unchanged.

Appendix C. Proof of Proposition 5

Since in the steady-state, kt = k for any t, it must be ϕi = λ/G, for any i = 1, 2.
We next show that any efficient division of the remaining surplus can be an equilibrium.
Consider first the case in which players makes acceptable offers every period. Let x1 (y2,
respectively) be the steady-state MPE consumption share Player 1 (2) demands over the
residual surplus. When making an offer, oi, Player i needs to consider that the status-quo is
the previous agreement, i.e., his opponent’s offer, oj. Hence, Player 1’s problem is

max
x1∈[0,1]

1
1− δ2

1
ln(x1(1− λ/G)Gk) +

δ1

1− δ2
1

ln((1− y2)(1− λ/G)Gk) (A17)

s.t.
ln((1− x1)(1− λ/G)Gk)

1− δ2
2

+
δ2

1− δ2
2

ln(y2)(1− λ/G)Gk) ≥ (A18)

ln(y2(1− λ/G)Gk)
1− δ2

2
+

δ2

1− δ2
2

ln((1− x1)(1− λ/G)Gk)

In the steady-state, Player 1 obtains the shares x1 whenever he makes an offer and
(1− y2) otherwise. The acceptance condition (A18) ensures that Player 2 prefers to accept
the offer o1 = (x1, λ/G). The Lagrangian for Player 1’s problem is

L1 =
1

1− δ2
1

ln(x1(1− λ/G)Gk) +
δ1

1− δ2
1

ln((1− y2)(1− λ/G)Gk)

−m1

[
ln(y2(1− λ/G)Gk)

1− δ2
2

+
δ2

1− δ2
2

ln((1− x1)(1− λ/G)Gk)

− ln((1− x1)(1− λ/G)Gk)
1− δ2

2
+

δ2

1− δ2
2

ln(y2(1− λ/G)Gk)

]

The FOC of the Lagrangian with respect to x1 is

1
x1(1− δ2

1)
6

m1

(1− x1)
(
1− δ2

2
) ; x1

(
1

x1(1− δ2
1)
− m1

(1− x1)
(
1− δ2

2
)) = 0

Hence,

x1 =
1− δ2

2
m1(1− δ2

1) + 1− δ2
2

For m1 > 0, the indifference condition is

1
1− δ2

2
ln(1− x1) +

δ2

1− δ2
2

ln(y2) =

1
1− δ2

2
ln(y2) +

δ2

1− δ2
2

ln(1− x1)
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This implies 1− x1 = y2. Similarly for Player 2, y2 is

y2 =
1− δ2

1
m2(1− δ2

2) + 1− δ2
1

The indifference condition leads to the same condition: x1 + y2 = 1. Hence, any Pareto
efficient division of the remaining surplus can be a steady-state equilibrium. An initial
status-quo (x, y) with x + y = 1 will persist over time.

Notes
1 See for instance The Economist (14 November 2021) “Was COP26 in Glasgow a success?”, at https://www.economist.com/

international/2021/11/14/was-cop26-in-glasgow-a-success (accessed on 1 December 2021).
2 The Financial Times (15 July 2021): “The flimsy case for cutting UK foreign aid” at https://www.ft.com/content/cb5bfb35-1883

-42a8-895c-d8b0361e55b7 (accessed on 1 December 2021).
3 According to the Financial Times (see https://www.ft.com/content/1da85edc-b223-47e0-a312-55ffbffe3f00 (accessed on 13 June

2022)) the unilateral rewriting of the Northern Ireland protocol by the UK government only two years after signing the Brexit
deal “has generated a wave of criticism from Brussels, Dublin, Washington and Tory MPs”. This is among the elements raising
the question whether a better compromise could have been reached.

4 According to the Financial Times, the trade deals signed after Brexit “were often “copy and paste” versions of deals the UK
already enjoyed as part of the EU”, see https://www.ft.com/content/f6d9bafe-f5a9-4d63-a672-79949c7f2881 (accessed on 22
December 2021).

5 Although the focus in [1] is on political parties negotiating over the US budget, their framework can be applied in any case
in which policy emerges as a result of the interactions of actors. These may be, for instance, political parties in a minority
governments (which can be the norm in some countries, e.g., Italy) or different factions in a majority government.

6 Also [1] indicated as an interesting future avenue the case in which “the size of the budget is endogenous and determined by
policy choice”.

7 A recent contribution assessing the Italian experience is in [3].
8 Some of the results can be extended to the CES utility function, but the analysis is significatly more tractable under logarithmic

fuctions. Ref. [1] deals only with logarithmic functions, for the same reason.
9 Often, for tractability, in consumption-saving problems (without bargaining), capital is assumed to depreciate fully after a single

period (λ = 1), see for instance [9], p. 33. We can relax this unrealistic assumption and investigate the case of varying degrees of
depreciation.

10 We have also investigated the case of a random-proposer procedure, however, the analysis becomes more complex without
adding further insights from a qualitative viewpoint.

11 As shown, in footnote 9, this is without loss of generality.
12 To simplify we omit the subscript t = 1 in players’ offers.
13 To see this, we write the factor f (δ), in (18), as a function of ϕ∗.
14 Henceforth, we drop the subscript t = 0.
15 The value of the initial capital stock k0 is irrelevant: either let it be 1 or φi and µi are interpreted as equilibrium payoff coefficients

(which added to (1 + δi) ln(k0) give the payoff to a proposer and a responder, respectively).
16 Generally, a status-quo with 0 investment (x, y, 0) would be preserved, when at least one player is impatient. The crucial condition

for preserving (x, y, 0) is G(δi + miδj) 6 (1− λ)(1 + mi) with the multiplier mi > 0, with i, j = 1, 2 and i 6= j.
17 This can be generalized to other λ > 0, except λ = 1, as the status-quo (with ϕ = 0) would be inefficient and never implemented

in equilibrium (unless δi = 0, for any i).
18 This is captured by µ1 in the figure, due to the indifference condition, µ1 = K1.
19 With these motivating examples, we set ϕ > 0. However, this is not a crucial assumption. Even if players were allowed to

disinvest the following proposition would still hold.
20 An alternative scenario would be that a player gets a very small share ε > 0 rather than 0, in the status-quo. In this case the

analysis follows the same arguments as in the proof of Proposition 2, Case A1 (the acceptance condition must be binding, as the
responder would prefer the status quo and consume almost all the surplus at the end of the game rather than any offer with 0
consumption at the beginning of the game). Hence, it relies on numerical solutions. For ε→ 0, we obtain the result presented in
the paper.

21 It also holds for other concave per-period utilities (beyond the logarithmic function), as the result is driven by the non-binding
acceptance constraint (a player accepts any division when the status-quo results in getting nothing).

https://www.economist.com/international/2021/11/14/was-cop26-in-glasgow-a-success
https://www.economist.com/international/2021/11/14/was-cop26-in-glasgow-a-success
https://www.ft.com/content/cb5bfb35-1883-42a8-895c-d8b0361e55b7
https://www.ft.com/content/cb5bfb35-1883-42a8-895c-d8b0361e55b7
https://www.ft.com/content/1da85edc-b223-47e0-a312-55ffbffe3f00
https://www.ft.com/content/f6d9bafe-f5a9-4d63-a672-79949c7f2881
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22 In a longer-horizon game, a proposer could consume a positive share for more than one period, therefore, investing could again
become profitable to proposers.

23 We investigated the case of a Cobb-Douglas production function, however, the analysis becomes intractable ([2] also deals only
with a linear production function).

24 A fortiori, this would hold if the status-quo investment share were allowed to be positive at the end of the game.
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