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Abstract: In this paper, a detailed survey is presented for the analysis and control of networked
evolutionary games via the matrix method. The algebraic form of networked evolutionary games
is firstly recalled. Then, some existing results on networked evolutionary games are summarized.
Furthermore, several generalized forms of networked evolutionary games are reviewed, including
networked evolutionary games with time delay, networked evolutionary games with bankruptcy
mechanism, networked evolutionary games with time-varying networks, and random evolutionary
Boolean games. The computational complexity of general networked evolutionary games is still
challenging, which limits the application of the matrix method to large-scale networked evolutionary
games. Future works are finally presented in the conclusion.

Keywords: networked evolutionary games; time delay; bankruptcy mechanism; random evolutionary
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1. Introduction

Evolutionary game theory was introduced by biologists to investigate the evolution of
species [1–4]. The last few decades have witnessed the wide applications of evolutionary
game theory in communications, networking, and social physics [5–8]. In the evolutionary
game, an important concept is the evolutionarily stable strategy, which was proposed by
Smith and Price in [1]. Different from the classical Nash equilibrium, which is immune
to the strategy deviation of one player, the evolutionarily stable strategy prevents several
players choosing alternative strategies, which is an equilibrium refinement of the classical
Nash equilibrium [9]. Another essential concept of evolutionary game theory is replicator
dynamics, which is one of the most important continuous evolutionary dynamics [10].
The replicator dynamics indicate whether or not the evolution will converge to a certain
profile, which provides an elegant and powerful means to investigate the evolutionarily
stable strategy [11]. In the last few years, both the evolutionarily stable strategy and
replicator dynamics have been widely discussed [12–14]. Particularly, the relation between
the evolutionarily stable strategy and the dynamical equilibria of replicator dynamics was
explored in [15].

Classic evolutionary games are based on uniformly mixed forms, i.e., they assume
each player plays with all others or randomly chosen ones. Due to the influence of a
complex environment, each player in the evolutionary game may only capture the infor-
mation from a part of the players. Accordingly, the topological structure between players
plays a significant role in the evolutionary games, which can be described in terms of a
network [16,17]. The evolutionary games played on the networks are called networked evo-
lutionary games, which has attracted extensive attention from physicists [17], mathematical
biologists [18,19], and so on [20–23]. In the network, nodes represent players, and edges
describe the interaction relationship among players. The existing results on networked
evolutionary games are mainly based on statistical approximation [24] and simulation
analysis [18], which are not convenient for the theoretical analysis and optimization of
general networked evolutionary games [25].
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Recently, a new mathematical tool, the semi-tensor product (STP) of matrices, has
been proposed and successfully applied to the analysis and control of logical dynamic
systems [26,27]. Using the STP method, the topological structure and stability of logical
networks were deeply investigated [28,29]. Later, several basic control problems of logical
control networks were studied, such as stabilization [30–35], controllability [36,37], optimal
control [38–40], and observability [41]. For some generalized forms of logical dynamic
systems, the analysis and control problems were also extensively discussed, including
delayed logical networks [42–44], probabilistic logical networks [45,46], switched logical
networks [40,47], and perturbed logical networks [48–51].

The STP method was also used for the modeling, analysis, and control of networked
evolutionary games [52–54]. As soon as the strategy updating rule is assigned, the fun-
damental evolutionary equation can be determined as a k-valued logical dynamic system
via the local information. Accordingly, the fundamental evolutionary equation can be
expressed in an algebraic form by using STP. Then, from the fundamental evolutionary
equations of all the players, the strategy profile dynamics of networked evolutionary games
can be constructed [52]. The fundamental evolutionary equation and strategy profile dy-
namics are crucial to analyzing the dynamic behaviors of networked evolutionary games.
Under the matrix-based framework, several fundamental problems of networked evolu-
tionary games were considered via the existing results of logical networks. For example,
based on the topological structure analysis of logical networks, a criterion was proposed for
verifying the existence of stationary stable profiles [52,55]. Since then, several other mean-
ingful problems of networked evolutionary games have been well investigated, including
Nash equilibrium [56,57], potential equation [58], stable degree of strategy profiles [59],
strategy consensus [60], and strategy optimization [61,62]. Particularly, the evolutionarily
stable strategy of both homogeneous and heterogeneous networked evolutionary games
was investigated via the STP method [63]. However, there exist fewer results discussing
the relation between the evolutionarily stable strategy and the replicator dynamics for
networked evolutionary games [64].

In some recent studies, the matrix-based framework has been extended to networked
evolutionary games with various generalized forms; for example, networked evolutionary
games with time delay [65–68], networked evolutionary games with bankruptcy mech-
anism [69–72], networked evolutionary games with time-varying networks [73–76], and
random evolutionary Boolean games [77–81]. In this paper, we present a detailed survey of
the recent development of networked evolutionary games and their generalized forms via
the matrix-based method.

The remainder of this paper is organized as follows. Section 2 presents the definition
and mathematical model of networked evolutionary games. Then, the model and recent
developments corresponding to several generalized forms of networked evolutionary
games are introduced in Section 3. Section 4 is a brief conclusion.

2. Preliminaries
2.1. Networked Evolutionary Games

In this subsection, we review the model of networked evolutionary games [52]. Before
we give the definition of networked evolutionary games, we briefly recall some basic con-
cepts, including a network graph, fundamental network game, and strategy updating rule.

Definition 1. A network graph is defined by (N, E), where N = {1, · · · , n} and

E = {(α, β) : α, β ∈ N, and there exists an edge from α to β}

represent the set of nodes and the set of edges, respectively. (N, E) is called an undirected graph
if (α, β) ∈ E implies that (β, α) ∈ E. Otherwise, it is called a directed graph. Furthermore, α ∈ N
is called the l-neighbor of β ∈ N, denoted by α ∈ Ul(β), if there exists a path between α and β with
length 0 ≤ l′ ≤ l. In particular, U0(β) := {β}.
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A network graph (N, E) is said to be homogeneous if either it is directed and all
nodes have the same in-degree and out-degree or it is undirected and |U1(α)| = |U1(β)|,
∀ α, β ∈ N. Otherwise, it is said to be heterogeneous.

A normal form game consists of three fundamental ingredients: (i) the set of n players
N = {1, · · · , n}; (ii) the set of strategies for each player Sα = {1, · · · , kα}, ∀ α ∈ N, where
we denote S := ∏n

α=1 Sα as the set of profiles; (iii) the payoff function cα : S→ R, ∀ α ∈ N.

Definition 2. A normal form game is called a fundamental network game if N = {1, 2} and
S1 = S2 := S = {1, · · · , k}.

Definition 3. A strategy updating rule of a networked evolutionary game, denoted by Π, is
expressed as

xα(t + 1) = fα(xβ(t), cβ(t); β ∈ U1(α)), ∀ α ∈ N, (1)

where xα(t) represents the strategy of player α at time t, cα(t) represents the payoff of player α at
time t which is usually calculated by

cα(t) =
1

|U1(α)− 1| ∑
β∈U1(α)\{α}

cα,β(t), ∀ α ∈ N (2)

or
cα(t) = ∑

β∈U1(α)\{α}
cα,β(t), ∀ α ∈ N, (3)

cα,β(t) represents the payoff of player α in the fundamental network game with player β at time t,
and fα represents a mapping deciding the strategy of player α at the next time.

There are several common strategy updating rules, such as unconditional imitation
with fixed priority [18], unconditional imitation with equal probability [52], myopic best
response adjustment [82], and the simplified Fermi rule [83]. We briefly introduce these
strategy updating rules below. We denote x(t) := (x1(t), · · · , xn(t)) ∈ S.

• Unconditional imitation with fixed priority: If β∗ = arg maxβ∈U1(α)
cβ(t), then xα(t +

1) = xβ∗(t). If the arg max set is not a singleton, that is, arg maxβ∈U1(α)
cβ(t) =

{β∗1, · · · , β∗r } and r ≥ 2, then

xα(t + 1) = xβ∗(t), β∗ = min{β∗1, · · · , β∗r }. (4)

• Unconditional imitation with equal probability: If β∗ = arg maxβ∈U1(α)
cβ(t), then

xα(t + 1) = xβ∗(t). Otherwise, arg maxβ∈U1(α)
cβ(t) = {β∗1, · · · , β∗r } and r ≥ 2 is

satisfied. In this case, let

P{xα(t + 1) = xβ∗µ(t)} =
1
r

, µ ∈ {1, · · · , r}. (5)

• Myopic best response adjustment: Denote Oα(t) = arg maxxα∈Sα
cα(xα, x−α(t)), where

x−α ∈ S−α = ∏β 6=α Sβ. If xα(t) ∈ Oα(t), then xα(t + 1) = xα(t). If xα(t) /∈ Oα(t) and
|Oα(t)| = 1, then xα(t + 1) = Oα(t). Otherwise, assume Oα(t) = {β∗1, · · · , β∗r } and
r ≥ 2. Then, (4) or (5) can be used.

• Simplified Fermi rule: Randomly choose a neighbor β ∈ U1(α)\{α}. Let

xα(t + 1) =
{

xα(t), if cα(t) ≥ cβ(t),
xβ(t), otherwise.

(6)

Next, we give the concept of a networked evolutionary game as follows [52].

Definition 4. A networked evolutionary game, denoted by ((N, E), G, Π), consists of three funda-
mental ingredients as follows:
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(i) A network graph (N, E);
(ii) A fundamental network game G. If (α, β) ∈ E, then players α and β play the fundamental

network game G;
(iii) A strategy updating rule Π.

The networked evolutionary game is a special kind of game on graphs [84] where
the payoff and strategy updating rule of each player only depend on the actions and
payoffs of their 1-neighbor in the graph. Furthermore, a networked evolutionary game
((N, E), G, Π) is said to be homogeneous if the network graph (N, E) is homogeneous.
Otherwise, the networked evolutionary game is said to be heterogeneous.

Consider a networked evolutionary game ((N, E), G, Π). A profile s∗ = (s∗1 , · · · , s∗n) ∈
S is called a Nash equilibrium if

cα(sα, s∗−α) ≤ cα(s∗α, s∗−α), ∀ sα ∈ Sα, ∀ α ∈ N.

2.2. Mathematical Modeling of Networked Evolutionary Games

In this subsection, we review the fundamental evolutionary equation of networked
evolutionary games. Furthermore, based on the STP method, we establish the algebraic
forms of the fundamental evolutionary equation and strategy profile dynamics.

Note that cβ(t) in the strategy updating rule (1) depends on the strategies of its
2-neighbor. Thus, the strategy updating rule (1) can be further expressed as

xα(t + 1) = gα(xβ(t); β ∈ U2(α)), ∀ α ∈ N. (7)

In the following, we call (7) the fundamental evolutionary equation of player α,
∀ α ∈ N.

In fact, the fundamental evolutionary Equation (7) is a k-valued logical dynamic
system. Then, letting i ∼ δi

k and x = nn
α=1xα and using the properties of STP, one can

convert the fundamental evolutionary Equation (7) into an equivalent algebraic form:

xα(t + 1) = Lαx(t), (8)

where Lα ∈ Lk×kn or Lα ∈ Υk×kn is satisfied, which is determined by the specific strategy
updating rule. Based on the fundamental evolutionary Equation (7), the strategy profile
dynamics can be defined as

x(t + 1) = Lx(t), (9)

where L = L1 ∗ · · · ∗ Ln is called the profile transition matrix.
The following example is used to illustrate the procedure of obtaining the profile

transition matrix.

Example 1. Given a networked evolutionary game, the network graph and payoff bi-matrix are
shown in Figure 1 and Table 1, respectively.

Figure 1. The network graph.
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Table 1. Payoff bi-matrix.

Pα\Pβ 1 2

1 (2, 1) (0, 0)

2 (0, 0) (1, 2)

(i) Assume that the strategy updating rule is an unconditional imitation with fixed
priority. Then, fα, α = 1, 2, 3, 4 can be figured out as in Table 2. Letting 1 ∼ δ1

2
and 2 ∼ δ2

2 , one has the algebraic form of fundamental evolutionary equation as
xα(t + 1) = Lαx(t), α = 1, 2, 3, 4 with L1 = δ2[1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2], L2 =
δ2[1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2], L3 = δ2[1 1 1 2 1 2 2 2 1 1 1 2 1 2 2 2] and L4 =
δ2[1 1 1 2 1 2 2 2 1 1 1 2 1 2 2 2]. Then, the strategy profile dynamics is derived below:

x(t + 1) = Lx(t),

where L = L1 ∗ L2 ∗ L3 ∗ L4 = δ16[ 1 1 1 4 1 16 16 16 1 1 1 16 13 16 16 16].
(ii) Consider the myopic best response strategy with equal probability. In this situation,

the algebraic form of fundamental evolutionary equation is xα(t + 1) = L̂αx(t), α =
1, 2, 3, 4 with L̂1 = δ2[1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2], L̂2 = δ2[1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2],

L̂3 =

[
1 1/2 1 1/2 1/2 0 1/2 0 1 1/2 1 1/2 1/2 0 1/2 0
0 1/2 0 1/2 1/2 1 1/2 1 0 1/2 0 1/2 1/2 1 1/2 1

]
and

L̂4 =

[
1 1 1/2 1/2 1/2 1/2 0 0 1 1 1/2 1/2 1/2 1/2 0 0
0 0 1/2 1/2 1/2 1/2 1 1 0 0 1/2 1/2 1/2 1/2 1 1

]
Accordingly, the strategy profile dynamics is derived below:

x(t + 1) = L̂x(t),

where L̂ =

1 1/2 1/2 1/4 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1/2 1/4 0 0 0 0 0 0 0 0 0 0 0 0
0 1/2 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1/2 1/2 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/2 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0 1/2 0 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0
0 0 0 0 1/4 0 0 0 0 0 0 0 1/4 0 0 0
0 0 0 0 1/4 0 1/2 0 0 0 0 0 1/4 0 0 0
0 0 0 0 1/4 1/2 0 0 0 0 0 0 1/4 0 0 0
0 0 0 0 1/4 1/2 1/2 1 0 0 0 0 1/4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 1



.
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Table 2. From payoffs to dynamics.

payoff 1111 1112 1121 1122 1211 1212 1221 1222

c1 2 2 2 2 0 0 0 0

c2 4/3 1 2/3 1/3 0 2/3 1/3 1

c3 3/2 1/2 0 1/2 1 0 1 3/2

c4 3/2 0 1 1 1/2 1/2 0 3/2

payoff 2111 2112 2121 2122 2211 2212 2221 2222

c1 0 0 0 0 1 1 1 1

c2 1 2/3 1/3 0 2/3 4/3 1 5/3

c3 3/2 1/2 0 1/2 1 0 1 3/2

c4 3/2 0 1 1 1/2 1/2 0 3/2

Recently, using the STP method, the networked evolutionary game has been widely
studied, including the topological structure [57], Nash equilibrium [56,57], evolutionary
stable strategy [63], stable degree of strategy profiles [59], and strategy consensus [60].

3. Networked Evolutionary Games with Generalized Forms

In this section, we recall some new developments for several generalized forms of
networked evolutionary games, including networked evolutionary games with time delay,
networked evolutionary games with bankruptcy mechanism, networked evolutionary
games with time-varying networks, and random evolutionary Boolean games.

3.1. Networked Evolutionary Games with Time Delay

It is usually assumed that each player updates the strategy at the next time only based
on the strategies of its neighbors at the last time, such as in (7). Actually, due to the existence
of information channel congestion and human interference, the information may need a
certain time to transfer, which means that time delay is inevitable in many practical process
of information transmission. Furthermore, as was discussed in [67,85], the player can
remember the strategies of its neighbors in the last finite steps. Therefore, it is reasonable to
consider networked evolutionary games with time delay.

A networked evolutionary game with time delay is described as ((N, E), G, Π− I),
where (N, E) and G are the same as in Definition 4, and the strategy updating rule Π− I is
expressed as

xα(t+ 1) = fα(xβ(t− τ + 1), · · · , xβ(t), cβ(t− τ + 1), · · · , cβ(t) : β ∈ U1(α)) , α ∈ N. (10)

Particularly, if the strategies of all players at the next time only depend on the strategies
of their neighbors at time t− τ + 1, then strategy updating rule (10) can be simplified as

xα(t + 1) = fα(xβ(t− τ + 1), cβ(t− τ + 1) : β ∈ U1(α)), α ∈ N. (11)

Similar to the derivation of (7), the fundamental evolutionary equations of networked
evolutionary games with strategy updating rules (10) and (11) can be expressed as

xα(t + 1) = gα(xβ(t− τ + 1), · · · , xβ(t) : β ∈ U2(α)), α ∈ N (12)

and
xα(t + 1) = gα(xβ(t− τ + 1) : β ∈ U2(α)), α ∈ N, (13)

respectively. Since xα ∈ Sα, ∀ α ∈ N, (12) and (13) are indeed logical dynamic systems
with time delay, which can be converted into equivalent algebraic forms by using the STP
method. In recent years, a large number of excellent results has been proposed for investi-
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gating the logical dynamic systems with time delay, including topological structure [86],
stability [87,88], stabilization [44,89,90], controllability [91–95], and observability [95–97].

For networked evolutionary games with time delay, the profile trajectory was proposed
to describe the strategy updating process, and then the Nash equilibrium and convergence
of networked evolutionary games with time delay were investigated [65–68]. Specifically,
Wang and Cheng [66] proved that a potential networked evolutionary game with time-
invariant delay (11) converges to a pure Nash equilibrium under a kind of myopic best
response adjustment rule. Zhao et al. [67] verified the existence of a Nash equilibrium for
the networked evolutionary game with time-invariant delay (10) and designed a free-type
strategy sequence to guarantee that the considered networked evolutionary game converges
to the Nash equilibrium. Furthermore, the dynamics of networked evolutionary game with
other kinds of time delay were also discussed, including different length delay [65] and
switched time delay [68].

3.2. Networked Evolutionary Games with Bankruptcy Mechanism

It is universal that players exit from a game [69,72]. For example, due to the low profits
or other reasons, several financial institutions may go bankrupt in a short time. Another
example is the death of individuals in a practical ecosystem. In these economical or
biological systems, any individual should maintain the lowest amount of profit to survive,
and otherwise, individuals will disappear from the game. Therefore, it is meaningful to
introduce a bankruptcy mechanism into the networked evolutionary games.

In the networked evolutionary games with a bankruptcy mechanism, a new strategy
“bankruptcy” represents the situation that the player is bankrupt. Furthermore, given
0 6 aα 6 1, we let Tα = aαPN

α be the survival payoff for player α, where PN
α is the payoff of

player α when all players choose cooperation.
Then, a networked evolutionary game with bankruptcy mechanism is described as

((N, E), G, Π− I I), where G represents the snowdrift game or hawk-dove game. The payoff
bi-matrix of fundamental network game G is shown in Table 3, and the strategy update
rule Π− I I is expressed as

xα(t + 1) =
{

bankruptcy, if cα < Tα,
fα

(
{xβ(t), cβ(t) : β ∈ U1(α)}

)
, otherwise,

(14)

cα is defined in (3), and fα is the unconditional imitation updating rule.

Table 3. Payoff bi-matrix for a game with bankruptcy.

Pα\Pβ Cooperate Defect Bankruptcy

cooperate (R, R) (S, T) (0, 0)

defect (T, S) (P, P) (0, 0)

bankruptcy (0, 0) (0, 0) (0, 0)

By incorporating a bankruptcy mechanism, Wang et al. [72] investigated the catas-
trophic behaviors in evolutionary games via the computer simulation method. Using STP
method, Wang et al. [70] proposed an algebraic framework for the networked evolution-
ary games with a bankruptcy mechanism and studied the strategy optimization control
problem. Furthermore, the strategy optimization of networked evolutionary games with
memories under the bankruptcy mechanism was investigated in [69]. Recently, a state feed-
back controller has been designed to maximize the long-term average payoff of networked
evolutionary games with a bankruptcy mechanism [71].

3.3. Networked Evolutionary Games with Time-Varying Networks

It is clear that many economic activities indicate an obvious fact that each player is
unceasingly able to choose to abandon their opponents for more payoff. Correspondingly,
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the topology structure of a network graph is changed along with the evolutionary game.
As was proved in [98], it is indeed possible for players to make some new permanent
connections with neighbors who have not yet linked. Thus, it is reasonable to consider a
type of NEG with time-varying networks.

A networked evolutionary game with time-varying networks consists of four ingre-
dients: (i) m network graphs M := {1, 2, · · · , m}, where we denote (N, Ez) as the z-th
network graph, where Ez is the set of edges in the z-th network graph, z ∈ M; (ii) a
fundamental network game G; (iii) a player’s strategy updating rule, which is expressed as

xα(t + 1) = fα,z
(
xβ(0), xβ(1), . . . , xβ(t) : β ∈ U1,z(α)

)
, ∀ α ∈ N, (15)

where U1,z(α) is the neighbors of player α in the z-th network graph; (iv) a network
updating rule, which is expressed as

z(t) = h
(
x(0), x(1), . . . , x(t)

)
, (16)

where h : St+1 →M determines the selection of a network graph at time t.
In the following, we particularly introduce the network updating rule.
Denote cz

α(t) = ∑β∈U1,z(α)
cα,β(t) and Qα,z(t) = arg maxxα∈Sα

cz
α(xα, x−α(t− 1)) as the

payoff of player α and the strategy adopted by player α at time t in the z-th network,
respectively. Then, the expected revenue function of player α at time t is defined as
ERα,z(x∗α, x−α(t− 1)) = cz

α(x∗α, x−α(t− 1)), where x∗α ∈ Qα,z(t).
For the player α, the network that maximizes the payoff at time t is

Wα

(
x(t− 1)

)
: = arg max

z∈M
ERα,z(x∗α, x−α(t− 1)), x∗α ∈ Qα,z. (17)

Then, the number of players who want to attend the z-th network at time t is

δz
(

x(t− 1)
)
=
∣∣∣{α | α ∈ N and z ∈Wα

(
x(t− 1)

)}∣∣∣ , z ∈ M. (18)

The network updating rule can be described as follows: If z∗ = arg maxz∈M δz
(

x(t−
1)
)
, then z(t) = z∗; if |Pl > 1|, then

z(t) = max
{

z∗ | z∗ ∈ M and z∗ ∈ arg max
z∈M

δz
(
x(t− 1)

)}
. (19)

The algebraic form of networked evolutionary games with time-varying networks
was established in [75]. Based on the algebraic form, Zhu et al. [76] and Yuan et al. [74]
investigated the strategy optimization problem of networked evolutionary games with
time-varying networks. A free-type strategy sequence was designed to guarantee the con-
vergence of Nash equilibrium [75]. Furthermore, Fu et al. [73] investigated the networked
evolutionary games with finite memories and time-varying networks and revealed the
relationship between the strict Nash equilibriums and the fixed points of given networked
evolutionary games.

3.4. Random Evolutionary Boolean Games

An n-person random evolutionary Boolean game with the fixed strategy updating
rule can be shown as follows:{

xα(t + 1) = fα

(
X(t), wα(t, pα), y(t)

)
, α = 1, · · · , n;

y(t) = h
(
X(t)

)
,

(20)

where X(t) =
(

x1(t), x2(t), · · · , xn(t)
)
∈ Dn represents the strategy profile at time t,

wα(t, pα) ∈ D is a random variable satisfying P{wα(t, pα) = 1} = pα and 0 6 pα 6 1 which
represents the possibility for each player to make right choice, y(t) ∈ D is the result of the
game, fα : Dn+2 → D, α = 1, 2, . . . , n and h : Dn → D are Boolean functions.
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Adding pseudo-players as the control in an n-person random evolutionary Boolean
game, the n-person random evolutionary Boolean game can be expressed as{

xα(t + 1) = fα

(
X(t), U(t), wα(t, pα), y(t)

)
, α = 1, · · · , n;

y(t) = h
(
X(t)

)
,

(21)

where X(t) ∈ Dn, y(t) ∈ D, wα(t, pα) ∈ D are the same to that in (20), U(t) =
(
u1(t), . . . ,

um(t)
)
∈ Dm represents pseudo-players’ the strategy profile, fα : Dn+m+2 → D, α =

1, 2, . . . , n and h : Dn → D are Boolean functions.
Using the STP method, the necessary and sufficient conditions were proposed for the

set stabilization of n-person random evolutionary Boolean games [77,79]. Furthermore,
the optimal control problem of n-person random evolutionary Boolean games was studied
in [78].

As another type of random networked evolutionary games, random entrance was
introduced to deal with the case that the number of new players attending the game at
any time is a random variable [81]. In the network graph of networked evolutionary
games with random entrance, the nodes consist of a major player and active minor players,
and the edges exist only between the major player and the minor players. The network is
determined by the random entrance. For the networked evolutionary games with random
entrance, Zhao et al. [81] designed a state feedback controller to ensure the maximum
payoffs of major player. After that, a class of networked evolutionary games with both
random entrance and time delays was studied in [80].

3.5. Some Related Findings of STP Method

Several other methods are available for studying the networked evolutionary games,
including simulation-based analysis and a statistical approach. The characteristics of these
method were shown in Table 4. Under the simulation-based analysis, several evolutionary
games on special networks were studied in [18,22]. In recent years, Martin Nowak’s group
has made several significant contributions to the analysis of networked evolutionary games
by using statistical models [99–101].

Table 4. Comparative analysis of various methods for networked evolutionary games.

Method Benefits Limitations

Simulation-based analysis Efficient for special networked
evolutionary games

Not convenient for theoretical
analysis

Statistical
Powerful when dealing with

large-scale networked
evolutionary games

Not convenient for theoretical
analysis

STP
Convenient for the theoretical
analysis of general networked

evolutionary games

Computational complexity
hampers its application to

large-scale networks

Using the STP method to study networked evolutionary games has several unique
advantages. On one hand, the dynamics of a networked evolutionary game can be trans-
formed into an algebraic form, based on which the methods and tools in classical control
theory can be used to analyze and control networked evolutionary games directly. On the
other hand, the methods and results of Boolean games can be easily generalized to multi-
strategy games.

It should be noted that the computational complexity of analyzing and controlling
networked evolutionary games based on the STP method is exponential regarding the
number of players, since it is required to handle matrices of size kn × kn or even larger. As
discussed in [102], the STP method cannot be used to handle Boolean networks with more
than approximately 30 nodes in practice. Thus, the STP method is hard to use in large-scale
networked evolution games. However, practical social networks often have a large number
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of players [103]. Accordingly, it is a challenge and potential research gap to reduce the
computational complexity of the STP method and make it more applicable to large-scale
networked evolution games.

4. Conclusions

In this paper, we have recalled several new developments for the algebraic form of
networked evolutionary games. Furthermore, we have reviewed some generalized forms of
networked evolutionary games, including networked evolutionary games with time delay,
networked evolutionary games with bankruptcy mechanism, networked evolutionary
games with time-varying networks, and random evolutionary Boolean games. Then, we
have briefly summarized the existing excellent results of networked evolutionary games
with generalized forms. Finally, we have comparatively analyzed the various existing
methods for networked evolutionary games and pointed out the benefits and limitations of
the STP method.

From this survey, one can see that most of the existing works only pay attention to
the theoretical investigation of modeling, Nash equilibrium, convergence, and the strategy
optimization problem in networked evolutionary games. Actually, evolutionary game
theory is widely used in communications, networking, and social physics. The theoretical
results on the bankruptcy mechanism and time-varying networks can be further explored
in some practical scenarios. In addition, the payoff matrix is fixed in the existing results,
which can be assumed to be changed [104,105] in future works. Note that computational
complexity is the main obstacle when using a matrix-based method to investigate the
considered networked evolutionary games. Future work will consider the problem of
reducing the computational complexity.
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