
Citation: Greenwood , G.W.; Ashlock,

D. A Representation for Many Player

Generalized Divide the Dollar Games.

Games 2023, 14, 19. https://doi.org/

10.3390/g14020019

Academic Editors: Ulrich Berger,

Richard McLean and Kjell Hausken

Received: 4 January 2023

Revised: 11 February 2023

Accepted: 19 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

A Representation for Many Player Generalized Divide the
Dollar Games
Garrison W. Greenwood 1,* and Daniel Ashlock 2

1 Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97207-0751, USA
2 Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
* Correspondence: greenwd@pdx.edu

Abstract: Divide the dollar is a simplified version of a two player bargaining problem game devised
by John Nash. The generalized divide the dollar game has n > 2 players. Evolutionary algorithms
can be used to evolve individual players for this generalized game but representation—i.e., a genome
plus a move or search operator(s)—must be carefully chosen since it affects the search process. This
paper proposes an entirely new representation called a demand matrix. Each individual in the
evolving population now represents a collection of n players rather than just an individual player.
Players use previous outcomes to decide their choices (bids) in the current round. The representation
scales linearly with the number of players and the move operator is a variant of an evolution strategy.
The results indicate that this proposed representation for the generalized divide the dollar game
permits the efficient evolution of large player populations with high payoffs and fair demand sets.

Keywords: player representation; bargaining games; divide the dollar; N-player mathematical games;
evolution strategies

1. Introduction

Bargaining occurs whenever two or more people must negotiate benefits associated
with some economic activity. Nash [1] constructed a nonzero-sum, two player game to
study bargaining situations. Divide the Dollar (DD) is a simpler version of Nash’s bargaining
game [2,3]. The DD game is of interest because it simply models the structure inherent in
many bargaining problems. In a canonical DD game n = 2 players propose how to split $1.
Each player simultaneously submits a demand indicating what fraction of the dollar they
want1. If the demands sum to one dollar or less, then each player gets a payoff equal to
their demand. However, both players get no payoff if the demand total is more than $1.

There are many ways to split $1. For example, (0.75, 0.20) or (0.48, 0.47) both have
the same demand total, but the second split is considered “fairer” because both players
get roughly the same payoff. A Nash equilibrium (NE) in a game exists when no player can
get a higher payoff by unilaterally changing his strategy. It is easy to show every (integer)
split of exactly $1 is a NE. It is difficult to predict human behavior in a subspace filled with
NE because there is no a priori reason to favor one NE over another. For example, humans
would see a 50:50 split as fairer than say an 80:20 split but preferences are not encoded in
a NE.

Ashlock and Greenwood [4] described a Generalized Divide the Dollar (GDD) game
which also splits the surplus but it has n > 2 players. Games with n > 5 players are called
many player games.

It is not easy to train agents whose demands are fair with a demand total near $1.
Evolutionary algorithms have a long history of successfully finding good solutions to
difficult problems by mimicking neo-Darwinism mechanics. Representation plays a crucial
part in determining how successful the search will be. A representation includes both
the genome, which encodes problem solutions, and the move or search operator which

Games 2023, 14, 19. https://doi.org/10.3390/g14020019 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g14020019
https://doi.org/10.3390/g14020019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://doi.org/10.3390/g14020019
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g14020019?type=check_update&version=2

Games 2023, 14, 19 2 of 15

determines which genotypes can be visited from a given initial population. Ashlock et. al
has extensively studied representations in a variety of problem domains [5–8].

Greenwood and Ashlock [9] described a representation for a 3-player GDD game. The
genome was a neural network and two move operators were investigated: differential
evolution and a CMA-ES algorithm. Both evolutionary algorithms successfully found good
synaptic weight values for the neural networks with a slight advantage in going to the
CMA-ES algorithm. The problem is the neural network architecture is practically limited to
no more than 4 or 5 player GDD games.

The main contribution of this paper is it describes a proposed representation for
many player GDD games that simplifies the search for near-optimal solutions. There is
no limitation on n other than it be finite. The genome is a demand matrix where each row
gives the demands for all n players. The number of rows depends on how much historical
information from previous rounds is recorded. Each row has a fitness value that depends
on the standard deviation of the demands (a measure of fairness) and the demand total. An
aggregate of the row fitnesses gives the fitness of the demand matrix. This genome scales
linearly with the number of players n and a variation of a (µ + λ) evolution strategy [10]
is the move operator that finds parameter values. A representation for a 10-player and a
20-player GDD game is described.

The demand matrix as a representation genome is novel for two reasons. There are two
approaches to evolutionary game theory: (1) the concept of an evolutionary stable strategy,
and (2) explicit modeling of players and observing how strategy frequencies change over
time. Spatial games and well-mixed games with replicator dynamics are typical examples
of the second approach2. Conversely, the demand matrix is an entirely new representation
where each member of the population is a set of n-players rather than a population of
individual players. Secondly, it introduces a different perspective on fitness. In most games
fitness is tied to player payoffs. That is, fitness is an individual player attribute. With
demand matrix representations fitness is still a single value, but it applies to the choices
made by a collection of players rather than to individual players. Fitness is now an n-player
attribute. It still drives evolution, but it disconnects survival from individual payoffs. The
authors are unaware of any previous work using this concept of fitness. The work described
here is also completely different from the method used in [9] where individual players
were co-evolved.

2. The Importance of Representation

Let S denote a search space and G the genome space. An evolutionary algorithm
explores the search space S, looking for the best solutions. G contains all possible solutions
to a problem whereas S may not—i.e., S ⊂ G is typical. A simple example will help fix
the idea. Suppose solutions to a problem are encoded as binary strings and let i = 00 . . . 0
and j = 00 . . . 1 be two solutions. Clearly i, j ∈ G but whether i, j ∈ S depends on the
move operator. A move operator determines which solutions can be visited by the search
algorithm (in this case, an evolutionary algorithm). If the move operator flips a random bit
then i, j ∈ S because a search can move from i to j in a finite number of steps. However, if
the move operator flips an even number of bits then both i and j cannot be in S regardless
of how many move operations take place. Clearly a representation must contain both a
genome definition and a move operator description.

Associated with each i ∈ S is a fitness value fi. Fitness is a measure of solution quality;
high fit solutions are better solutions. Let F = { fi | i ∈ S}. Then S ∪ F forms a kind
of abstract fitness landscape. The search algorithm, using move operators, explores this
landscape looking for the peaks as they mark good solutions.

In previous work a representation for GDD players was presented [9]. But that
representation is practical only for small games with no more than 4 or 5 players. A new
representation allows investigation of many player games. Results for 10 and 20 player
GDD games are presented in this paper. The 20 player game is presented to illustrate the
method scales linearly.

Games 2023, 14, 19 3 of 15

3. Background
3.1. Bargaining Games

Nash [1] defined a 2-player bargaining situation as any situation where two individuals
have an opportunity to collaborate for mutual benefit in more than one way. Bargaining
entails making demands or demands until players reach an agreement (or terminates if no
agreement is possible) on how to share some surplus generated by the players. Nash goes
on to define a bargaining problem game—commonly called the Nash demand game—with
2 players and a set A of alternatives. If the players agree on some alternative a ∈ A, then a
is the outcome. If they fail to reach agreement then outcome d is the result. Players have
expected utilities, indicating their preferences among the alternatives, and can veto any
outcome other than d. Nash derived a unique solution to this problem.

Agastya [11] generalized the Nash bargaining game to n players. He considered a set
of N = {1, 2, . . . , n} players who form non-empty subsets called coalitions. A real-valued
convex characteristic function describes the surplus different coalitions can obtain. At each
iteration a randomly chosen member of a coalition bargains with his counterparts from
other coalitions. (The chosen member’s demand is for himself, but it must be compatible
with the demands of others in the coalition.) Coalitions cannot form unless all of its
members demands can be met. Eventually demands may be satisfied for some coalitions
but not necessarily all of them.

Newton [12] also studied bargaining games with player coalitions. A player’s strategy
consists of a demand and a set of players with whom he is willing to form a coalition.
Players can adjust their strategies by changing their demand or by seeking other coalitions
guaranteed to produce a higher payoff. A player may identify multiple suitable coalitions.
In that case he joins the larger coalition. Fairness was determined by coalition selection.

The DD game, described in the introduction, dates back more than 30 years [2]. It
is a special case of the Nash demand game. It elegantly models situations where two
players can benefit by making “reasonable” demands but get nothing if they are too greedy.
Moreover, it models situations where some surplus is unused. Fairness is determined by
the closeness of player’s demands. A key feature is players cannot easily coordinate their
demands because the game naturally contains multiple equilibria. Binmore [13] claimed
DD is the archetypal version of bargaining problems where the surplus amount is common
knowledge. In the canonical DD the surplus is $1.

3.2. Prior DD Research

There are two issues with DD games: (1) every split of exactly $1 is a Nash equilibrium,
and (2) any split that totals to $1 + ε, where ε > 0 is arbitrarily small, completely wastes
the resource (both players get nothing). A number of changes have been proposed to
address these issues but surprisingly all of those proposed changes fundamentally altered
the nature of the DD game.

In the canonical DD game players somewhat temper their demands because they
realize high demands increase the odds of getting zero payoff. Several researchers removed
that risk. For example Anbarci [14] proposed if two players demand d1 + d2 > 1, then
player i would get a payoff of fidi where fi = (1− di)/dj. Each player is guaranteed to get
something in return—even when the demand total exceeds $1. demands in the Anbarci
game could be in fractions of one cent. This is unrealistic whenever an economic activity
involves the physical exchange of money.

Brams and Taylor [2] devised a method to fully distribute the dollar even if the demand
totals were less than $1. They also reduced the number of Nash equilibria by making them
all payoff equivalent. But now a new problem was introduced: the player with the lowest
demand could actually receive almost the entire dollar as a payoff. For instance, demands
of (0.98, 0.99) would result in payoffs of (0.98, 0.02).

Rachmilevitch [15] also allowed non-integer demands but this continuous game has
only one Nash equilibrium whereas the canonical DD has many Nash equilibria. Addition-
ally rules were derived to split $1 among the players if the demand total exceeded $1.

Games 2023, 14, 19 4 of 15

de Clippel et. al [16] described a DD game for n > 2 players. However, that game
version has little in common with all other DD investigations. In their game players do
not submit personal demands but instead issue a report stating what was a fair portion
of a dollar that other players deserve. Payoffs are then distributed if a specific division is
compatible with an aggregate of all reports. Essentially under this game the payoff to a
given player ultimately depends entirely on the opinion of the other players. It is not clear
how this approach provides any insight into the bargaining process because players do not
submit personal demands.

3.3. The Generalized Divide the Dollar Game

Ashlock and Greenwood [4] defined a GDD game where there are n > 2 players
splitting some dollar amount. GDD preserves all of the features of a canonical DD game:
players get their demands if the demand total is less than or equal to $1, and demand totals
exceeding $1 result in zero payoff to all players. GDD does allow for a small subsidy—i.e.,
a small amount above $1 where players can still get their demand. However, this subsidy
can only be used if the bids are “fair” in the sense they are roughly equal so no player gets
exploited. The objective is to find a set of n fair bids with a bid total as close as possible
to $1.

In the generalized game every point in a compact and convex subspace S ⊂ Rn
+

represents a demand total. Each player picks a coordinate of this point and that coordinate
specifies the player’s demand. Players are said to be coordinated—i.e., the demand total
is ≤ $1—if the point is located on or beneath the surface of an (n− 1)-simplex. Figure 1
shows the coordinated subspace in R3

+.

Figure 1. The coordinated subspace for 3-player GDD game. Each point represents a set of demands.
The triangle with vertices (1 0 0), (0 1 0), and (0 0 1) is a 2-simplex. Every point on the simplex has a
demand total of $1. Coordinated demands lie on or beneath the simplex.

One minor change was made to the canonical DD game to accommodate many player
games. The original GDD work investigated a 3-player game and the amount to be split
was $1. But many player games have n > 5 players. In some many player games fair
demands would out of necessity be quite small if the amount split is left at $1. For example,
in a n = 20 player game fair demands would be around 0.05. To get around this problem
the amount to be split is increased to n/2 dollars. This increase means instead of a simplex
vertex at (0, 0, 1, 0, . . . , 0), it is now located at (0, 0, n/2, 0, . . . , 0). Players are considered
coordinated if the sum of their demands is less than or equal to n/2 dollars and such
demands are said to belong to a coordinated demand set. Choosing a larger dollar amount
to split means players can now have a fair demand set without having to make ridiculously
low demands. No other game changes were made.

Games 2023, 14, 19 5 of 15

Unlike the Agastya and Newton games, a GDD game is a grand coalition game; each
player bargains with the other n − 1 players. This distinction is important. Coalitions
cannot form unless they can satisfy all of its member’s demands. Coalition formation
also implies some semblance of fairness (at least within the coalition). It may be possible
for some coalitions to satisfy all of its member’s demands, but that does not necessarily
guarantee all n players may have their demands met. For instance, a player’s demand
may be so high that no coalition it joins can meet all of the member’s demands. Players in
both the Agastya and Newton games typically get zero payoff if they are unable to join a
coalition. Conversely, in a grand coalition players are forced to adapt their demands until
all can be met. Fairness is then measured by computing the standard deviation about the
demand mean of all n players.

An implementation of a GDD game was described in [9]. The representation consisted
of a neural network (NN) for the genome and two evolutionary algorithms for the move
operators. The neural network architecture is shown in Figure 2. All synaptic weights were
constrained to [−1.0, 1.0] with a sigmoid activation function and the output node demand
(d) was mapped to the unit interval.

Figure 2. The NN architecture. See text for explanation of inputs.

A series of 3-player tournaments were used to evaluate each NN. Each NN has 5 inputs:
O1 and O2 are the opponents demands in the two previous time steps m− 1 and m− 2
where m is the current time step. The input C = {0, 0.5} indicates whether those demands
and the demand by the evaluated NN produced a coordinated demand (C = 0.5) or not
(C = 0). The C inputs provide more useful information than just inputting the three
previous demands of the evaluated NN. The C inputs serve as rewards like those used in
reinforcement learning. All 3-player tournaments produced coordinated demands.

The NN architecture does not scale well with n. As n increases the number of inputs
grows by a factor of 2, but there is an exponential growth in the number of synaptic weights.
For instance, in an n = 3 player game the NN has 6 inputs and 35 synaptic weights. In a
game with 3 times as many players there are 3 times the number of NN inputs, but nearly
10 times the number of synaptic weights. Obviously these NNs will require a considerably
longer evolutionary search to find good synaptic weight values. From a practical standpoint
the NN representation is limited to at most 4 or 5 players.

Games 2023, 14, 19 6 of 15

4. A Many Player Representation

Due to the practical limitations of the NN representation a different representation is
needed for a many player game. The genome used in the representation is a 2M × n real
matrix where n is the number of players and M is the number of previous round outcomes
recorded. All matrix entries are in the half-open interval (0, 1] and are interpreted as a
player’s demand. Thus, each row of this demand matrix gives the demands of all n players.
Of interest is in an iterated version of GDD which will allow information from previous
rounds to help choose a demand set for the current round. Each matrix row is indexed by
an M-bit binary string in the range 0, 1, . . . , 2M − 1. The index indicates the outcome of the
previous M rounds where ‘1’ indicates a coordinated demand and ‘0’ an uncoordinated
demand. A row is called coordinated if the sum of the demands is less than or equal to n/2
dollars and a coordinated demand matrix has all coordinated rows. The i-th column of the
demand matrix gives the demand options available to the i-th player. A demand matrix
format such as this permits a player to adapt his demand based on the choices made by the
other players in previous rounds.

Table 1 shows an example genotype for a game with M = 2 and n = 4 players. $2 is
the amount to be split. Suppose the previous round was coordinated but the one prior to
that was uncoordinated. Then the players demands in the current round are taken from
the demand matrix row with label ‘01’. Thus, the 4 players in the current round would
demand, respectively, 0.20, 0.44, 0.72, and 0.60. This demand total is less than $2 and so
the demands are coordinated. Consequently, in the next round the 4 player demands are
specified in the row with index ‘11’. Observe the third row is uncoordinated so this is an
example of an uncoordinated demand matrix.

The labels associated with each row indicate the outcomes from previous rounds and
are used only to choose the strategy (demand) for each player in the current game round.
Recent outcomes do not indicate which demands were previously chosen. Nor do they say
anything about the goodness of the demand set in the current round. The goodness of a
specific set of demands is determined by the row fitness which is described below.

Table 1. Example Genotype.

Player

Index 1 2 3 4

00 0.64 1.58 0.62 0.24
01 0.20 0.44 0.72 0.60
10 0.42 0.34 0.66 1.42
11 0.62 0.64 0.10 0.82

The move operator is a variant of the (µ + λ) evolution strategy. In this evolutionary
algorithm µ parents undergo stochastic operations to create λ offspring. Both parents
and offspring are placed into a temporary population. After the fitness of all parents and
offspring is determined, the µ best fit individuals in the temporary population become
parents for the next generation; the others are discarded. In this work a variation is used
which is denoted by (µn + λn)-ES. The mechanics of the two algorithms are the same but
the change in notation is deliberate and important.

Suppose the (µ + λ)-ES notation was used to describe player evolution. Then a (1 + 9)-
ES would be interpreted as a single parent player creates 9 offspring players and the best fit
out of the 10 players becomes the parent player in the next generation. n independent runs
would be required to create an n player population. But here one player at a time is not
evolved, but rather an entire population of n players is evolved at a time. Consequently,
a (1 + 9)-ES under the (µn + λn)-ES notation means a single population of n players is
evolved to create 9 populations of n players and the best fit amongst them becomes the
parent population of n players for the next generation.

Games 2023, 14, 19 7 of 15

The move operation consists of intermediate recombination followed by mutation.
Recombination randomly chooses two rows i and j in the parent genotype. The component-
wise average of the two rows replaces row i. Mutation perturbs each demand with prob-
ability p = 0.1. The perturbation either increases or decreases the demand by 5% with
equal probability. All demands are constrained to the half-open interval (0, 1]. Decreasing
a demand always produces a demand greater than 0, but an increase could make the
demand greater than 1.0. Such demands are reflected from 1.0 as follows. Let di be the i-th
demand. Then

di =

{
2− di di > 1.0
di otherwise

(1)

Every row in the 2M × n matrix contributes to the fitness. Let rowj denote the j-th row.
The row fitness is given by

fitness(rowj) =
n

∑
k=1

dk −
n · 4dj

2
(2)

where 4dj represents the largest difference between any two demands in the j-th row.
The first term in Equation (2) is the demand total while the second term is a penalty for
unfairness in the set of n demands. Uncoordinated demand sets are automatically set to
zero row fitness.

Each individual in the evolution strategy population is a demand matrix for an n-
player population. All initial matrix values are randomly generated. The best fit individual
amongst the µn = 1 parent player and the λn = 9 offspring players is selected as the parent
player in the next generation. The row fitness values somehow need to be aggregated into
a demand matrix fitness value for this selection process to work. That is, the fitness of
an individual is an aggregate of its row fitnesses. The simplest aggregation method is to
average the row fitness values and that method proved effective.

The (µn + λn)-ES is run for a fixed number of generations. The parent from the final
generation is split apart with each player getting a different column of the demand matrix.
A player’s demand strategies are thus collected in a column vector~x ∈ RM, each component
indexed by an M-bit binary string representing previous round history. During an iterated
GDD game the player would choose the component of ~x with the correct history as his
demand in the current round.

5. Results & Analysis

Initially considered is a GDD game with n = 10 players and a history of M = 3 prior
outcomes. Thus each genotype is an 8× 10 matrix of demands. Choosing M = 3 was
deemed a good compromise between providing some variety in the demands a player can
choose from while keeping the demand matrix size manageable. A (µn + λn)-ES evolved
the n-player population with µn = 1 and λn = 12. The initial population was randomly
generated and the evolution strategy ran for 200 generations.

Tables 2–5 show the results at generations 0, 10, 100 and 200. Each row shows the
players’ demands for a specific 3 round history. A set of demands is coordinated if the
demand total in a row is less than or equal to n/2 = 5. The initial population is randomly
generated and two rows have uncoordinated demand sets. At generation 10 there is still
an uncoordinated demand set. By generation 100 all demand sets are coordinated. Notice
that as additional generations are processed the demand total of each row approaches the
optimal value of 5.

Games 2023, 14, 19 8 of 15

Table 2. demands at generation 0.

Players

History 1 2 3 4 5 6 7 8 9 10 Demand Total

000 0.436 0.300 0.854 0.127 0.640 0.965 0.536 0.247 0.293 0.260 4.657
001 0.026 0.267 0.494 0.597 0.483 0.500 0.954 0.067 0.524 0.387 4.299
010 0.550 0.621 0.847 0.226 0.505 0.890 0.544 0.994 0.357 0.832 6.365
011 0.435 0.529 0.080 0.107 0.387 0.342 0.082 0.971 0.046 0.737 3.715
100 0.420 0.135 0.505 0.220 0.794 0.567 0.366 0.800 0.983 0.379 5.170
101 0.330 0.514 0.065 0.350 0.580 0.428 0.851 0.602 0.441 0.013 4.174
110 0.205 0.184 0.428 0.468 0.162 0.437 0.406 0.765 0.504 0.797 4.357
111 0.619 0.785 0.097 0.202 0.701 0.777 0.027 0.169 0.324 0.269 3.970

Table 3. demands at generation 10.

Players

History 1 2 3 4 5 6 7 8 9 10 Demand Total

000 0.346 0.311 0.408 0.302 0.576 0.512 0.497 0.561 0.535 0.437 4.485
001 0.253 0.398 0.301 0.369 0.480 0.421 0.518 0.517 0.299 0.560 4.117
010 0.522 0.685 0.804 0.226 0.505 0.845 0.571 0.946 0.338 0.830 6.273
011 0.394 0.511 0.336 0.200 0.580 0.623 0.305 0.414 0.258 0.463 4.086
100 0.348 0.260 0.396 0.300 0.645 0.446 0.455 0.627 0.602 0.485 4.563
101 0.254 0.348 0.258 0.409 0.370 0.432 0.629 0.649 0.449 0.385 4.184
110 0.324 0.347 0.377 0.297 0.592 0.506 0.416 0.577 0.485 0.504 4.424
111 0.369 0.469 0.278 0.280 0.603 0.567 0.351 0.469 0.398 0.466 4.250

Table 4. demands at generation 100.

Players

History 1 2 3 4 5 6 7 8 9 10 Demand Total

000 0.425 0.423 0.471 0.466 0.522 0.534 0.534 0.526 0.509 0.533 4.943
001 0.488 0.433 0.437 0.458 0.519 0.513 0.536 0.536 0.533 0.528 4.980
010 0.489 0.463 0.451 0.428 0.510 0.533 0.537 0.550 0.512 0.506 4.979
011 0.453 0.425 0.445 0.423 0.521 0.514 0.537 0.537 0.513 0.525 4.892
100 0.443 0.460 0.445 0.477 0.512 0.526 0.513 0.516 0.534 0.533 4.958
101 0.400 0.447 0.430 0.426 0.531 0.515 0.532 0.536 0.494 0.524 4.835
110 0.405 0.401 0.393 0.455 0.553 0.538 0.547 0.542 0.541 0.511 4.887
111 0.477 0.442 0.461 0.471 0.493 0.527 0.543 0.523 0.530 0.529 4.996

Table 5. demands at generation 200.

Players

History 1 2 3 4 5 6 7 8 9 10 Demand Total

000 0.485 0.475 0.511 0.490 0.512 0.503 0.497 0.513 0.500 0.497 4.982
001 0.497 0.481 0.476 0.509 0.504 0.502 0.525 0.488 0.507 0.484 4.973
010 0.539 0.485 0.503 0.491 0.478 0.510 0.491 0.523 0.487 0.489 4.996
011 0.502 0.499 0.487 0.518 0.499 0.489 0.500 0.498 0.491 0.493 4.977
100 0.498 0.494 0.504 0.520 0.499 0.490 0.488 0.508 0.503 0.485 4.989
101 0.512 0.499 0.498 0.497 0.498 0.476 0.485 0.508 0.495 0.490 4.958
110 0.495 0.502 0.507 0.468 0.498 0.507 0.506 0.515 0.505 0.494 4.997
111 0.493 0.490 0.518 0.478 0.502 0.487 0.533 0.498 0.487 0.484 4.970

Games 2023, 14, 19 9 of 15

Figure 3 shows how the demands vary for each history index. The blue number next
to each box give the demand total for the respective range of demands. Notice in the initial
population there is a considerable variation of demands indicating almost no demand
equity. Conversely, by generation 200 the mean of the demands are clustered around 0.5
which produces near optimal demand totals. There is also little variation indicating fair
demand sets were found for every history index.

Figure 3. Range of demands at generation 0 (top) and generation 200 (bottom). Note the ordinate
axis scaling is different in the two plots. The blue numbers next to each box indicates the demand
total. The ‘+’ symbol indicates data outliers.

The 10 player game evolution had two uncoordinated rows in the initial population,
one at generation 10 and none at generation 100. These simulation results suggest the
evolutionary algorithm can find a coordinated demand matrix rather quickly. Intuitively
finding a coordinated demand matrix should not be that hard since, by definition, it
only has to have all coordinated rows—it does not require large demand totals in each
row. Simulation results also indicate running the evolutionary algorithm longer will
produce both higher row demand totals and fairer demands among the players. Although
both attributes are important, it is perhaps more imperative to emphasize fair demands
because it avoids exploitation. It is easy to determine the demand total, but how does one
measure fairness?

Every demand di ∈ (0, 1]. If rounded to the nearest cent, there are 100 non-zero de-
mands a player can make and 100n possible demand choices per round in an n-player game.
Every row in the demand matrix can be considered a set of n samples with sample mean

d̄ =
1
n

n

∑
i=1

di

and standard deviation

s̄ =

√
1

n− 1

n

∑
i=1

(di − d̄)2

The optimal solution of an n-player GDD game is {0.5}n because the demand total is
n/2 and with identical demands no player is exploited. The sample mean is an indicator
of how close the bid total is to n/2. That is, ∑ di → n/2 as d̄ → 0.5 from below3. A good

Games 2023, 14, 19 10 of 15

demand matrix has d̄ close to 0.5 in all rows so that the demand totals are near optimal
regardless of the history profile.

Figure 4 shows the row sample means of the parent demand matrix versus generations.
The row with history label ‘010’ had a sample mean above 0.6 for the first 32 generations
before evolution produced a coordinated demand set. After 186 generations all rows
converged with d̄ ≈ 0.498.

Figure 4. Row sample means versus generations for n = 10 players. There are 10 colored graphs,
each showing how a player’s sample mean varied during evolution. The red line is at d̄ = 0.5.

The standard deviation in a row measures the spread of the demands around the
sample mean. A small standard deviation means less spread. Thus, s̄ can be used as an
indicator of fairness. Empirical evidence suggests s̄0 = 0.02 is a reasonable upper bound
for fair demand sets. Figure 5 shows how the row standard deviations changed during the
evolutionary algorithm run. All rows had s̄ < s̄0 after generation 186.

Figure 5. Row standard deviations versus generations for n = 10 players. There are 8 colored graphs,
each one corresponding to a row in the demand matrix. All row deviations decreased to less than
0.02. The red line is at s̄ = 0.02.

A 20-player GDD game was also simulated. Due to the larger number of players, λn
was increased to 18 and the run terminated after 1000 generations. Figures 6 and 7 show

Games 2023, 14, 19 11 of 15

the sample means and standard deviations respectively. After some initial variability, all
rows converged to d̄ ≈ 0.499 and s̄ < s̄0 after 690 generations.

MATLAB was used for all simulations and to plot the results.

Figure 6. Row sample means versus generations for n = 20 players. There are 20 colored graphs,
each showing how a player’s sample mean varied during evolution. The red line is at d̄ = 0.5.

Figure 7. Row standard deviations versus generations for n = 20 players. There are 8 colored graphs,
each one corresponding to a row in the demand matrix. All row deviations decreased to less than
0.02. The red line is at s̄ = 0.02.

6. Discussion
6.1. Evolving Player Sets

Evolutionary algorithms have been extensively used to find good players for n-player
games. During each generation µ parents are perturbed to produce λ offspring. The normal
interpretation is each individual in the population is a separate player so µ = n. Here a
different approach was taken: every individual in the population is a set of n players.

The problem with evolving individual players is two-fold. First, it focuses the algo-
rithm on the wrong objective. The highest fit individual in the population is usually just
one player, not a set of n players. Even if the evolutionary algorithm uses elitism, where
the best fit individual always survives, being highly fit in one generation may not carry
over to future generations with different players (e.g., see [17–19]). A player’s opponents

Games 2023, 14, 19 12 of 15

never change when they are evolved as a set, making the notion of fitness more meaningful.
Second, the algorithm has to choose the best n players out of a pool of λ > n offspring. A
rather complex fitness calculation is required since it entails randomly picking multiple
sets of n out of λ individuals for evaluation. Treating each individual as a set of n players
avoids doing that. The end result is a more computationally efficient fitness evaluation.

6.2. Demand Matrix as a Representation

Often one talks about an evolutionary algorithm exploring a fitness landscape but the
move operator actually forces the algorithm to explore a search space S. This search space
consists of all genotypes that can be accessed from the initial population in a finite number
of move operations. In discrete fitness landscapers—e.g., a binary string genome—it is
straightforward to pick a move operator such that S ≡ G. However, if the genome is a
real-value vector then the fitness landscape is continuous and S ⊂ G if for no other reason
than every vector component xi ∈ Rk in the code has finite precision4.

Each column in the demand matrix constitutes a strategy vector for one of the players.
A player only stores his assigned column. The vector components are labeled with a finite
history index. A player selects a component with the appropriate history index as his
demand in the next round. These demands may change during the evolutionary algorithm
run which is analogous to a player trying different demands during a training session.
Thus, the evolution can be thought of as emulating some underlying decision process.

There are two histories that can become fixed points. The vector component with
index ‘000’ is a fixed point if that demand set is uncoordinated. Table 6 shows the history
trace for each possible history state in a coordinated demand matrix; history ‘111’ is a fixed
point in this case.

Table 6. History Trace.

History Index History Trace

000 000→ 001→ 011→ 111
001 001→ 011→ 111
010 010→ 101→ 011→ 111
011 011→ 111
100 100→ 001→ 011→ 111
101 101→ 011→ 111
110 110→ 101→ 011→ 111
111 111→ 111

One might think with a coordinated demand matrix only the demand with history
index ‘111’ need be kept since it is the only fixed point. Actually, the entire strategy vector
should to be kept. Players do not know the demands of other players since the only
feedback is the payoff (his demand if a coordinated demand set or zero payoff otherwise.)
A player might be tempted to increase his demand to get a higher payoff if the population
demands are at the ’111’ fixed point. However, that demand increase might produce an
uncoordinated set. In that case the history changes so keeping the entire strategy vector
lets the player respond accordingly. The player can always reduce the increased demand to
its original value to continue receiving positive payoffs.

6.3. Search Complexity

Each demand represents a coordinate of a point in Rn
+. The L1 norm of a vector from

the origin to this point is the demand set total. The optimal demand total is n/2 dollars and
every point with that L1 vector norm forms a simplex. All points on or beneath the simplex
surface represents a coordinated demand. Note that every point p in this coordinated
subspace is a point in the search space S and therefore also a point in the fitness landscape
S∪ F .

Games 2023, 14, 19 13 of 15

The optimum solution is all players demand 0.5, but that does not make the optimiza-
tion problem trivial. Essentially you are trying to evolve an n-dimensional real vector with
a small standard deviation among components and with an L1 norm of n/2. The global
optimum is at {0.5}n. Seeing as there are multiple ways to split the surplus exactly, there
are multiple local optima. In fact, every point on the simplex surface is a Nash equilibrium
since any unilateral demand increase results in a zero payoff for all players. These Nash
equilibria are not fitness equivalent.

Consider now a point in the coordinated subspace below the simplex surface. This
point is not a Nash equilibrium because a player could, within limits, increase his demand
and do better than the rest of the players. Such a point is not Pareto optimal either because
a unilateral demand increase by one player does not necessarily decrease the payoff of any
other player. The other players will still get their demand as a payoff so long as the L1 norm
is less than or equal to n/2. But even this region below the simplex surface has multiple
local optima. Let γ ∈ [0.00, 0.01, . . . , 0.49] and assume all n players choose the same γ for
their demand. The point p ∈ S with coordinates (γ, γ, . . . , γ) is in the coordinated subspace
below the simplex surface. The row fitness drops if any one player unilaterally changes his
demand. Therefore, any point in the neighborhood of p has lower fitness, which makes p a
local optimum.

Both d̄ and s̄ are needed to properly evaluate a set of n players. The demand total
is nd̄ and s̄ measures fairness. Consider a 2-player game with demands (0.99, 0.01). The
demand total 2d̄ =$1 is optimal, but the demands are grossly unfair. Conversely, a game
with demands (0.20, 0.19) is fair, but the demand total is well under $1.

The genome described in this paper scales linearly with n, unlike the neural network
approach. The neural network has 2n inputs and, assuming a hidden layer with one less
node, 4n2 − 1 synaptic weights. Conversely, the proposed genome has only 8n parameters
(demands) to evolve. In a 20-player game the neural network has nearly 1600 weights to
evolve whereas the proposed genome has an order of magnitude less parameters to evolve.
Due to these NN scaling problems, no comparison was made between the NN approach
and the approach described in this paper.

6.4. Algorithm Termination

The (µn + λn)-ES uses a fixed number of generations as the termination criteria. One
could instead terminate after the first generation that produced a coordinated demand
matrix. But further evolution is likely to produce fairer demand sets with higher demand
totals. Consequently, running a small number of generations after finding a coordinated
demand matrix is recommended.

7. Summary & Future Work

This paper described an intuitive representation for GDD games with many players.
The genome scales linearly with the number of players and a simple, efficient evolution
strategy can find near optimal player sets regardless of the number of players. Unlike
virtually all other evolutionary algorithms used to evolve game players, which evolves
players one at a time, in this approach each move operation evolves an entire set of n
players. The representation was used to successfully find players in 10 and 20 player
GDD games.

One of the interesting properties of the generalization of divide-the-dollar is that it
permits a fairly complex game specification by simply specifying the scoring set. A GDD
game can have subsidies [4], for example, through a simple modification of the scoring set.
The idea is an additional amount is made available to encourage play near the fair {0.5}n

range. This subsidy allows a players to receive a payoffs that sum more than n/2 if the
players demands are within the area covered by the subsidy. An example of a subsidy for
an n = 3 game is shown in Figure 8. The hemisphere is centered at (0.5 0.5 0.5) and every
point inside it is considered a coordinated demand. The subsidy generalizes smoothly to n
players—an n-dimensional subsidy is added to the standard scoring set.

Games 2023, 14, 19 14 of 15

Figure 8. The coordinated demand subspace for a 3-player GDD game with subsidies. The hemi-
sphere protruding from the 2-simplex face shows the subsidy.

The generalization obtained by creating a subsidy by adding a hemisphere to the
standard scoring set is one possible scoring set that has a clear meaning. In fact any
subset of Rn can serve as a scoring set; it is important that the set have a meaning or
interpretation. Sets with points that have negative coordinates might represent a model of
money laundering, for example, though the parties supplying the money to be laundered
would need a different objective score than other agent types.

In an earlier study [20] dynamic scoring sets were used in an n = 3 agent version
of GDD that studied the effect of having undependable subsidies—subsidies that are
sometimes available and sometimes not, without warning. This study opens to door to
studying scoring sets that can change between rounds of the game, modeling a stochastic
scoring environment. The technique pioneered in this study for evolving a structure that
specifies an entire cohort of players together may interact differently with dynamic payoff
sets than co-evolved individual agents.

In general the outcome of evolving game playing agents is highly dependent on the
agent’s representation. One obvious experiment would be to compare representations that
permit co-evolution of individual agents (for an n-player game), with the jointly evolved
agents presented in this study. The competitive advantage granted by each of the agent
evolved strategies would be an interesting quality to assess. It would also be interesting to
extend the demand matrix approach to other mathematical games. For example, a single
fitness value reflecting fairness might affect the outcome of a tragedy-of-the-commons game.
No limitations for finite population games are envisioned since each row of a demand
matrix is an extension of a payoff matrix used in 2-player games.

Author Contributions: Writing—original draft, G.W.G.; Writing—review and editing, D.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author has profited from comments from anonymous reviewers. Full
responsibility for the article rests with the author.

Games 2023, 14, 19 15 of 15

Conflicts of Interest: The author declares no conflict of interest.

Notes
1 In this work the terms “demand” and “bid” are interchangeable.
2 Some replicator dynamic games assume an infinite population size. Nevertheless, each member of this population is considered a

distinct player.
3 Only coordinated demand sets are of interest. An uncoordinated demand set has d̄ > 0.5.
4 Consider a real parameter x ∈ (0, 5]. x = π falls in this range. Irrational numbers cannot be precisely represented under finite

precision.

References
1. Nash, J. The bargaining problem. Econometrica 1950, 18, 155–162. [CrossRef]
2. Brams, S.; Taylor, A. Divide the dollar: Three solutions and extensions. Theory Dec. 1994, 37, 211–231. [CrossRef]
3. Alexander, J.M. Evolutionary game theory. In The Standford Encyclopedia of Philosopy; Summer 2021 ed.; Zalta, E., Ed.; Metaphysics

Research Lab, Stanford University: Stanford, CA, USA, 2021.
4. Ashlock, D.; Greenwood, G. Generalized divide the dollar. In Proceedings of the IEEE 2016 Congress Evolutionary Computation,

Vancouver, BC, Canada, 24–29 July 2016; IEEE Press: Piscataway, NJ, USA, 2016; pp. 343–350.
5. Ashlock, D. Exploring Representation in Evolutionary Level Design; Morgan & Claypool Publish: San Rafael, CA, USA, 2018.
6. Ashlock, D.; Gilbert, J. A discrete representation for real optimization with unique search properties. In Proceedings of the 2014

Symposium on Foundations of Computational Intelligence (FOCI), Orlando, FL, USA, 9–12 December 2014; pp. 54–61.
7. Ashlock, D.; Kim, E.; Ashlock, W. Fingerprint analysis of the noisy prisoner’s dilemma using a fintie-state representation. IEEE

Trans. Comput. Intell. AI Games 2009, 1, 154–167. [CrossRef]
8. Ashlock, D.; Ruz, G. A novel representation for boolean networks designed to enhance heritability and scalability. In Proceedings

of the 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Manchester,
UK, 23–25 August 2017; pp. 1–8.

9. Greenwood, G.; Ashlock, D. Evolving neural networks for a generalized divide the dollar game. In Proceedings of the IEEE 2022
Congress Evolutionary Computation, Padua, Italy, 18–23 July 2022; pp. 1–8.

10. Eiben, A.; Smith, J. Introduction to Evolutionary Computing; Natural Computing Series; Springer: New York, NY, USA, 2013.
11. Agastya, M. Adaptive play in multiplayer bargaining situations. Rev. Econ. Stud. 1997, 64, 411–426. [CrossRef]
12. Newton, J. Recontracting and stochastic stability in cooperative games. J. Econ. Theory 2012, 147, 364–381. [CrossRef]
13. Binmore, K. Game Theory and the Social Contract II; MIT Press: Cambridge, MA, USA, 1998.
14. Anbarci, N. Divide-the-dollar game revisited. Theory Dec. 2001, 50, 295–304. [CrossRef]
15. Rachumilevitch, S. Punishing greediness in divide-the-dollar games. Theory Dec. 2017, 82, 341–351. [CrossRef]
16. de Clippel, G.; Moulin, H.; Tideman, N. Impartial division of a dollar. J. Econ. Theory 2008, 139, 176–191. [CrossRef]
17. Nowak, M.; Sigmund, K. Evolutionary dynamics of biological games. Science 2004, 303, 793–799. [CrossRef] [PubMed]
18. Gong, L.; Gao, J.; Cao, M. Evolutionary game dynamics for two interacting populations in a co-evolving envirnoment. In

Proceedings of the 2018 IEEE Conference on Decision and Control, Miami Beach, FL, USA, 17–19 December 2018; pp. 3535–3540.
19. Adhikari, N.; Louis, S.J.; Liu, S.S.; Spurgeon, W. Co-evolving real-time strategy game micro. In Proceedings of the 2018 IEEE

Symposium Series on Computational Intelligence, Bengaluru, India, 18–21 November 2018; pp. 1990–1997.
20. Ashlock, D.; Greenwood, G. Modeling Undependable Subsidies with Three-player Generalized Divide the Dollar. In Proceedings

of the 2017 IEEE Congress on Evolutionary Computation, San Sebastián, Spain, 5–8 June 2017; pp. 1335–1342.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2307/1907266
http://dx.doi.org/10.1007/BF01079266
http://dx.doi.org/10.1109/TCIAIG.2009.2018704
http://dx.doi.org/10.2307/2971721
http://dx.doi.org/10.1016/j.jet.2011.11.007
http://dx.doi.org/10.1023/A:1010363409312
http://dx.doi.org/10.1007/s11238-016-9568-6
http://dx.doi.org/10.1016/j.jet.2007.06.005
http://dx.doi.org/10.1126/science.1093411
http://www.ncbi.nlm.nih.gov/pubmed/14764867

	Introduction
	The Importance of Representation
	Background
	Bargaining Games
	Prior DD Research
	The Generalized Divide the Dollar Game

	A Many Player Representation
	Results & Analysis
	Discussion
	Evolving Player Sets
	Demand Matrix as a Representation
	Search Complexity
	Algorithm Termination

	Summary & Future Work
	References

