
Citation: Ougolnitsky, G.; Usov, A.

Differential Game-Theoretic Models

of Cournot Oligopoly with

Consideration of the Green Effect.

Games 2023, 14, 14. https://doi.org/

10.3390/g14010014

Academic Editors: Yllka Velaj

and Ulrich Berger

Received: 15 December 2022

Revised: 16 January 2023

Accepted: 25 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Differential Game-Theoretic Models of Cournot Oligopoly with
Consideration of the Green Effect
Guennady Ougolnitsky * and Anatoly Usov

I.I. Vorovich Institute for Mathematics, Mechanics, and Computer Science, Southern Federal University,
344090 Rostov-on-Don, Russia
* Correspondence: gaugolnickiy@sfedu.ru; Tel.: +7-918-558-47-07

Abstract: We built and investigated analytically and numerically a differential game model of Cournot
oligopoly with consideration of pollution for the general case and the case of symmetrical agents. We
conducted a comparative analysis of selfish agents’ behavior (a differential game in normal form), their
hierarchical organization (differential Stackelberg games), and cooperation (optimal control problem)
using individual and collective indices of relative efficiency. The same analysis wasperformed for the
models with the green effect when players chose both output volumes and environmental protection
efforts. We used the Pontryagin maximum principle for analytical investigation and the method of
qualitatively representative scenarios in simulation modeling for numerical calculations. This method
allows for reducing the number of computer simulations, providing sufficient precision. As a result
of the comparative analysis, systems of collective and individual preferences were obtained.
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1. Introduction

A widespread approach to the analysis of game-theoretic models (particularly, dif-
ferential games) consists in the comparison of results obtained in the cases of selfish
players’behavior (differential games in normal form), their hierarchical organization (Stack-
elberg games), and cooperation (a differential game is reduced to the optimal control prob-
lem). For example, a successful illustration of this approach is presented by Zhang et al. [1].
A variant of the approach is described in Ougolnitsky [2]. Basing on Basar and Zhu [3],
Cairns and Martinet [4], and some other papers, we proposed in [2] a system of individual
and collective indices of the comparative (relative) efficiency for quantitative evaluation of
the different ways of organization of economic agents.

A convenient model for the comparative analysis of the different ways of organization
of economic agents is Cournot oligopoly (see Maskin and Tirole [5], Geras’kin [6,7], and
Algazin and Algazina [8,9]). For example, Xiao et al. [10,11] studied Cournot duopoly with
bounded rationality and investigated the equilibria. Raoufinia et al. [12] analyzed open-loop
and closed-loop solutions in a Cournot duopoly game with advertising. Al-Khedhairi [13]
considered non-trivial Cournot duopoly based on fractal differential equations. Julien [14]
investigated Cournot oligopoly with several Stackelberg leaders and followers. A compari-
son of Cournot and Stackelberg equilibria performed by Zouhar and Zouharova [15].

Together with a standard setup of the oligopoly model that describes a competition of
several firms ina market of homogeneous goods, it is interesting to consider the so-called
green effect. Usually, the green effect is concerned with supply chains (see Azevedo et al. [16],
Fahimnia et al. [17], and Sharma and Jain [18]). It is assumed in this case that the participants
of a supply chain invest inthe environmental protection in the processes of production and
transportation. The incurred costs are compensated by the willingness of environmentally
minded consumers to pay more for products with a green label.

However, the studies of Cournot oligopoly do not include a systematic comparative
analysis of the relative profit from the point of view of the whole society and different firms.
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Besides, the environmental externalities of economic activity and possible environmental
protection efforts are not considered.

Thus, the main idea of this paper consists in a comparison of the different ways
of organization of economic agents, such as competition, cooperation, and hierarchical
control, for differential Cournot oligopoly with pollution dynamics and differential Cournot
oligopoly with the green effect. The specific aim consists in building preference systems
based on individual and collective indices of relative efficiency.

The contribution of this paper and its novelty areas follows:

- A differential game-theoretic model of Cournot oligopoly with consideration of pollu-
tion for the general case and the case of symmetrical agents is built and investigated
analytically and numerically.

- A comparative analysis of selfish agents’ behavior (a differential game in normal
form), their hierarchical organization (differential Stackelberg games), and cooperation
(optimal control problem) using individual and collective indices of relative efficiency
is conducted.

- We performed the same analysis for the models with the green effect when players
chose both output volumes and environmental protection efforts.

- We constructed systems of collective and individual preferences.

In Section 2, we characterize the materials and methods of the investigation. In
Section 3, we build and investigate a differential game model of Cournot oligopoly for
the selfish behavior of players, their hierarchical organization, and cooperation. The case
of symmetrical players and the general case are considered. We applied the Pontryagin
maximum principle for analytical investigation and simulation modeling for numerical
calculations. We used a system of individual and collective indices of relative efficiency for
the quantitative comparison of the obtained results. In Section 4, similar work is performed
for the modelswith the green effect when players invest in environmental protection.
Section 5 concludes the paper.

2. Materials and Methods

The main analytical instrument of the investigation is the well-known Pontryagin
maximum principle [19]. For numerical calculations, we used an original method of
qualitatively representative scenarios in simulation modeling [20]. The idea consists in
choosing a relatively small number of control scenarios that providea sufficiently precise
description of the dynamics of the controlled system. For the substantiation of sufficiency,
two conditions are used, namely the conditions of internal and external stability. Suppose
an initial set of scenarios is chosen. It is internally stable if for any two scenarios from
this set, the respective payoffs of the players differ essentially. It is externally stable if for
any feasible scenario that does not belong to this set, we can find a scenario from this set
such that the respective payoffs of the players are close. The value of precision of such
approximations is chosen empirically and should not exceed 10% from the typical values
of payoffs.

For quantitative comparative evaluation of the different ways of organization of
economic agents (information structures of the respective game-theoretic models) from the
point of view of both the whole society and separate agents, we introduced a system of
relative efficiency indices [2], namely:

- collective indices of relative efficiency;

SCINE =
∑n

i=1 JNE
i

JC ; SCIST =
∑n

i=1 JST
i

JC ; SCIiST =
∑n

i=1 JiST
i

JC

The values JST
i and J IST

i determine the payoffs of the i-th player in the Stackelberg and
inverse Stackelberg games, respectively, when the i-th player is the leader. Any player can
become the leader; in our examples, it is the first player.
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- individual indices of relative efficiency.

KNE
i =

min
x∈NE

JNE
i (x)

JC/n
; KST

i =
JST
i

JC/n
; K IST

i =
J IST
i

JC/n

The payoffs are supposed to be non-negative.
We proposed a mathematical model that is a dynamic version of Cournot oligopoly

with consideration of environmental pollution. The main approach to its identification
is an expert estimate using available real data. There were five main parameters in the
model: (1) the concentration of pollutants in the environment in the initial moment of
time, (2) a coefficient of the pollutants’ emission during production, (3) a coefficient of
decay of the pollutants in the environment, (4) a maximal output for any firm, and (5) a
cost coefficient for each firm. For the numerical identification of their values, we used
the following reasonings. As a pollutant, we can consider carbon monoxide (CO). It is
toxic, and its admissible concentration in production premises is 20 mg/m3 during a
working day or 50 mg/m3 during an hour or 100 mg/m3 during 30 min. Based on this, the
concentration of pollutants in the environment in the initial moment of time varied from 1
to 50 mg/m3. The coefficient of the pollutants’ emission during production depends on the
production volume. For example, a coke chemical plant emits annually about 2000 tons
of carbon monoxide. Based on this, the value of pollutants’ emission varied from 0.1 to
30 tons per year; the maximal output for any firm varied from 5 to 70,000 tons per year,
and the cost coefficient for each firm varied from 1 to 50. The decay of many pollutants is
slow; for example, carbon monoxide decays only in the presence of a catalyst. Thus, we
varied the coefficient of decay of the pollutants from 0.1 to 30 kg per year. In addition,
discounting was considering in the model, and a discount factor was taken to be equal to
0.004 that corresponds to moderate inflation. The modeling was conducted at an interval of
1200 days.

3. Differential Game Model of Cournot Oligopoly with Consideration of Pollution

Let us consider a dynamic version of Cournot oligopoly with consideration of envi-
ronmental pollution and the linear equation of dynamics:

Ji =

T∫
0

e−rtα1(a− ci − x(t))xi(t)dt− e−rTα2y(T)→ max (1)

0 ≤ xi(t), ∀t ∈ [0, T], i = 1, . . . , n ; (2)

dy
dt

=
n

∑
i=1

kixi(t)−my(t), y(0) = y0. (3)

Here, {1, 2, . . . , n} is a set of firms (agents, players) competing in the manner of
Cournot oligopoly in a market of homogeneous goods; Ji is the i-th player’s profit in time
T; x(t) = ∑n

i=1 xi(t); xi is the output volume of the i-th firm (its strategy); the expression
in parentheses in Formula (1) determines the price for the produced good, depending
on the demand that is conversely proportional to the total output volume; α1 and α2 are
dimensioned coefficients that provide the fitness of dimension (for simplicity, they are
assumed to be equal to 1); y(t) is the volume of pollutants in the environment (a state
variable); ki is the coefficient of emission in the production of the i-th firm; a is the demand
parameter; ci is the cost coefficient of the i-th firm; m is the coefficient of pollution decay; r
is the discount factor; and T is the length of the game. The agents’ interaction is described
by their strategies and the final value of the state variable in the moment of time T.
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In the case of symmetrical agent s (ki, = k; ci, = c; xi, = x), the model in Formulas
(1)–(3) takes the form

J =
∫ T

0
e−rt(a− c− nx(t))x(t)dt− e−rTy(T)→ max (4)

0 ≤ x(t), ∀t ∈ [0, T], (5)

dy
dt

= knx−my(t), y(0) = y0. (6)

We supposed that all players use open-loop piecewise continuous strategies. The
agents may be selfish, so we have a differential game in normal form with Nash equilibrium
as its solution. In addition, the agents may cooperate, so the game is reduced to the optimal
control problem. Finally, a hierarchical organization is possible that is formalized by
differential Stackelberg and inverse Stackelberg games [21,22].

Let us first consider a selfish behavior of the agents and investigate the symmetrical
model in Formulas (4)–(6) using the Pontryagin maximum principle [19]. The Hamilton
function for each player has the form

H(x, u, λ) = (a− c− nx(t))x(t) + λ(knx(t)−my(t)),

where λ(t) is a conjugate variable. We obtain

∂H
∂x

= a− c− 2nx + knλ = 0

and
xNE =

a− c + knλ

2n
. (7)

Here, ∂2 H
∂x2 = −2n < 0. Therefore, the found value xNE maximizes the Hamilton

function if a − c + knλ > 0, or the value belongs to the domain of feasible strategies,
Formula (5). Otherwise, the point of maximum coincides with the lower bound of the set
of feasible strategies of the agent. A conjugate variable is determined from the boundary
value problem

∂λ

∂t
= rλ(t)− ∂H

∂y
= (r + m)λ(t); λ(T) = −1.

Then,
λNE

i = λNE(t) = e−(r+m)(T−t), (8)

and Formula (7) is a maximizer of the Hamilton function if a− c− kne−(r+m)(T−t) > 0.
Thus, we obtain

xNE = max

(
0,

(
−ke−(r+m)(T−t)

2
+ (a− c)/(2n)

))
(9)

If a− c− kne−(r+m)(T−t) > 0 f or ∀t > 0, then xNE(t) = a−c
2n −

k
2 e−(r+m)(T−t)

yNE(t) = y0e−mt + k(a−c)
2m

(
1− e−mt)− k2n

2(r+2m)

(
e−(r+m)(T−t) − e−mt−(r+m)T

)
JNE = (a−c)2

4nr
(
1− e−rT)− k2n

4(r+2m)

(
e−rT − e−2(r+m)T

)
These calculations show that Nash equilibrium exists and is unique.
Using Formulas (8) and (9), we conducted numerical calculations for different input

data sets in the case of symmetrical agents. We realized about 100 numerical calculations.
We varied the following parameters: n from 2 to 40, a from 5 to 70, c from 1 to 50, m from
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0.1 to 30, k from 0.1 to 30, and y0 from 1 to 50. The input data are presented in Table 1, and
the agents’ payoffs for the input data from Table 1 for T = 1200 and r = 0.001 are presented
in Table 2. Here and elsewhere, NE stands for Nash equilibrium, C for cooperative solution,
and ST and IST for Stackelberg and inverse Stackelberg games, respectively.

Table 1. Input data in the case of symmetrical agents.

Example n a c k m y0

1 5 30 15 1 2 10
2 5 20 15 1 2 10
3 5 17 15 1 2 10
4 5 10 15 1 2 10
5 5 40 15 1 2 10
6 10 20 15 1 2 10
7 5 20 5 1 2 10
8 5 20 15 5 2 10
9 5 20 15 0.2 2 10

10 5 20 15 1 1 10
11 5 20 15 1 5 10
12 5 20 15 1 2 30
13 5 20 15 1 2 2
14 5 20 15 1 10 10
15 5 20 15 5 2 2
16 5 20 15 5 5 10
17 5 20 15 1 1 5
18 2 20 15 1 2 10
19 20 20 15 1 2 10
20 2 30 15 1 2 10
21 2 20 5 1 2 10
22 2 20 15 1 10 10
23 2 20 15 1 2 1
24 2 20 15 1 2 20
25 2 20 15 1 2 5
26 10 20 5 1 2 10
27 10 10 5 1 2 10
28 10 30 5 1 2 10
29 10 20 5 10 2 10
30 10 20 5 0.2 2 10
31 10 20 5 1 2 1
32 10 20 5 1 2 20
33 10 20 5 1 2 3
34 10 30 15 1 2 10
35 10 20 15 3 2 10
36 10 20 5 1 6 15
37 10 20 1 5 2 10
38 10 20 10 10 2 10

In the case of arbitrary agents, the Hamilton function for the i-th player is

Hi(xi(t), ui(t), λi(t)) = (a− ci − x(t))xi(t) + λi(t)

(
n

∑
i=1

kixi(t)−m(t)y(t)

)

Then,
∂Hi
∂xi

= a− ci −
n

∑
j=1

xj − xi + kλi = 0; i = 1, 2, . . . , n (10)
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and ∂2 Hi
∂x2 = −2n < 0. Therefore, the solutions of Formula (10) maximize the Hamilton

function if they belong to the sets of feasible strategies. For conjugate variables, Formula (8)
is applied.

Table 2. Payoffs for different information structures for symmetrical agents.

No.
NE C

J* y(T) Jc y(T)

1 13,403 3.85 67,015 3.85
2 1476 0 7380 0
3 223 0 1115 0
4 1476 0 7380 0
5 37,274 5.6 186,372 5.6
6 745 3.12 7450 3.12
7 13,418 3.12 67,090 3.12
8 1483 0 7415 0
9 1491 0.22 7455 0.22
10 1490 1.25 7450 1.25
11 1491 0.25 7455 0.25
12 1491 0.63 7455 0.63
13 1491 0.63 7455 0.63
14 1491 0.13 7455 0.13
15 1483 0 7415 0
16 1488 0 7440 0
17 1490 1.25 7450 1.25
18 3727 1 7454 1
19 371.5 0 7430 0
20 33,547 3.5 67,094 3.5
21 33,547 3.5 67,094 3.5
22 3728 0.2 7456 0.2
23 3727 1 7454 1
24 3727 1 7454 1
25 3727 1 7454 1
26 6709 2.5 67,090 2.5
27 744.9 3.1 7449 3.1
28 18,637 6.1 186,370 6.1
29 6648 0 66,480 0
30 6710 0.7 67,100 0.7
31 6709 2.5 67,090 2.5
32 6709 2.5 67,090 2.5
33 6709 2.5 67,090 2.5
34 6709 2.5 67,090 2.5
35 740 0 7400 0
36 6709 0.83 67,090 0.83
37 10,750 0 107,500 0
38 2920 0 29,200 0

Solving the system of equations in Formula (10), we obtain

xNE
i = max

(
0,

(
−kie−(r+m)(T−t) + a− nci +

n

∑
j=1;j 6=i

cj

)
/(n + 1)

)
; i = 1, 2, . . . , n. (11)

Let us consider the case −kie−(r+m)(T−t) + a− nci +
n
∑

j=1;j 6=i
cj > 0; ∀t > 0.

Substitute Formula (11) in the equation of dynamics and solve it by the method of
variation of parameters:

yNE = y0e−mt +
1− e−mt

(n + 1)m

n

∑
i=1

ki

(
a− nci +

n

∑
j=1;j 6=i

cj

)
−

k2
i n

(n + 1)(r + 2m)

(
e−(r+m)(T−t) − e−mt−(r+m)T

)
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Then

JNE
i =

(
a− nci +

n
∑

j=1;j 6=i
cj

)
a−ci

(n+1)r

(
1− e−rT)− ki(a−ci)

(n+1)m

(
e−rT − e−(r+m)T

)
+

ki
(n+1)2m

n
∑

j=1

(
a− nci +

n
∑

k=1;j 6=k
ck

)(
e−rT − e−(r+m)T

)
+

1
(n+1)2

(
e−2(r+m)T − e−rT

) n
∑

j=1
k j

(
ki

r+2m −
1
m

(
a− nci +

n
∑

k=1;i 6=k
ck

))
−(

a− nci +
n
∑

k=1;i 6=k
ck

)
1

(n+1)2r

(
1− e−rT) n

∑
j=1

(
a− ncj +

n
∑

k=1;j 6=k
ck

)
− e−rTyNE(T).

The input data are presented in Table 3, and the results for three arbitrary agents at
T = 1200 and r = 0.001 for the input data from the Table 3 are presented in Table 4.

Table 3. Input data in the case of arbitrary agents (n = 3 ).

Example a c1 c2 c3 k1 k2 k3 m y0

1 25 10 15 5 1 2 3 2 10
2 25 10 15 5 1 0.5 3 2 10
3 25 1 15 3 1 1 3 2 10
4 25 1 15 3 1 5 3 2 10
5 25 20 15 5 1 1 5 2 10
6 30 5 15 20 1 1 5 2 10
7 25 10 5 15 1 2 3 2 10
8 25 5 15 10 5 4 1 2 10
9 25 5 15 10 0.2 1 2 2 10

10 25 1 15 5 1 0.1 0.3 1 10
11 25 20 15 10 1 0.5 0.5 0.5 10
12 25 5 15 1 1 0.1 1 2 30
13 25 5 15 1 1 1 3 2 2
14 25 1 15 10 1 0.5 0.1 0.1 10
15 25 5 15 1 5 0.2 1 2 2
16 25 5 15 1 5 0.5 1 5 10
17 25 5 15 1 1 4 2 1 5
18 18 10 15 5 1 4 3 2 10
19 30 10 1 5 1 4 4 2 10
20 25 1 15 5 1 0.1 0.8 2 10
21 35 1 5 30 1 0.1 0.5 2 10
22 35 10 15 30 1 0.1 1 0.1 10
23 45 30 15 20 1 2 3 2 1
24 45 30 15 20 1 2 0.5 2 20
25 45 30 15 15 1 2 1 2 5
26 30 10 5 2 1 3 2 2 10
27 30 15 5 23 1 3 5 2 10
28 30 15 5 28 1 3 3 2 10
29 30 15 5 12 10 1 0.2 2 10
30 30 15 5 7 0.2 1 0.5 2 10
31 30 20 5 3 1 2 0.5 2 1
32 30 20 5 3 1 2 0.1 2 20
33 30 10 5 2 1 0.5 3 2 3
34 30 1 15 18 1 0.5 0.2 2 10
35 30 1 15 20 3 0.5 0.8 2 10
36 30 1 5 20 1 0.5 1 6 15
37 30 5 1 20 5 2 1 2 10
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Table 4. Payoffs of arbitrary agents for different information structures.

No.
NE ST IST C

J1 J2 J1 J2 J1 J2 JC

1 16,769 1856 25,342 1025 29,855 854 110,567
2 16,765 1852 24,878 1032 27,856 987 110,211
3 119,277 19,073 136,565 15,456 142,878 12,378 217,345
4 119,292 19,082 136,545 15,467 143,111 12,176 217,431
5 16,753 1847 19,654 1187 21,878 1083 33,962
6 186,388 7456 192,321 4231 195,276 3765 203,477
7 16,777 91,332 22,321 85,344 24,123 80,433 110,367
8 91,328 1859 98,788 1098 103,287 944 111,213
9 91,327 1861 97,878 1112 100,433 952 111,214
10 131,499 14,599 138,766 11,232 145,388 9321 198,376
11 7451 7454 9233 6987 11,653 6012 82,943
12 50,390 14,604 56,578 12,343 59,721 11,488 199,432
13 50,388 14,598 56,699 12,511 61,245 11,298 199,173
14 164,603 5934 171,234 3767 174,832 3077 181,326
15 50,383 14,596 57,655 10,767 59,727 8999 198,234
16 50,392 14,606 57,688 10,822 59,211 9122 198,321
17 50,406 14,608 58,022 10,824 59,344 9211 198,411
18 4773 10,733 6231 9356 7113 8733 74,987
19 2666 131,496 3457 125,676 5234 120,924 186,333
20 131,503 14,604 147,344 11,288 156,344 7455 198,211
21 334,659 193,906 348,656 180,344 356,745 175,901 711,548
22 186,372 67,093 202,378 55,344 213,488 53,977 322,121
23 7438 186,371 8433 180,433 9123 177,843 262,321
24 7443 186,371 8511 180,433 9211 177,855 262,377
25 16,761 150,958 19,431 144,877 21,322 140,234 320,432
26 3640 54,336 5244 47,865 5867 46,904 173,231
27 12,602 209,425 17,355 195,877 19,742 192,511 250,375
28 24,156 250,797 31,866 241,822 35,805 238,091 363,543
29 296 131,522 2033 125,649 5386 124,034 147,786
30 665 102,056 2345 94,545 4129 93,532 169,111
31 36,074 107,647 45,233 94,565 54,005 91,714 306,342
32 36,076 107,648 44,211 100,456 50,056 98,455 306,435
33 3640 54,338 8343 48,234 10,273 47,431 172,768
34 268,380 1186 272,345 756 274,611 690 276,356
35 286,560 2666 294,344 1213 298,053 1054 305,421
36 201,587 96,618 223,187 83,423 228,769 80,521 343,221
37 96,601 201,577 103,421 192,344 113,591 185,732 344,234

When all agents cooperate we obtain an optimal control problem:

Jc =
n

∑
i=1

T∫
0

e−rt

(
a− ci −

n

∑
j=1

xj(t)

)
xi(t)dt− ne−rTy(T)→ max (12)

0 ≤ xi(t), ∀t ∈ [0, T], i = 1, . . . , n ;
dyc

dt
=

n

∑
i=1

kixi(t)−myc(t), yc(0) = y0

In the symmetrical case (ki = k; ci = c; i = 1, 2, .., n), the problem takes the form

Jc =
T∫
0

e−rt(a− c− x(t))x(t)dt− ne−rTy(T)→ max

0 ≤ x(t), ∀t ∈ [0, T],

dyC

dt = kx(t)−myC(t); yC(0) = y0; x(t) =
n
∑

i=1
xi(t).
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Similarto the case considered earlier, we obtain λC(t) = −ne−(r+m)(T−t):

xc(t) = max

(
0,

(
−kne−(r+m)(T−t)

2
+

a− c
2

))

If −ke−(r+m)(T−t) + a− c > 0; ∀t > 0, then

xC(t) = a−c
2 −

kn
2 e−(r+m)(T−t)

yC(t) = y0e−mt + k(a−c)
2m

(
1− e−mt)− k2n

2(r+2m)

(
e−(r+m)(T−t) − e−mt−(r+m)T

)
JC = (a−c)2

4r
(
1− e−rT)− k2n2

4(r+2m)

(
e−rT − e−2(r+m)T

)
− y(T)e−rT

In Table 2, in the third and fourth columns, the results of calculations in the case of
cooperation for the input data from Table 1 are presented.

When arbitrary agents cooperated, the solution was found numerically [23,24] using
the method of qualitatively representative scenarios in simulation modeling [20]. The
initial sets of qualitatively representative scenarios were taken as sets that consisted of
three elements: 0, a big number (10,000 as a specific example), and their average value. All
elements of the initial set were checked for completeness and redundancy [20], and it was
reduced or extended with new elements by necessity. The calculation results are presented
in Table 4.

Now, let us consider the case of hierarchical relations between agents in two versions
of the information structure. In a Stackelberg game, one of the agents (e.g., the first one)
becomes the leader (she). She chooses and reports to the other agents (followers) her
open-loop strategy x1(t).

The followers play a differential game in normal form. The best response of the
followers to the leader’s strategy is defined as Nash equilibrium in this game. We solved
n− 1 optimal control problems (1)–(3) for i = 1, 2, . . . , n. A solution of each problem was
found using the Pontryagin maximum principle, similar to Formulas (10) and (11), and had
the form

x∗i (t) = max
(

0, x0
i −

x1

n

)
; i = 2, 3, . . . , n (13)

where i = 2, 3, . . . , n;

x0
i (t) =

1
n

(
a +

n

∑
j=2;j 6=i

cj(n− 1)ki − (n− 1)ci

)
+

1
n

(
−

n

∑
j=2;j 6=i

k j + (n− 1)ki

)
e−(r+m)(T−t).

Substitute Formula (13) into Formulas (1) and (3) and solve the problem in Formulas
(1) and (3) using the Pontryagin maximum principle for i = 1. An optimal strategy of the
first player has the form

x∗1(t) = max
(

0, x0
1

)
, (14)

where

x0
1(t) =

a
2 −

n
2 c1 +

1
2 e−(r+m)(T−t)

n
∑

i=2

(
n
∑

j=2;j 6=i
k j − (n− 1)ki

)
−

1
2

n
∑

i=2

(
n
∑

j=2;j 6=i
cj − (n− 1)ci

)
− k1n

2 e−(r+m)(T−t)

Thus, in Stackelberg equilibrium, the first player (leader) chooses her strategy,
Formula (14). Given the leader’s strategy, other players choose their strategies according to
Formula (13). Given all players’ strategies, the state variable is determined using the solution
of Formula (3) and the payoffs are determined using Formula (1).
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In an inverse Stackelberg game [21,22] based on the model in Formulas (1)–(3), the
leader reports to each follower her strategy, with feedback on their control

x0
1i(t) =

{
xR

1i(t), i f xi(t) = xR
i (t), i = 2, 3, . . . , n

xP
1i(t), otherwise .

If a follower refuses to cooperate with the leader, then she punishes the follower using
the punishment strategy xP

1i =
(
xP

12, xP
13, . . . , xP

1n
)
, which according to Formula (13) has the

form (i = 2, 3, . . . , n).

xP
1i(t) = argmin

x1i≥0

((
(n− 1)ki −

n

∑
j=2;j 6=i

k j

)
e−(r+m)(T−t) − x1i + a−

n

∑
j=2;j 6=i

cj − (n− 1)c1i

)

Then, a guaranteed result of the i-th follower is equal to

Li = max
{xNE

j }
n
j=2

Ji(
{

xP
1k

}n

k=2
, x2, x3, . . . , xn) = Ji(

{
xP

1k

}n

k=2
, 0, 0, . . . , 0) = e−rTy(T) = e−rT

(
y0 + k1TxP

1i(T)
)

If the followers cooperate with the leader, then she chooses a reward strategy
xR

1i =
(

xR
12, xR

13, . . . , xR
1n
)
. The reward strategies

(
xR

12, xR
13, . . . , xR

1n
)

are found as solutions of
the optimal control problem

J1 =

T∫
0

e−rt(a− c1 − x(t))x1(t)dt− e−rTy(T)→ max
{xi(t)}n

i=1

(15)

0 ≤ xi(t), ∀t ∈ [0, T], i = 1, 2, . . . , n;

dy
dt

= ∑n
i=1 kixi(t)−my(t), y(0) = y0

Ji =

T∫
0

e−rt(a− ci − x(t))xi(t)dt− e−rTy(T) > Li; i = 2, 3, . . . , n. (16)

A solution of the problem in Formulas (15) and (16) was found numerically with
computer simulation. The condition in Formula (16) provides that a reward is always more
profitable for the followers than punishment. The payoffs of all players in the Stackelberg
and inverse Stackelberg games are presented in Table 4.

The values of individual and collective indices of relative efficiency for different
information structures are given in Table 5. In the last row of Table 5, the average values
of the collective and individual efficiency indices on the set of simulation experiments are
presented. Thus, we obtained the following preference systems:

society: C � NE � IST � ST;
agent-leader: IST � ST � C � NE;
agent-follower: C � NE � ST � IST.
As expected, cooperation is always preferable for the whole society and for followers.

However, for the leader, the information structure of the inverse Stackelberg game is the
most profitable as a rule. That is why the struggle for leadership arises often.

Table 5. Indices of relative efficiency for different information structures.

Example NE ST IST
SCI KNE

1 /KNE
2 /KNE

3 SCI KST
1 /KST

2 /KST
3 SCI KIST

1 /KIST
2 /KIST

3

1 0.99 0.45/0.05/2.48 0.94 0.69/0.03/2.1 0.91 0.81/0.02/1.9
2 0.99 0 45/0.05/2.48 0.93 0.68/0.03/2.09 0.91 0.76/0.03/1.95
3 0.98 1.64/0.26/1.05 0.98 1.89/0.21/0.85 0.97 1.97/0.17/0.78
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Table 5. Cont.

Example NE ST IST
SCI KNE

1 /KNE
2 /KNE

3 SCI KST
1 /KST

2 /KST
3 SCI KIST

1 /KIST
2 /KIST

3

4 0.98 1.64/0.26/1.05 0.98 1.88/0.21/0.84 0.97 1.97/0.17/0.76
5 0.99 1.48/0.16/1.33 0.95 1.73/0.1/1.0 0.95 1.93/0.1/0.81
6 0.98 2.74/0.1/0.1 0.99 2.84/0.06/0.06 0.99 2.88/0.06/0.06
7 0.99 0.46/2.48/0.05 0.98 0.6/2.32/0.03 0.96 0.7/2.19/0.03
8 0.98 2.48/0.05/0.46 0.99 2.67/0.03/0.03 0.99 2.79/0.03/0.03
9 0.98 2.48/0.05/0.46 0.99 2.67/0.03/0.03 0.99 2.79/0.03/0.03

10 0.99 1.99/0.22/0.76 0.98 2.1/0.17/0.69 0.98 2.2/0.14/0.58
11 0.98 0.27/0.27/2.43 0.92 0.33/0.25/2.18 0.89 0.42/0.22/2.04
12 0.98 0.76/0.22/1.99 0.96 0.83/0.19/1.86 0.93 0.84/0.11/1.24
13 0.98 0.76/0.22/1.99 0.96 0.83/0.19/1.86 0.93 0.84/0.11/1.24
14 0.98 2.72/0.1/0.15 0.99 2.83/0.06/0.1 0.99 2.79/0.05/0.07
15 0.99 0.76/0.22/1.99 0.98 0.87/0.16/1.9 0.96 0.9/0.14/1.84
16 0.99 0.76/0.22/1.99 0.98 0.87/0.16/1.9 0.96 0.9/0.14/1.84
17 0.99 0.76/0.22/1.99 0.98 0.87/0.16/1.9 0.96 0.9/0.14/1.84
18 0.98 0.19/0.43/2.3 0.94 0.25/0.37/2.19 0.89 0.28/0.35/2.02
19 0.99 0.04/2.11/0.81 0.95 0.06/2.02/0.76 0.92 0.08/1.95/0.73
20 0.99 1.99/0.22/0.75 0.97 2.22/0.17/0.53 0.98 2.36/0.13/0.47
21 0.99 1.41/0.82/0.75 0.98 1.47/0.76/0.7 0.97 1.5/0.76/0.67
22 0.99 1.74/0.62/0.62 0.98 1.89/0.52/0.53 0.99 1.99/0.5/0.49
23 0.98 0.09/2.13/0.77 0.95 0.1/2.1/0.7 0.94 0.1/2.0/0.68
24 0.98 0.09/2.13/0.77 0.95 0.1/2.1/0.7 0.94 0.1/2.0/0.68
25 0.99 0.16/1.41/1.41 0.97 0.18/1.36/1.37 0.94 0.2/1.31/1.32
26 0.99 0.06/0.94/1.96 0.9 0.09/0.83/1.78 0.87 0.1/0.81/1.71
27 0.94 0.15/2.51/0.32 0.94 0.2/2.35/0.27 0.94 0.24/2.3/0.26
28 0.99 0.2/2.06/0.71 0.97 0.26/2.0/0.66 0.97 0.3/1.97/0.65
29 0.98 0.01/2.67/0.29 0.94 0.04/2.55/0.24 0.95 0.11/2.52/0.22
30 0.98 0.01/1.81/1.11 0.91 0.04/1.68/1.02 0.91 0.07/1.66/1.00
31 0.98 0.35/1.01/1.54 0.94 0.44/0.92/1.47 0.95 0.53/0.9/1.42
32 0.99 0.35/1.05/1.54 0.94 0.43/0.98/1.42 0.95 0.49/0.96/1.4
33 0.99 0.06/0.94/1.96 0.94 0.14/0.84/1.85 0.94 0.18/0.82/1.81
34 0.99 2.91/0.01/0.05 0.99 2.96/0.01/0.01 0.99 2.98/0.01/0.01
35 0.98 2.87/0.02/0.14 0.99 2.89/0.01/0.06 0.99 2.93/0.01/0.05

0.99 1/0.87/1.09 0.96 1.11/0.8/0.96 0.97 1.17/0.77/0.96

4. A Model with Consideration of the Green Effect

Now, the model takes the form

Ji =

T∫
0

(
e−rt(a− ci − x(t) + αg(t))xi(t)− βig2

i (t)
)

dt− e−rTy(T)→ max (17)

0 ≤ xi(t), 0 ≤ gi(t), ∀t ∈ [0, T], i = 1, . . . , n ; (18)

dy
dt

=
n

∑
i=1

(kixi(t)− γigi(t))−my(t), y(0) = y0 (19)

where gi(t) characterizes green efforts of the i-th firm, α is the coefficient of demand
increasing due to the green effect, βi is the green effort coefficient, and γi is the coefficient
of additional decreasing of the pollution due to green efforts.

In the case of symmetrical agents, the model takes the form

J =
T∫

0

(
e−rt(a− c− nx(t) + αng(t))x(t)− βg2(t)

)
dt− e−rTy(T)→ max (20)

0 ≤ x(t), 0 ≤ g(t), ∀t ∈ [0, T], (21)
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dy
dt

= n(kx(t)− γg(t)−my(t), y(0) = y0 (22)

The agents’ strategies contain two control actions (functions xi(t) and gi(t)). The
Hamilton function for each player in the symmetrical model in Formulas (20)–(22) has
the form

H(x, g, y, λ) = (a− c− nx(t) + αng(t))x(t)− βg2(t) + λ(n(kx(t)− γg(t))−my(t)).

We obtain

∂H
∂x

= a− c− 2nx + αng + λnk = 0;
∂H
∂g

= anx− 2βg− γnλ = 0.

So, if 4nβ− α2n2 6= 0, then

g0(t) =
αnx0 − γnλ

2β
; x0(t) =

(a− c)2β− γn2αλ + 2βλkn
4nβ− α2n2 (23)

If 4nβ− α2n2 = 0 and γnλ 6= 2β(a− c + λkn ), then the maximum is attained on the
bound of the set of feasible controls (at least one of the optimal controls is not internal).

If 4nβ − α2n2 = 0 and γnλ = 2β(a− c + λkn), then g0(t) = αnx0−γnλ
2β ; x0(t) is an

arbitrary function that belongs to the set of feasible strategies, for example, x0(t) ≡ 0 ∀t ≥ 0.
Denote

A =
(a− c)2β

4nβ− α2n2 ; B =
−γn2αλ + 2βλkn

4nβ− α2n2 ; C =
αnA
2β

; D =
αnβ− γn

2β

Given λ(t) = −e−(r+m)(T−t), if 4nβ− α2n2 6= 0, then

x0(t) = A− e−(r+m)(T−t)B; g0(t) = C− e−(r+m)(T−t)D.

Notice that ∂2 H
∂x2 = −2n; ∂2 H

∂g2 = −2β; ∂2 H
∂x∂g = αn.

Therefore, the found value is a maximizer if a sufficient condition ∆ = 4nβ− α2n2 > 0 is
true and the value belongs to the set of feasible strategies, i.e., for ∀t ≥ 0; A ≥ e−(r+m)(T−t)B;
C ≥ e−(r+m)(T−t)D. If at least one of the inequalities

A ≥ e−(r+m)(T−t)B; C ≥ e−(r+m)(T−t)D; 4nβ− α2n2 > 0 (24)

is false, then in dependence on the input model parameters, the maximum is obtained in
one of the boundary points(

0,
γm
2β

e−(r+m)(T−t)
)

or

(
a− c− nke−(r+m)(T−t)

2n
, 0

)

Thus,

(x∗, g∗) =

{ (
x0, g0) i f A ≥ e−(r+m)(T−t)B; C ≥ e−(r+m)(T−t)D; 4nβ− α2n2 > 0(

0, γm
2β e−(r+m)(T−t)

)
or
(

a−c−nke−(r+m)(T−t)

2n , 0
)

otherwise.
(25)

The state variable was calculated using the method of parameter variation. Given the
inequalities in Formula (18), it is explained by the formula

y(t) = y0e−mt +
E
m
(
1− e−mt)− F

r + 2m

(
e−(r+m)(T−t) − e−mt−(r+m)T

)
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when E = nkA− γnC; F = nkB− γnD. The payoffs are equal to

J =
G
r

(
1− e−rT

)
− H

m

(
e−rT − e−(r+m)T

)
+

I
r + 2m

(
e−rT − e−2(r+m)T

)
+ y(T)e−rT ,

where

G = (a− c− nA + αnC)− βD2; H = (a− c− nA + αnC)B + A(αnD− nB)− 2βCD;

I = B(−nB + αnD)− βD2.

In the case of cooperation, the model takes the form

J =
n
∑

i=1
Ji =

n
∑

i=1

T∫
0

(
(a− ci − x(t) + αg(t))xi(t)− βg2

i (t)
)
dt− ne−rTy(T)→ max

0 ≤ xi(t), 0 ≤ gi(t), ∀t ∈ [0, T], i = 1, 2, , , , n.

dy
dt = ∑n

i=1(kixi(t)− γigi(t))−my(t), y(0) = y0

The maximum is obtained by the values

x(t) = (x1(t), x2(t), . . . , xn(t)); g(t) = (g1(t), g2(t), . . . , gn(t))

Nash equilibrium was calculated numerically using computer simulation [22,23]. The
input data are given in Table 6, and the results for symmetrical agents with consideration
of the green effect are presented in Table 7 for the input data from Table 6.

Table 6. Input data for symmetrical agents with consideration of the green effect.

Example n a c k m y0 α β γ

1 5 30 15 1 2 10 0.01 1 0.1
2 5 20 15 1 2 10 0.01 1 0.1
3 5 17 15 1 2 10 0.01 1 0.1
4 5 10 15 1 2 10 0.01 1 0.1
5 5 40 15 1 2 10 0.01 1 0.1
6 10 20 15 1 2 10 0.01 1 0.1
7 5 20 5 1 2 10 0.01 1 0.1
8 5 30 15 1 2 10 0.001 1 0.1
9 5 30 15 1 2 10 0.5 1 0.1

10 5 30 15 1 2 10 0.5 2 0.1
11 5 30 15 1 2 10 0.5 10 0.1
12 5 30 15 1 2 10 0.5 5 0.01
13 5 30 15 1 2 10 0.5 5 0.5
14 5 30 15 1 2 10 0.5 1 0.5
15 5 20 15 5 2 2 0.5 1 0.5
16 5 20 15 5 2 2 0.5 0.5 0.5
17 5 20 15 5 2 2 0.5 1 0.5
18 5 20 15 5 2 2 0.1 1 0.5
19 20 20 15 1 2 10 0.1 1 0.1
20 2 30 15 1 2 10 0.1 1 0.1
21 2 20 5 1 2 10 0.1 1 0.1
22 2 20 15 1 10 10 0.1 1 0.1
23 2 20 15 1 2 1 0.1 1 0.1
24 2 20 15 1 2 20 0.1 1 0.1
25 2 20 15 1 2 20 0.5 1 0.1
26 2 20 15 1 2 20 0.1 0.5 0.1
27 2 20 15 1 2 20 0.1 1 0.5
28 2 20 15 1 2 20 0.5 1 0.5
29 2 20 15 1 2 20 0.3 0.5 0.1
30 2 20 15 1 2 20 0.8 1 0.3
31 10 20 5 1 2 1 0.1 1 0.1
32 10 20 5 1 2 20 0.1 1 0.1
33 10 20 5 1 2 3 0.1 1 0.1
34 10 30 15 1 2 10 0.1 1 0.1
35 10 20 15 3 2 10 0.1 1 0.1
36 10 20 5 1 6 15 0.4 1 0.3
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Table 7. Payoffs for different information structures for symmetrical agents with consideration of the
green effect.

No.
NE C

J y(T) J y(T)

1 13,417 3.1 69,012 3.3
2 1490 0.6 7611 1
3 238 0 1195 0
4 1491 0 7567 0
5 37,275 5.6 189,455 5.6
6 745 0 7570 0
7 13,418 3.1 670,845 3.1
8 13,416 3.1 670,922 3.1
9 19,515 4 99,011 4.5
10 15,901 3.5 80,112 3.7
11 13,849 3.2 70,238 2.8
12 14,310 3.3 71,987 3.7
13 14,310 2.8 71,987 3.4
14 19,517 1.1 98,389 1.5
15 2160 0 11,100 0
16 3964 0 19,910 0
17 2160 0 11,100 0
18 1502 0 7732 0
19 391 0 7911 0
20 33,713 3.5 68,322 3.5
21 33,716 0.7 68,324 1.1
22 3746 0.2 7623 0.4
23 3745 1 7623 1.4
24 3745 1 7623 1.3
25 1459 1.1 3027 1.4
26 3764 1 7655 1.2
27 3745 0.8 7623 1.3
28 4259 0.8 8915 1.3
29 4095 1 8312 1.3
30 5480 1.1 11,011 1.2
31 6879 2.4 69,114 2.6
32 6879 2.4 69,114 2.6
33 6879 2.4 69,114 2.6
34 6879 2.4 69,114 2.6
35 759 0 7701 0
36 11,182 0.3 113,532 0.5

In the case of arbitrary agents (model in Formulas (17)–(19)), the Nash equilibria for
selfish behavior and cooperative solutions were calculated numerically using computer
simulation. In Table 8 the input data are given, and in Table 9 the results for three arbitrary
agents at T = 1200 and r = 0.001 for the input data from Table 8 are presented.

Table 8. Input data for three arbitrary agents with consideration of the green effect.

No. a c1 c2 c3 k1 k2 k3 m y0 β1 β2 β3 γ1 γ2 γ3 α

1 30 12 5 10 1 1 5 2 10 1 5 2 0.01 0.5 0.1 0.01
2 20 3 7 5 5 1 2 2 10 5 1 2 0.1 0.5 0.01 0.01
3 17 3 5 5 1 2 4 2 10 2 1 3 0.2 0.1 0.05 0.01
4 10 1 2 1 1 2 5 2 10 1 5 1 0.5 0.1 0.2 0.01
5 40 10 2 5 1 5 1 2 10 1 3 2 0.2 0.1 0.3 0.01
6 20 5 3 5 1 2 4 2 10 2 5 1 0.3 0.1 0.01 0.01
7 20 5 5 2 1 3 5 2 10 1 2 5 0.2 0.1 0.05 0.01
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Table 8. Cont.

No. a c1 c2 c3 k1 k2 k3 m y0 β1 β2 β3 γ1 γ2 γ3 α

8 30 10 7 5 1 5 2 2 10 3 2 1 0.5 0.1 0.7 0.001
9 30 10 5 5 1 2 4 2 10 1 3 4 0.2 0.1 0.01 0.5
10 30 8 7 10 1 1 5 2 10 2 1 5 0.3 0.1 0.2 0.5
11 30 6 10 10 1 5 3 2 10 10 4 5 0.5 0.1 0.1 0.5
12 30 10 5 10 1 4 2 2 10 5 1 1 0.1 0.01 0.05 0.5
13 30 10 10 5 1 2 6 2 10 5 2 3 0.2 0.5 0.1 0.5
14 30 3 5 10 1 5 1 2 10 1 5 1 0.3 0.5 0.05 0.5
15 20 3 2 4 5 2 5 2 2 1 8 5 0.2 0.5 0.1 0.5
16 40 2 5 5 5 2 4 2 2 0.5 1 2 0.05 0.5 0.7 0.5
17 40 4 5 10 5 3 3 2 2 1 2 0.5 0.05 0.5 0.8 0.5
18 40 7 10 10 5 2 1 2 2 2 1 2 0.2 0.5 0.1 0.1
19 40 10 5 5 1 5 2 2 10 1 2 5 0.5 0.1 0.2 0.1
20 30 5 10 2 1 2 4 2 10 2 1 1 0.3 0.1 0.3 0.1
21 20 5 3 6 1 1 5 2 10 3 1 5 0.2 0.1 0.5 0.1
22 20 2 8 1 1 3 4 10 10 1 5 3 0.2 0.1 0.5 0.1
23 20 5 1 4 1 2 5 2 1 1 7 2 0.5 0.1 0.05 0.1
24 20 5 6 2 1 1 4 2 20 2 1 2 0.3 0.1 0.2 0.1
25 20 3 5 2 1 2 1 2 20 1 1 1 0.5 0.1 0.2 0.5
26 20 5 8 5 1 5 5 2 20 0.5 0.5 2 0.5 0.1 0.3 0.1
27 20 5 1 2 1 5 2 2 20 1 5 1 0.1 0.5 0.05 0.1
28 20 5 2 8 1 3 4 2 20 1 1 5 0.05 0.1 0.5 0.5
29 40 5 5 6 1 1 4 2 20 0.5 5 1 0.2 0.05 0.1 0.3
30 40 9 5 4 1 2 5 2 20 2 1 3 0.1 0.3 0.3 0.8
31 40 5 11 6 1 5 3 2 1 1 2 3 0.5 0.1 0.2 0.1
32 40 5 1 10 1 2 4 2 20 1 3 1 0.3 0.1 0.5 0.1
33 25 5 10 5 1 3 5 2 3 5 1 3 0.2 0.1 0.05 0.1
34 50 15 5 5 1 5 2 2 10 1 3 2 0.3 0.1 0.2 0.1

Table 9. Payoffs for different information structures with the green effect.

No.
NE ST/IST

J1 J2 J3 J0 J1 J2 J3

1 334 3274 550 2617/2911 150/144 2067/1715 400/350
2 726 314 954 1204/1813 467/404 127/114 609/538
3 542 277 581 848/1217 313/266 174/159 360/237
4 147 203 147 427/852 127/112 172/143 127/112
5 1043 2851 3988 6890/8122 861/622 2381/1765 3648/3288
6 342 652 834 1370/3282 296/211 466/352 608/388
7 432 432 1331 1557/2136 249/177 249/177 1059/899
8 572 1863 1467 2960/3172 390/311 1556/1186 1015/886
9 534 1237 2311 3214/3542 306/176 961/721 1947/1783
10 834 987 1237 2471/2712 701/524 821/604 949/745
11 2323 672 672 2724/3006 1862/1562 431/378 431/378
12 525 2631 525 2622/2879 325/256 1972/1568 325/256
13 495 495 2648 2596/2870 316/278 316/278 1963/1672
14 1554 2167 372 3029/3765 1136/756 1739/1453 154/144
15 566 783 822 1567/1872 408/278 500/389 658/465
16 2845 3456 1869 6401/7021 2061/1765 2909/2753 1432/1299
17 2311 3892 883 5833/6023 1844/1567 3337/3098 652/525
18 2391 2981 1456 5659/5762 1781/1566 2595/2385 1284/1098
19 2656 2431 2431 6322/6544 2298/1987 2012/1877 2012/1877
20 2254 411 1663 3183/3211 1742/1567 159/154 1283/1076
21 809 671 322 1294/1277 610/577 470/455 214/197
22 1145 188 1271 2303/2534 1008/899 110/102 1198/934
23 372 824 739 1391/1512 200/177 580/562 611/578
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Table 9. Cont.

No.
NE ST/IST

J1 J2 J3 J0 J1 J2 J3

24 324 242 1302 1474/1634 252/213 162/138 1061/812
25 740 569 824 1836/2195 649/587 427/397 760/674
26 451 178 842 1208/1411 354/302 128/98 727/621
27 415 762 1253 1785/1784 204/199 585/568 995/982
28 551 1675 131 2233/2451 517/462 1607/1523 114/94
29 2231 2231 3912 7608/7923 1983/1642 1983/1765 3642/3277
30 652 1598 3426 4942/5342 474/414 1331/1189 3137/2873
31 2434 1253 3954 6637/7012 2001/1763 949/821 3687/3456
32 3962 2811 942 6712/6712 3467/3434 2502/2488 743/727
33 721 189 1542 2092/2112 642/623 141/128 1307/1198
34 1621 7234 3761 11,063/11,651 1062/821 6684/6431 3318/3176

Now consider a hierarchical setup with consideration of the green effect. Let a specific
agent (principal) maximize the functional

J0 =

T∫
0

e−rt

(
(a− x(t) + αg(t))x(t)−

n

∑
i=1

(
cixi(t) + βig2

i (t)
))

dt− ne−rTy(T)→ max

by controls gi(t); i = 1, 2, . . . , n.
The other agents’ payoff functionals retain the form Formula (17), but now, the maxi-

mization is conducted only by the controls xi(t). The equation of dynamics has the form
Formula (19). Control constraints are of the form Formula (18) again.

In the Stackelberg game, similarto the preceding case, we obtained the solution in the
game of agents in the form of Formula (25).

In Table 10, the values of the indices of collective and individual relative efficiency
with consideration of the green effect are presented. The last row of Table 10 contains
the average values of the respective indices. The indices of individual efficiency were
calculated only for the case of cooperation.

Table 10. Indices of relative efficiency of the players for different information structures with consid-
eration of the green effect.

Example NE ST/IST
SCI K1/K2/K3 SCI KL

1 /KF
2 /KF

3 /

1 0.89 0.21/2.1/0.35 0.56/0.47 0.1/1.33/0.26 /0.09/1.1/0.23
2 0.95 1 04/0.45/1.36 0.57/0.5 0.67/0.18/0.87/0.58/0.16/0.77
3 0.96 1.11/0.57/1.19 0.58/0.45 0.64/0.36/0.74/0.55/0.33/0.49
4 0.83 0.73/1.01/0.73 0.71/0.61 0.63/0.86/0.63/0.56/0.71/0.56
5 0.74 0.29/0.8/1.12 0.64/0.53 0.24/0.67/1.02 /0.18/0.5/0.92
6 0.85 0.48/0.91/1.17 0.64/0.44 0.41/0.65/0.85/0.3/0.5/0.54
7 0.92 0.55/0.55/1.68 0.66/0.44 0.31/0.31/1.34/0.22/0.22/1.13
8 0.94 0.37/1.2/0.95 0.64/0.49 0.25/1.0/0.65/ 0.2/0.77/0.57
9 0.88 0.35/0.8/1.5 0.69/0.58 0.2/0.62/1.26/0.11/0.47/1.15

10 0.78 0.63/0.75/0.94 0.63/0.47 0.53/0.62/0.72/0.4/0.46/0.57
11 0.85 1.62/0.43/0.47 0.63/0.54 1.3/0.3/0.29 /1.01/0.26/0.26
12 0.8 0.34/1.72/0.34 0.57/0.45 0.21/1.29/0.21/0.17/1.02/0.17
13 0.8 0.33/0.33/1.74 0.57/0.47 0.2/0.2/1.29/0.18/0.18/1.10
14 0.75 0.86/1.2/0.21 0.56/0.43 0.49/0.96/0.08/0.42/0.8/0.08
15 0.9 0.71/0.98/1.03 0.65/0.45 0.45/0.62/0.82 /0.35/0.49/0.58
16 0.81 0.81/0.98/0.53 0.61/0.55 0.62/0.83/0.41/0.5/0.78/0.37
17 0.75 0.73/1.23/0.28 0.62/0.54 0.61/1.06/0.21/0.5/0.98/0.17
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Table 10. Cont.

Example NE ST/IST
SCI K1/K2/K3 SCI KL

1 /KF
2 /KF

3 /

18 0.85 0.89/1.11/0.54 0.7/0.63 0.65/0.97/0.48/0.58/0.89/0.41
19 0.82 0.87/0.8/0.77 0.69/0.63 0.75/0.66/0.66/0.65/0.62/0.62
20 0.75 1.17/0.21/0.86 0.55/0.48 0.9/0.08/0.66/0.81/0.08/0.56
21 0.84 1.13/0.93/0.45 0.6/0.57 0.85/0.65/0.3 /0.8/0.63/0.27
22 0.97 1.27/0.21/1.41 0.86/0.72 1.12/0.12/1.33/1.0/0.11/1.04
23 0.72 0.42/0.92/0.82 0.52/0.49 0.22/0.65/0.68/0.2/0.63/0.65
24 0.79 0.41/0.31/1.64 0.62/0.49 0.32/0.2/1.34/0.27/0.17/1.03
25 0.91 0.95/0.73/1.06 0.78/0.69 0.83/0.55/0.97/0.75/0.51/0.86
26 0.88 0.81/0.32/1.51 0.72/0.61 0.63/0.23/1.3/0.54/0.18/1.11
27 0.92 0.47/0.87/1.43 0.68/0.66 0.23/0.67/1.13/0.23/0.65/1.12
28 0.99 0.69/2.1/0.16 0.94/0.87 0.65/2.02/0.14/0.58/1.92/0.12
29 0.91 0.73/0.73/1.28 0.83/0.73 0.65/0.65/1.19/0.54/0.58/1.07
30 0.79 0.27/0.67/1.43 0.59/0.62 0.19/0.55/1.31/0.17/0.49/1.21
31 0.83 0.8/0.41/1.29 0.72/0.66 0.66/0.31/1.21/0.58/0.27/1.13
32 0.68 1.04/0.74/0.25 0.59/0.59 0.92/0.66/0.2/0.91/0.66/0.19
33 0.82 0.72/0.19/1.55 0.7/0.65 0.65/0.14/1.31/0.63/0.13/1.2
34 0.83 0.32/1.44/0.75 0.73/0.69 0.21/1.32/0.66/0.16/1.28/0.63

0.84 0.71/0.85/0.96 0.66/0.57 0.58/0.69/0.95/0.49/0.58/0.72

In this case, we obtained the same preference system for the whole society and the
followers:

C � NE � ST � IST.

This preference system remains the same as the system without consideration of the
green effect. However, the consideration of the green effect makes the agents’ interests
more diverse, and the whole economic system becomes less (for some input data sets,
essentially less) compatible. In this case, for the whole society, cooperation is much better
than other ways of organization.

5. Conclusions

The proposed system of individual and collective indices of the relative efficiency
of the ways of organization [2] was used for the analysis of differential game-theoretic
models of Cournot oligopoly with consideration of the green effect and without it. For
calculation of the indices, we applied averaging on the set of simulation experiments.
The numerical calculations showed that the introduced indices allow for evaluation of
the average efficiency of different ways of organization (information structures) and for
practical recommendations on improving system compatibility.

The preference systems for the whole society and separate agents are contradictory.
Cooperation is more profitable for the society and followers. However, the leader prefers a
hierarchy in the form of an inverse Stackelberg game that advocates for struggle for leader-
ship. Moreover, for non-symmetrical agents, cooperation may be either more profitable
than selfish behavior or vice versa (Table 10, column 3). Notice also that the consideration
of the green effect makes cooperation much more profitable (up to 50%) for the whole
society and followers.

In the future, we plan to study static and dynamic game-theoretic models of Cournot
oligopoly in the form of characteristic function. In addition, the models with a network
structure both in normal form and in the form of a characteristic function will be considered.
At last, model identification will be precisely performed.
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