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Abstract: In this paper, I develop a two-stage game of pollution abatement technology adoption
in a Cournot oligopoly to investigate a firm’s decision to adopt pollution abatement technology.
In particular, I study the adoption incentives and welfare implications of popular environmental
policies, namely emission fees and quotas. Tradeable permits result in identical outcomes to emission
fees. Within each policy regime, the conditions for Nash equilibria are identified where both firms
invest in the green technology, neither firm invests in the technology, or only one firm invests.
The following extensions are also analyzed: asymmetric adoption costs, increase in the marginal cost
of production from adoption, and a type-dependent fee where adoption reduces the emission fee.
Social welfare under an emission fee is identical to that under a quota. However, when policy is
(not) stringent, firms are more willing to adopt expensive technology under a fee (quota) than under
a quota (fee, respectively).

Keywords: technology adoption; green technology; environmental regulation

JEL Classification: D43; L51; Q52

1. Introduction

About seven million premature deaths (one in eight total deaths worldwide) are attributed to
air pollution.1 One way to mitigate this damage is through more environmentally friendly (“green”)
production processes. Green technology can reduce emissions from production through the use of
green energy, electric vehicles, carbon capture storage and usage, and other abatement technologies that
reduce pollution from production of a good. An example of a green technology is that of new techniques
to dye textiles with significantly less water.2 New waterless dyeing techniques use significantly less
water, dye, and energy, leading to a lower environmental impact. However, the adoption of this new
technology has been slow because of the significant initial adoption costs.

The adoption of these technologies in an entire industry follows an S-shaped curve. When the
technology is in its infancy, adoption is slow. As more and more firms adopt the technology, the rate
of adoption speeds up until it is almost universally adopted and the growth of adoption slows again
(see Kemp and Volpi [1], for a more extensive discussion). If green technology is available in an industry,
it may be in society’s best interest for the regulator to promote the use of this technology through policy.
This paper takes an extensive look at the social welfare implications under different environmental

1 According to the World Health Organization: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/.
2 A summary of the situation is explained by Lydia Heida in a Yale Environment 360 article titled, “Can Waterless Dyeing

Processes Clean Up the Clothing Industry?”, found at https://e360.yale.edu/features/can_waterless_dyeing_processes_cl
ean_up_clothing_industry_pollution.
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policies that aim to promote green technology adoption in order to provide policy makers with the
best approach to this problem.

A number of policies can encourage the adoption of green technology through the firm’s incentive
to reduce compliance costs. I consider the following: an emissions fee, a type-dependent fee that
reduces the existing emissions fee if the technology is adopted, tradeable permits (cap-and-trade),
or an emissions quota. For each, I evaluate which policy leaves society in the best situation possible
based on social welfare, and how firm incentives align with that ranking. I also evaluate these policies
under adoption cost asymmetries and when adoption increases the marginal cost of production.

Much of the literature focuses on how policies impact a firm’s incentive to innovate and the effects on
social cost largely ignoring changes in consumer surplus resulting from changes in firm output (see [2–9]).
The consensus in the literature is that market based policies outperform command-and-control policies in
minimizing social costs. Looking solely at the social cost, i.e., environmental damage and adoption costs,
ignores any changes in the firms’ compliance costs, which could affect equilibrium quantity and price.
The literature largely assumes a case where all, or many, of the firms operating in the market adopt the
technology. This paper examines a setting in which each firm in a Cournot duopoly chooses to adopt or
not adopt the technology, including an equilibrium where only one firm will adopt the technology.

Amacher and Malik [10] study technology adoption in the context of an emission fee on how the
decision changes based on whether the regulator commits to a tax either before or after the adoption
decision. The focus in Amacher and Malik is on social costs (adoption costs plus damages), not social
welfare as a whole. Requate [11] looks at the social welfare under implications of innovation under
taxes and tradeable permits under an N-firm Bertrand competition finding that permits create a more
efficient market than taxes. In contrast, I study a duopoly’s decision to adopt technology under these
policies (and more) identifying what situations facilitate adoption, and the effect on social welfare.

A number of papers investigate adoption decisions of production cost-reducing technology
under a number of different circumstances while using a static adoption game. Jensen [12] uses
this type of game to analyze how uncertainty of the effectiveness of the new technology impacts
the adoption decision of two firms. Following Jensen’s approach, Zhang et al. [13] investigate
how many firms choose to adopt such a technology in an N-firm Cournot model in the presence of
knowledge spillovers. Pal [14] compares the adoption incentives to invest under Cournot and Bertrand
competition. The present model uses a similar approach to the aforementioned papers in order to
compare the incentives to invest, however I consider emissions reducing technology under different
environmental policies.3

The type of game studied here draws some parallels to that of the binary-contribution
threshold public goods games literature first studied theoretically by Palfrey and Rosenthal [19]
and Diekmann [20]. More closely related to the present model is the experiment studying green
power programs by Rose et al. [21]. However, the present paper models the benefit from contributing
(investing in the abatement technology) as being realized by society as a whole through having more of
the good available at a given emissions level. The free-rider problem is not significant, as non-adopting
firms are actually at a cost disadvantage in the case of an emission fee as the fee per unit produced is
higher than if they had adopted the technology.4 In the case of a quota, the adopting firm is able to
produce more under the same level of emissions as the non-adopting firm.

I find that, under equivalent resulting emissions, social welfare coincides under a fee and quota;
however, firm profits are lower under an emission fee. Firms prefer to face a quota rather than

3 Another line of literature focuses on endogenous environmental R&D; see Poyago-Theotoky [15], Strandholm,
Espinola-Arredondo, and Munoz-Garcia [16], Strandholm and Espinola-Arredondo [17], and Espinola-Arredondo,
Munoz-Garcia, and Liu [18]. I, instead, focus on the adoption of an already developed technology that firms can adopt to
lower their emissions. This paper does not consider a knowledge spillover.

4 Strandholm, Espinola-Arredondo, and Munoz-Garcia [16] focus on the free-riding effects of investing in green technology as
optimal policy is set based on expected emissions after the technology is in place, so as one firm invests in a green technology
all firms benefit from facing a lower fee.
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an equivalent fee as an emission fee increases each firm’s marginal cost and, thus, lowers their profit as
compared to if the firm was subject to a quota. A type-dependent fee increases firm profits compared
to the uniform fee since the adopting firm pays a decreased fee on their emissions, but it does not
result in greater profits than under a quota. Because profits under the quota are higher, firms are
more willing to adopt a more expensive technology under the quota. If the goal of the regulator is to
encourage the adoption of abatement technologies, especially costly technologies, the regulator would
more likely achieve this goal under a quota than under a fee.

2. Results

To evaluate the social welfare implications of the various policies, I use a two-stage technology
adoption game with two firms competing à la Cournot in each stage. In the first stage, each firm
decides whether or not to adopt a green technology, and the firms compete over quantities.5 Firms are
not able to realize the benefits of the adopted technology in the first stage; thus, they are unable to
use this technology to abate their emissions. In the second stage, the firms compete over quantity,
but lower emissions if they chose to adopt the green technology when compared to if they do not
adopt the technology. First, I solve the case where there is a per-unit tax on emissions. Once this case is
established, I evaluate tradeable permits and quotas.

2.1. Emission Fee

In the first stage, each firm decides whether or not to invest in the green technology. If it invests,
it pays a one time fee to incorporate and install the technology into the firm’s production process of
Zk > 0, where k = {i, j} indicates the firm, and Zi and Zj can differ depending on the firm’s ability to
incorporate the technology into their production process. I first assume that Zi = Zj = Z, but later
relax this assumption.6

In the second stage, the two firms independently maximize their profits by choosing quantity qk.
Firms face the same linear inverse demand P = a− Q where P is the price, a > 0, and Q = qi + qj
is total production. Each firm produces the good at constant marginal cost c, where a > c > 0,
and emissions are ek = γqk, where γ > 0 represents emissions per unit produced. If the firm invested
in the green technology, per unit emissions are reduced by α to ek = (γ − α)qk where γ > α > 0.
The environmental damage function is dE2, where d > 0 is a measure of environmental damage and
E = ei + ej is the total amount of emissions from production. In the baseline case, each firm pays the
same emissions fee t.7 I assume that t < a−c

γ+α so that firms produce positive quantities when they do
not invest in the technology.

The game is solved using backward induction. First, firms simultaneously maximize profits in the
second stage by choosing quantity, taking both their and their rival’s investment decision in the first
stage as given. In the first stage, each firm chooses quantity in order to maximize profit and whether or
not to purchase the green technology in order to maximize second stage profits.8 Given these potential
profits and adoption decision of their rival, firms then decide to adopt or not adopt the technology in
the first stage.

5 I use the terms ‘adopt’ and ‘invest’ interchangeably.
6 This paper assumes an industry where a green technology is already developed and firms only focus on the implementation

of it into their production process. Examples of abatement technology include smoke stack scrubbers that remove pollutants
from entering the air, underground liners to prevent leakage of pollution into the soil and entering groundwater, and treating
waste water before disposal. Thus, considering the case where the firms are price takers in the abatement technology market.

7 In this game, it is not necessary for the environmental policy to be set optimally, since I am analyzing firms’ reaction to
policy. If an optimal policy is set, the analysis would not be affected.

8 It is trivial to consider production in the first stage as the profit from production in the first stage is the same, regardless of
the decision to invest in the green technology as the two decisions are independent.
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In the second stage, firms face two potential profit functions depending on the adoption of
technology in the first stage. Second stage profit for firm i, if it does not invest in the green technology,
when there is an emissions fee is

ΠNI
i = (a− (qi + qj))qi − cqi − tγqi,

where the “NI” superscript represents “not investing” in the new technology. The first-order condition
for firm i is

∂ΠNI
i

∂qi
= a− qj − 2qi − (c + tγ) = 0,

and the best-response function is qi(qj) =
a− c− tγ

2
− 1

2
qj, which the firm uses regardless of the

investment decision of the other firm.
If firm i chooses to invest in the green technology, its profits in the second stage are

ΠINV
i = (a− (qi + qj))qi − cqi − t(γ− α)qi,

where the superscript “INV” represents the case where the firm “invests” in the new technology. In this
case, the firm i’s first-order condition is

∂ΠINV
i

∂qi
= a− qj − 2qi − (c + t(γ− α)) = 0,

with best-response function qi(qj) =
a− c− t(γ− α)

2
− 1

2
qj.

The two response functions define four sets of equilibrium quantities and profits: (1) neither firm
invests, (2) both firms invest, and (3) and (4) one firm invests and the other does not invest. Table 1
presents the corresponding quantities and profits for firm i in each case. In the superscript on profit, Π,
the first abbreviation denotes that firm’s investment decision, while the second denotes its opponent’s
investment decision. For example, ΠINV,NI is firm i’s profit when it invests in the technology, while its
opponent does not invest in the technology.

Table 1. Equilibrium quantity and profit in the baseline emission fee.

Quantity Profit

Neither firm invests qi =
1
3 (a− c− γt) ΠNI,NI

i = 1
9 (a− c− tγ)2

Both firms invest qi =
1
3 (a− c− t(γ− α)) ΠINV,INV

i = 1
9 (a− c− t(γ− α))2

Firm i invests, firm j does not qi =
1
3 (a− c− t(γ− 2α)) ΠINV,NI

i = 1
9 (a− c− t(γ− 2α))2

Firm j invests, firm i does not qi =
1
3 (a− c− t(γ + α)) ΠNI,INV

i = 1
9 (a− c− t(γ + α))2

In the first stage, each firm decides whether or not to invest in the green technology while taking
the resulting profit in the second stage and the cost of the investment into account. Table 2 shows the
firm’s decision to invest is based on the two-by-two game.

Table 2. Normal form representation of the game.

Firm j

Invest No Invest

Firm i Invest ΠINV,INV
i − Z, ΠINV,INV

j − Z ΠINV,NI
i − Z, ΠNI,INV

j

No Invest ΠNI,INV
i , ΠINV,NI

j − Z ΠNI,NI
i , ΠNI,NI

j
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The following proposition presents the Nash equilibrium in the case of the emission fee.9

Proposition 1. In the case of an emission fee, the equilibrium adoption decisions are:

1. Both firms adopt the technology if Z < 1
9 (4tα(a− c− tγ)).

2. Neither firm adopts the technology if Z > 1
9 (4tα(a− c− t(γ− α)).

3. Only one firm adopts the technology if 1
9 (4tα(a− c− tγ)) < Z < 1

9 (4tα(a− c− t(γ− α))).10

When the cost of investment is too high, neither firm invests in the green technology. However,
if the cost of investment is low, then both of the firms choose to invest in the technology. Between the
two adoption cost cutoffs, the equilibrium conditions predict that only one firm invests.

Figure 1 shows the regions on the cost of investment in which a firm invests in the technology,
as described in Proposition 1, dependent on the emission fee and the opposing firm’s adoption decision,
denoted as Z(t).11 If there is no emission fee, there is no incentive to adopt the green technology,
as there is no other benefit to the green technology outside of reducing compliance costs, and firms
will be indifferent in adopting the technology if it comes at zero cost. If the fee is low, the reduction
in pollution does not result in a significant decrease in the firm’s marginal costs and, hence, the cost
of the green technology must be low. As the tax increases, the firm is willing to pay more for the
green technology. When the tax becomes more stringent and the resulting profits become smaller,
the investment cost must also decrease for the adoption to be the optimal strategy.12

Figure 1. Limits on the technology adoption cost Z that supports firm i’s investment in green technology.

Next, this process is repeated under a quota, and then the investment decisions, social welfare,
and profits are compared. Starting in Section 2.4, different extensions are explored under each policy.

2.2. Quota

Next, I investigate the equilibria when there is an emissions quota. The quota acts as an upper
bound on individual firm emissions at the level of Ē. If the quota is not binding, then the firms will
act as though there is no regulation and there will be no incentive to adopt the technology. Therefore,
the emission quota is set so that it is binding. Solving Ē = qkek, each firm k chooses qk = Ē

γ if the

firm does not invest in the abatement technology and qk = Ē
γ−α if it does invest in the abatement

9 Profit functions for the different policies and cost asymmetries, as well as all proofs are provided Section 4.
10 Additionally, a mixed-strategy Nash equilibrium exists where each firm adopts the technology with probability

σt ≡ 4tα(a−c−t(γ−α))−9Z
4t2α2 , 0 < σt < 1.

11 Parameter values for all figures, unless otherwise noted, are: a = 10, c = 2, d = 2, γ = 1, α = 0.5, t = 4, and Ē = 1.
12 By assumption, the figure’s parameters require that t < a−c

γ+α ' 5.33.
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technology.13 The Nash equilibria are summarized in the following proposition using the same strategy
as the fee.

Proposition 2. In the case of a quota, the equilibrium adoption decisions are:

1. Both firms adopt the technology if Z < Ēα(γ(a−c)(γ−α)−Ē(3γ−α))
(γ−α)2γ2 .

2. Neither firm adopts the technology if Z > Ēα(γ(a−c)(γ−α)−Ē(3γ−2α))
(γ−α)2γ2 .

3. Only one firm adopts the technology if Ēα(γ(a−c)(γ−α)−Ē(3γ−α))
(γ−α)2γ2 < Z < Ēα(γ(a−c)(γ−α)−Ē(3γ−2α))

(γ−α)2γ2 .14

Similar to Figure 1, the regions of Z and Ē that support the three cases outlined in Proposition 2
are shown in Figure 2. The intuition in the case of the quota follows that of the fee. If the cost of
adoption is too high, neither firm will invest in the green technology. If the quota is stringent (low),
the adoption cost needs to be low in order for the firms to invest since the increase in market profits are
small (not including the investment cost). If the quota is high, adoption does little to increase output,
the change in profits is small, and there is little incentive to invest in the technology.

Figure 2. Upper limit of Z that supports firm i’s investment in green technology.

2.3. Comparison of the Fee and Quota

Next, I compare the incentives for firms to invest in the abatement technology under a fee and
quota. To facilitate the comparison, I establish an equivalency between the fee and quota by setting the
emissions resulting from under a fee to the emissions quota, which occurs at

Ē ≡ qkek = (γ− α)
1
3
[a− c− (γ− α)t].

This equivalency models the setting where an emission fee is set to meet a particular emissions
target, which, in this case, is the quota. The following lemma summarizes the relationship between the
thresholds that determine the Nash equilibria under the fee and quota, as described in Propositions 1
and 2.

Lemma 1. If policy is set so that emissions under the fee and quota are equivalent, then the Nash
equilibrium where both firms adopt the technology is sustained at higher levels of the adoption cost

13 The quota is binding if qk ≤ 1
3 (a − c). In the case of adoption, this means that the quota must be set such that

Ē ≤ 1
3 (a− c)(γ− α). Further explanation is provided in Section 4.5.

14 A mixed strategy exists where each firm adopts the technology with probability σQ ≡ Ēαγ(a−c)(γ−α)−αĒ2(3γ−2α)+γ2Z(γ−α)2

α2 Ē2 .
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under a fee than under a quota if t ∈ (t, t̄), where t =
(a−c)(γ2−2α2+5αγ)−γ

√
(a−c)2(γ−α)(7α+γ)

2(α3−5α2γ+7αγ2+γ3)
and

t̄ =
(a−c)(γ2−2α2+5αγ)+γ

√
(a−c)2(γ−α)(7α+γ)

2(α3−5α2γ+7αγ2+γ3)
.

To aid in the intuition of this lemma, consider Figure 3, which overlays the limits from Figure 2 on
Figure 1. Note that a lower fee corresponds to a less stringent quota.15 At less restrictive policy levels,
firms are more willing to adopt a more expensive technology under a quota. However, this ranking
reverses as policy becomes more stringent and firms are more willing to adopt an expensive technology
under a fee than under a quota.

Figure 3. Comparison of limits on adoption costs between a fee and quota.

Then next step is to investigate how market conditions and the nature of the effectiveness of
the technology impact these cutoff by investigating the comparative statics on t and t̄ with respect to
(a− c), γ, and α. These are summarized as follows and graphically aided by Figure 4:16

Market size:
∂t

∂(a− c)
> 0, and

∂t̄
∂(a− c)

> 0

Emissions:
∂t
∂γ

< 0, and
∂t̄
∂γ

> 0

Abatement:
∂t
∂α

> 0, and
∂t̄
∂α

< 0

A shift to the right of the lower crossing point t, caused by an increase in the difference between
maximum willingness to pay and marginal cost of production (a− c), or a more effective abatement
technology α, increases the range where firms adopt a more expensive technology under a quota.
An increase in (a− c) increases profit under each policy; however, this increase is greater under the
quota as an increase in (a− c) necessitates an increase in the emission fee to keep emissions equivalent
across the two policies. The larger increase in profit under the quota implies that the firm is more
willing to invest in a more expensive abatement technology under the quota. Similarly, an increase in
the effectiveness of the abatement technology α requires an increase in the fee to facilitate equivalent
emissions under the two policies, thus decreasing the resulting profit under the fee when compared
to that under a quota. An increase in the per unit emissions γ decreases the lower range where the

15 This means that Figure 2 is mirrored, so that a high quota corresponds to a low emissions. It is also the case that the allowable
range for the fee is smaller than that of the quota, so only the appropriate subsection of the quota appears in Figure 3.
The parameter values for all figures in this section are the same as Figure 1.

16 Full comparative statics can be found in Section 4. Note that the plotted range in each subfigure of Figure 4 is truncated to
the allowable range of t < a−c

γ+α by assumption, but the t-axis length is consistent to facilitate comparisons.
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quota is more effective at encouraging adoption of expensive technology, following similar intuition to
an decrease in α.

At the high crossing point t̄, an increase in the effectiveness of the abatement technology α

(or decrease in emissions γ) has a similar impact as at the lower end as it increases the upper limit of
the adoption cost where both of the firms adopt the technology more under the quota than the fee.
Combining the effects, lower emissions (through either low-emitting production or more effective
technology) reduces the range over which both firms adopt a more expensive technology under a fee
than under a quota.

The combination of these results informs us of some intuitive results under each policy regime.
That is, when demand is higher (higher a), the marginal cost is lower (c), or the abatement technology
is more effective at reducing emissions, both firms are willing to adopt a more expensive technology.
However, a more polluting production process results in firms being less willing to adopt a costly
technology and the cost limit of the technology is reduced. Though these results are consistent across
policy regimes, the changes to t and t̄ show that the investment cost limits under a quota are more
sensitive to changes in these parameters.

0 1 2 3 4 5 6 7
t

1

2

3

4

5

6

7

Z

Baseline

Neither Invest

Both Invest

0 1 2 3 4 5 6 7
t

1

2

3

4

5

6

7

Z

Increase a=10 to a=12

Neither Invest

Both Invest

0 1 2 3 4 5 6 7
t

1

2

3

4

5

6

7

Z

Increase α=0.5 to α=0.65

Neither Invest

Both Invest

0 1 2 3 4 5 6 7
t

1

2

3

4

5

6

7

Z

Increase γ=1 to γ=1.25

Neither Invest

Both Invest

Figure 4. Comparative statics on t and t̄.

The next step is to evaluate the social welfare at the Nash equilibrium, where both firms invest in
the green technology under each of the policy mechanisms. Social welfare is calculated as the sum of
consumer and producer surplus and tax revenue (if applicable), net environmental damage, and green
technology investment,17

SW =
∫ Q2

0
(a− c− x) dx− d(ei2 + ej2)

2 − 2Z.

17 Because output, environmental damage, and adoption costs are identical in the first stage in every setting, they have no
effect on the comparison of social welfare in each setting and are left out of the social welfare function. The social welfare
function is under the assumption that the emission fee is revenue neutral.
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This comparison is described in the following lemma.

Lemma 2. If policy is set so that emissions under the fee and quota are equivalent and both firms adopt the
technology, then social welfare under a fee is equivalent to social welfare under a quota.

The policy equivalence leads to a situation where the only difference between the policy outcomes
is the firms’ profits, which differs by the level of the emission fee. Figure 5 plots social welfare and
individual firm profit under each policy.18 This analysis shows that although the regulator does not
have a preferred policy, firms do. A similar conclusion is found in Wenders (1975), who showed that
firms have little incentive to provide pollution abatement under an emission fee. Under a fee, firms
face what is essentially an increase in the marginal cost of production, whereas, under a quota, firms
only incur their original marginal cost, but are limited to a certain quantity, thus achieving a higher
profit under the quota.

Figure 5. Social welfare and profits under a quota and fee.

Figure 6 adds to Figure 5 by including social welfare and profits under the type-dependent fee
(T-D), where there is a 50% reduction in the fee if the firms adopt the technology.19 The reduced fee
increases production and emissions as compared to the baseline fee. This means that firm profits are
increased and there is more environmental damage. The latter effect dominates the former and social
welfare is reduced under the type-dependent fee. However, the incentive to adopt the technology
increases and firms are willing to adopt the technology at a higher cost than without the fee reduction.

18 At t = 4, both firms adopt the technology if and only if Z < 3.56, according to Proposition 1. When t = 4, the equivalent
emissions quota is Ē = (γ− α)[ 1

3 (a− c− (γ− α)t)] = (1− 0.5)[ 1
3 (10− 2− (1− 0.5)4)] = 1.

19 The type-dependent fee is analyzed in Section 2.6. Note that this is bigger than the change in Figures 7 and 8 to better
illustrate the difference in profits and social welfare under the type-dependent fee visually.
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Figure 6. Social welfare and profits under a quota, fee, and type-dependent fee (T-D).

Figure 7. Comparison of the limit of Z that supports both firms investing between the different settings.

Figure 8. Comparison of the lower limit of Z that supports neither firms investing between the
different settings.
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2.4. Asymmetric Cost of Adoption under an Emission Fee

The first asymmetry to explore is when firms have different costs of adoption, which is Zi 6= Zj.
Without a loss of generality, I assume that firm i has a lower cost of technology adoption than firm j,
so that Zi < Zj. The equilibrium is best explained while using best-response function,

firm i will


invest if firm j invests and Zi <

1
9 (4tα(a− c− tγ))

invest if firm j does not invest and Zi <
1
9 (4tα(a− c− t(γ− α)))

not invest otherwise

Firm j has a symmetric best response function. This leads to the following corollary that summarizes
the Nash equilibria.

Corollary 1. In the case of asymmetric adoption costs, the equilibrium adoption decisions are:

1. Both of the firms adopt the technology if Zj <
1
9 (4tα(a− c− tγ)).

2. Neither firm adopts the technology if Zi >
1
9 (4tα(a− c− t(γ− α))).

3. Only one firm adopts the technology if 1
9 (4tα(a− c− tγ)) < Zi < Zj <

1
9 (4tα(a− c− t(γ− α))).20

4. Only the low cost firm i adopts the technology if Zi <
1
9 (4tα(a− c− t(γ− α))) < Zj.

The first three cases of this corollary are similar to the proposition 1, where both firms invest if the
adoption cost is low, neither invests if the cost is too high, and a third case where the Nash equilibrium
is for only one firm to invest. In the third case, even though firm i has a lower adoption cost, a Nash
equilibrium where only the high cost firm adopts exists. In this case, firm i’s best response to firm j’s
adoption is to not adopt the technology (and firm j’s best response to firm i adopting is to not adopt).
This case only happens when the cost of adoption to both of the firms is moderately high and the
discrepancy between the adoption costs is small.

A fourth case exists where the Nash equilibrium is for only the low cost firm to invest in the green
technology and the high cost firm to not invest in the technology, which happens if the adoption cost
discrepancy is relatively large and the high cost firm faces a large adoption cost. In this case, the low
cost firm gains a competitive advantage, since it can lower its emissions and pay a lower fee on each
unit of production when compared to its rival.

2.5. Investment Increases Marginal Cost of Production under an Emission Fee

The second asymmetry to explore is where the adoption of the green technology increases the
marginal cost of production from c to c′.21 In addition to the fixed costs of adopting a green technology,
the abatement process itself is costly on a per-unit basis, thus the marginal cost of producing each unit
increases. For instance, this can happen if the technology requires maintenance or if the the adopted
technology needs additional labor in order to abate the emissions.22 In this setting, profits in the first
stage are unaffected, but second stage profits if the firm invests are

ΠINV
i = (a− (qi2 + qj2))qi2 − c′qi2 − t(γ− α)qi2.

In this setting, there are three potential equilibria, which are presented in the following proposition.

20 Additionally a mixed strategy Nash equilibrium exists where each firm adopts the technology with probability
σtk ≡

4tα(a−c−t(γ−α))−9Zk
4t2α2 . Note that since firm j faces a higher adoption cost, σti > σtj and the low cost firm is more

likely to adopt in the mixed strategy.
21 The cost of adoption is symmetric, i.e., Zi = Zj = Z.
22 Carbon capture and storage (CCS) is an example of a green technology that increases the marginal cost of production.

The production process of the good is relatively unchanged; however, there are additional costs to the capture, transport,
and store captured carbon dioxide.
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Proposition 3. In the case where adoption increases the marginal cost of production under an emission fee,
the equilibrium adoption decisions are:

1. Both of the firms adopt the technology if Z < 4
9 (a− c− tγ)(tα + c− c′).

2. Neither firm adopts the technology if Z > 4
9 (tα + c− c′)(a− c′ − t(γ− α)).

3. Only one firm adopts the technology if 4
9 (tα + c − c′)(a − c − tγ) < Z < 4

9 (tα + c − c′)(a − c′−
t(γ− α)).23

The intuition for each of the equilibria is similar to that of Proposition 1, with the addition of the
conditions on the increase in marginal cost. That is, if adoption of the technology is costly (Z > 0),
then, for both firms to adopt the technology, it must be that tα + c− c′ > 0, or,

c′ − c < tα.

This means that, if firms adopt the technology, it must be that the decrease in the emission fee per
unit produced outweighs the increase in marginal cost of production. A larger increase in the marginal
cost of production requires a lower adoption cost if both (or one) of the firms to adopt the technology.

2.6. Type-Dependent Fee

Next, I investigate the case where a firm faces a lower emission fee if they adopt a the green
technology. Specifically, the fee will decrease from t to t′.24 This case represents the situation where the
regulator can adjust its policy if a firm adopts and uses a green technology (e.g., CO2 scrubbers) and
“rewards” the firm by imposing a lower fee on its emissions. This setting does not affect the first stage,
but it does impact second-stage profits if the firm adopts, such that

ΠINV
i = (a− (qi2 + qj2))qi2 − cqi2 − t′(γ− α)qi2.

In this case, firm i’s reaction function is

firm i will


invest if firm j invests and Z < 4

9 (a− c− tγ)(tγ− t′(γ− α))

invest if firm j does not invest and Z < 4
9 (a− c− t′(γ− α))(tγ− t′(γ− α))

not invest otherwise

The Nash equilibria are presented in the following proposition.

Proposition 4. In the case of a type-dependent fee, the equilibrium adoption decisions are:

1. Both firms adopt the technology if Z < 4
9 (a− c− tγ)(tγ− t′(γ− α)).

2. Neither firm adopts the technology if Z > 4
9 (a− c− t′(γ− α))(tγ− t′(γ− α)).

3. Only one firm adopts the technology if 4
9 (a− c− tγ)(tγ− t′(γ− α)) < Z < 4

9 (a− c− t′(γ− α))(tγ−
t′(γ− α)).25

This proposition follows the same basic intuition of the previous case, except that the limits on the
investment are now affected by the new, lower emission fee in each case of adoption. Because adoption

23 A mixed strategy Nash equilibrium exists, where each firm adopts the technology with probability σtc =
4(tα+c−c′)(a−c′−t(γ−α))−9Z

4(tα+c−c′)2 .
24 A type-dependent fee is the focus of Strandholm et al. [16], who look at it in the context of incremental investment in R&D.

The type-dependent fee is set by a regulator that can observe emissions at the plant-level and setting a fee that is based on
that plant’s marginal environmental damage.

25 A mixed strategy Nash equilibrium exists, where each firm adopts the technology with probability σt′ ≡
4(a−c−t′(γ−α))(tγ−t′(γ−α))−9Z

4(tγ−t′(γ−α))2 .
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decreases both the emissions and emission fee, firms see a larger benefit to adoption than under the
uniform fee. This means that firms are more willing to adopt a more expensive technology, as seen in
the next section.

2.7. Comparison of Investment Limits under a Fee

At this point, it is worth comparing the different limits on the investment cost, which supports an
equilibrium where both firms invest between the three cases presented thus far: baseline (symmetric),
investment increases marginal cost, and the type-dependent fee. The levels of Z and t where both firms
adopt the technology is the region under their respective line presented for each case in Figure 7.26

This figure shows that under the type-dependent fee, the upper limit on investment cost is higher than
either the baseline or marginal cost increase case. This is a direct result of the increased benefit from
facing a lower fee from adoption as compared to the other cases. When the investment increases the
marginal cost the limit on the investment cost is most restrictive. Figure 8 shows the lower limit of
investment cost that supports the equilibrium, where neither firm adopts the technology. A similar
ranking occurs as with the limit on cost that supports both firms adopting (Figure 7).

Because the cutoff on the level of investment that facilitates both firms investing is lower when the
green technology increases marginal cost and the type-dependent fee increases the level of investment
limit, a potential policy option is for the regulator to implement a type-dependent fee if the cost of
investment increases the marginal cost. The type-dependent fee has the effect of reducing the marginal
cost, so that the regulator compensates the firm for any increase in marginal cost from adopting the
technology through a lower fee. This could be set, so that the fee reduction perfectly corrects for the
increase in marginal cost or over-corrects for the increase and rewards the firm for the investment by
having a lower overall marginal cost for the adoption.

2.8. Tradeable Permit Scheme

In a tradeable permit scheme (cap-and-trade), the regulator sets an emissions cap for all firms in
the economy and distributes permits (either through appropriation or auction), and firms can buy and
sell permits as needed. If the market for permits is perfectly competitive, then the price on permits acts
the same as an emission fee if all of the firms are price takers in the permit market. This leads to the
same equilibrium as in Proposition 1, where t is the permit price. Hence, the analysis for a tradeable
permit scheme is identical to the emission fee for all of the extensions.

2.9. Asymmetric Cost of Adoption under a Quota

The following corollary summarizes the equilibria that can occur if the firms have asymmetric
costs of adopting the green technology, where firm j has the higher adoption cost. The equilibrium
quantities and profits are the same as under the baseline quota, only that Zi < Zj.

Corollary 2. In the case of a quota where firms have asymmetric costs of adoption, the equilibrium adoption
decisions are:

1. Both of the firms adopt the technology if Zi < Zj <
Ēα(γ(a−c)(γ−α)−Ē(3γ−α))

(γ−α)2γ2 .

2. Neither firm adopts the technology if Zj > Zi >
Ēα(γ(a−c)(γ−α)−Ē(3γ−2α))

(γ−α)2γ2 .

3. Only one firm adopts the technology if
Ēα(γ(a−c)(γ−α)−Ē(3γ−α))

(γ−α)2γ2 < Zi < Zj <
Ēα(γ(a−c)(γ−α)−Ē(3γ−2α))

(γ−α)2γ2 .27

26 This figure has the same parameter values as Figure 1 with additional parameters c′ = 3 and t′ = 0.75t. In the case of the
type-dependent fee, the post-adoption fee t′ is a 25% reduction in the emission fee.

27 A mixed strategy exists where each firm adopts the technology with probability σQk ≡
Ēαγ(a−c)(γ−α)−Ē2(3γ−2α)−γ2(γ−α)2Zk

Ē2α2 .
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4. Only the low cost firm i adopts the technology if Zi <
Ēα(γ(a−c)(γ−α)−Ē(3γ−α))

(γ−α)2γ2 < Zj.

Similar to under the fee when adoption costs are asymmetric, the low cost adopter is more willing
to adopt the technology although both of the firms will adopt if the technology is cheap enough. It is
also possible that the high cost firm can adopt and the low cost firm will not adopt if the technology cost
for both firms is relatively high, as each of their best-responses is to do the opposite of the other firm.

2.10. Investment Increases Marginal Cost of Production under a Quota

The case when investment in the green technology increases the marginal cost of production from
c to c′ under a quota is presented in the following proposition. In this setting, equilibrium quantities are
the same under a quota, since the quota is binding, but the profit if the firm invests in the technology is
ΠINV

i2 = (a− (qi2 + qj2))qi2 − c′qi2.

Proposition 5. In the case of a quota where adoption increases the firm’s marginal cost of production,
the equilibrium adoption decisions are:

1. Both firms adopt the technology if Z < Ē(αĒ(α−3γ)−γ(α−γ)((a−c)α+(c−c′)γ))
γ2(α−γ)2 , and c′ − c < (a−c)α

γ .

2. Neither firm adopts the technology if Z > Ē(αĒ(2α−3γ)−γ(α−γ)((a−c)α+(c−c′)γ))
γ2(α−γ)2

3. Only one firm adopts the technology if
Ē(αĒ(α−3γ)−γ(α−γ)((a−c)α+(c−c′)γ))

γ2(α−γ)2 < Z < Ē(αĒ(2α−3γ)−γ(α−γ)((a−c)α+(c−c′)γ))
γ2(α−γ)2 ,

and c′ − c < (a−c)α
γ .28

The intuition for this set of equilibria align with that in the case of an emission fee where the
adoption of the technology increases marginal costs, and it has the same limits on the increase in
costs that causes the firms to not invest in the technology. If the costs of adoption are low, both of the
firms will invest. If the cost of adoption is too high, then neither firm will invest in the technology.
This equilibrium can also happen if the increase in marginal cost is too high, i.e., (c′ − c) > (a−c)α

γ .
There is also a region of costs between these two equilibria where the equilibrium is for one firm to
adopt and a mixed strategy can exist.

3. Discussion

The consensus in the literature is that market-based policies, such as fees, outperform
command-and-control policies when evaluated on the basis of social costs (adoption cost and
environmental damage). The game-theoretic approach taken here finds that regulators are indifferent
between employing a fee or a quota in terms of achieving the highest social welfare. However, firms
enjoy higher profits under a quota than under an equivalent fee. In addition, the equilibrium resulting
in both firms adopting the technology is sustained at higher levels of adoption cost under a fee than
under a quota when the policies are not very stringent. However, this result is reversed for moderately
stringent levels of policy. Given a promising underused technology in an industry facing a less
restrictive policy, it may be in the regulator’s best interest to either employ a more restrictive quota or
a relatively lax fee for the purpose of encouraging adoption of the technology and reducing emissions,
especially in the case of relatively expensive technology. If an emission fee is currently being used,
to encourage adoption the regulator might consider two options: (1) increasing the fee in order to
encourage adoption to mitigate the costs of regulation, (2) employing a more restrictive quota, or (3)
subsidizing the technology adoption.

28 A mixed strategy exists where each firm adopts the technology with probability σQc ≡ 4(c′−c−tα)(−a+c′+t(γ−α))−9Z
4(c−c′+tα)2 .
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Another policy option is that of the type-dependent fee where the firm faces a lower emission
fee if it chooses to adopt the technology. This policy option lowers social welfare slightly, because it
results in higher emissions, but increases firm profits closer to the profit achieved under the quota.
Combining the type-dependent fee with an adoption subsidy has the best chance of aligning firm and
regulator incentives.

This analysis could be furthered by exploring the what happens when firms have production
functions with asymmetric emissions. Each firm has more incentive to invest as the more efficient
firm could increase its cost advantage by investing in the technology and the less efficient firms
becomes more competitive if it invests in the technology. Another possible extension is of asymmetric
information where the firms are unaware of the emissions or costs of their competitor. Finally,
allowing for the potential of consumer willingness to pay to increase when the firm invests the
green technology would increase the benefits from adoption further than simply lower emissions.

4. Materials and Methods

4.1. Outline of Proof of Proposition 1

In the case that neither firm invests, the equilibrium is solved by the following system of best
response function from Section 2.1, which is,

qi =
a− c− tγ

2
− 1

2
qj, and qj =

a− c− tγ
2

− 1
2

qi.

Solving this system yields the symmetric equilibrium outputs of qi = qj = 1
3 (a − c − γt),

with resulting profit ΠNI,NI
i = 1

9 (a− c− tγ)2.
If both firms invest, equilibrium quantities are found by solving the following system of best

response functions,

qi =
a− c− t(γ− α)

2
− 1

2
qj, and qj =

a− c− t(γ− α)

2
− 1

2
qi.

Solving for quantities gives the equilibrium when both firms invest of qi = qj =
1
3(a− c− t(γ− α)),

and profits of ΠINV,INV
i = 1

9 (a− c− t(γ− α))2.
If firm i invests and firm j does not invest, the following system is used

qi =
a− c− t(γ− α)

2
− 1

2
qj, and qj =

a− c− tγ
2

− 1
2

qi.

The equilibrium quantities are qi = 1
3 (a − c − t(γ − 2α)) and qj = 1

3 (a − c − t(γ + α)).
Plugging these quantities into their respective firm’s profit function yields ΠINV,NI

i = 1
9 (a − c −

t(γ− 2α))2 and ΠNI,INV
j = 1

9 (a− c− t(γ + α))2. Table 1 summarizes these.
If the dominant strategy for both firms is to invest, then the Nash equilibrium is (Invest, Invest).

For this, both ΠINV,INV
k − Z > ΠNI,INV

k and ΠINV,NI
k − Z > ΠNI,NI

k . More explicitly,

1
9
(a− c− t(γ− α))2 − Z >

1
9
(a− c− t(γ + α))2, and

1
9
(a− c− t(γ− 2α))2 − Z >

1
9
(a− c− tγ)2,

which simplifies to

1
9
(4αt(a− c− tγ)) > Z, and

1
9
(4αt(a− c− t(γ− α))) > Z.
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Because Z < 1
9 (4αt(a− c− tγ)) is more restrictive than the second inequality, this inequality is

necessary and sufficient for (Invest, Invest) to be the Nash equilibrium.
The Nash equilibrium is (No Invest, No Invest) if both ΠNI,INV

k > ΠINV,INV
k − Z and ΠNI,NI

k >

ΠINV,NI
k − Z hold, which simplifies to

1
9
(4αt(a− c− tγ)) < Z, and

1
9
(4αt(a− c− t(γ− α))) < Z.

For the (No Invest, No Invest) equilibrium, the more restrictive condition is needed, i.e., Z >
1
9 (4αt(a− c− t(γ− α))).

The final set of equilibria occurs when each firm will invest only if the other firm chooses not to
invest, so the Nash equilibria are (Invest, No Invest), (No Invest, Invest) and a mixed strategy where
firms will randomize over the two actions if the expected profit from investing and not investing are
equal. This occurs when ΠNI,INV

k2 > ΠINV,INV
k2 − Z and ΠINV,NI

k2 − Z > ΠNI,NI
k2 , which simplifies to

1
9
(4αt(a− c− tγ)) < Z, and

1
9
(4αt(a− c− t(γ− α))) > Z.

This is the range that Z needs to be in to support the (Invest, No Invest), (No Invest, Invest)
equilibrium. If Z is in this range, and the probability of firm j adopting is σt, and not adopting is 1− σt,
then firm i is indifferent between adopting and not adopting if

σt(ΠINV,INV
i − Z) + (1− σt)(ΠINV,NI

i − Z) = σtΠNI,INV
i + (1− σt)ΠNI,NI

i ,

σt(
1
9
(a− c− t(γ− α))2 − Z) + (1− σt)(

1
9
(a− c−t(γ− 2α))2 − Z) =

σt(
1
9
(a− c−t(γ + α))2) + (1− σt)(

1
9
(a− c− tγ)2),

σt(4αt(a− c− γt)− 9Z) = (1− σt)(4αt(a− c− t(γ− α))− 9Z),

σt(4αt(a− c− γt)− 4αt(a− c− t(γ− α))) = 4αt(a− c− t(γ− α))− 9Z,

σt =
4tα(a− c− t(γ− α))− 9Z

4t2α2 .

A similar strategy is employed for the remaining propositions. The profits for each extension are
given below.

4.2. Quota

In the case of a binding emissions quota, Ē = qkek, each firm k will choose qk =
Ē
γ if the firm does

not invest in the abatement technology, and qk = Ē
γ−α if it does invest in the abatement technology.

Profit functions from before are unchanged except that the firms no longer face a fee, which is,

ΠINV
i = (a− (qi + qj))qi − cqi, and

ΠNI
i = (a− (qi + qj))qi − cqi.

Plugging the appropriate equilibrium quantities into the above profit functions yields the
equilibrium under each combination of invest and not invest, which are presented in Table 3.
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Table 3. Equilibrium quantity and profit under the baseline quota.

Quantity Profit

Neither firm invests qi =
Ē
γ ΠNI,NI

i = Ē(γ(a−c)−2Ē)
γ2

Both firms invest qi =
Ē

γ−α ΠINV,INV
i = Ē((a−c)(γ−α)−2Ē)

(α−γ)2

Firm i invests, firm j does not qi =
Ē

γ−α ΠINV,NI
i = Ē(γ(a−c)(γ−α)−Ē(2γ−α))

γ(γ−α)2

Firm j invests, firm i does not qi =
Ē
γ ΠNI,NV

i =
Ē
(

a−c−Ē
(

1
γ−α +

1
γ

))
γ

The limit on Z that supports the different equilibria is solved using the same process as
Proposition 1. The Nash equilibrium is (Invest, Invest) if the dominant strategy for both firms is
to invest. For this, both ΠINV,INV

k − Z > ΠNI,INV
k and ΠINV,NI

k − Z > ΠNI,NI
k , which simplifies to

Ēα(γ(a− c)(γ− α)− Ē(3γ− α))

γ2(α− γ)2 > Z, and

Ēα(γ(a− c)(γ− α)− Ē(3γ− 2α))

γ2(α− γ)2 > Z.

Because Z < Ēα(γ(a−c)(γ−α)−Ē(3γ−α))
γ2(α−γ)2 is more restrictive than the second inequality, this is

necessary and sufficient for (Invest, Invest) to be the Nash equilibrium. For this equilibrium to
be feasible, the numerator must be positive, which is Ē < γ(a−c)(γ−α)

3γ−α . This condition always holds,

since for the quota to be binding it must be that the quantity under a quota, q = Ē
γ−α , is less than the

profit maximizing quantity under no policy, which is q = 1
3 (a− c) (found by plugging t = 0 into the

appropriate quantity found in Section 4.1), or,

Ē
γ− α

<
1
3
(a− c).

Solving for Ē yields Ē < 1
3 (a− c)(γ− α). The numerator is always positive if Ē < 1

3 (a− c)(γ−
α) < γ(a−c)(γ−α)

3γ−α . The second inequality simplifies to 1
3 < γ

3γ−α , which always holds by assumption.
The other equilibria are found by changing the inequalities above.

Next, I investigate whether the adopting firm’s output is bound by the quota in the case that only
one firm adopts. If firm i adopts the technology and firm j does not, firm i’s best response function is
qi =

1
2 (a− c)− 1

2 qj. Firm j’s equilibrium quantity, bound by the quota, is qj = Ē/γ. Plugging this into
firm i’s best response function yields

qi =
a− c

2
− 1

2
Ē
γ

.

The quota is binding if this quantity is greater than the quantity produced at the emissions quota,
Ē/(γ− α), or

a− c
2
− 1

2
Ē
γ
>

Ē
γ− α

.

Rearranging, we have that

a− c >
2Ē

γ− α
+

Ē
γ

.

By assumption, Ē < 1
3 (a− c)(γ− α), and the right-hand side of the above inequality satisfies

2
γ− α

(
1
3
(a− c)(γ− α)

)
+

1
γ

(
1
3
(a− c)(γ− α)

)
≥ 2Ē

γ− α
+

Ē
γ

.
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Accordingly, it is sufficient to show that, if

a− c >
2

γ− α

(
1
3
(a− c)(γ− α)

)
+

1
γ

(
1
3
(a− c)(γ− α)

)
,

then the quota is binding for the adopting firm. The inequality first reduces to

1 >
2
3
+

1
3γ

(γ− α),

and finally to

1 >
γ− α

γ
,

which holds by assumption and, hence, the quota is also binding for the investing firm.
A similar proof also shows that if the quota is binding for the investing firm, then is must be

binding for the non-investing firm. If firm i adopts the technology and firm j does not, firm j’s
best response function is qj = 1

2 (a − c) − 1
2 qi. Firm i’s equilibrium quantity, bound by the quota,

is qj = Ē/(γ− α). Plugging this into firm j’s best response function yields

qj =
a− c

2
− 1

2
Ē

γ− α
.

The quota is binding if this quantity is greater than the quantity produced at the emissions quota,
Ē/γ, or

a− c
2
− 1

2
Ē
γ
>

Ē
γ

.

Rearranging, we have that

a− c >
Ē

γ− α
+

2Ē
γ

.

By assumption, Ē < 1
3 (a− c)(γ− α), and the right-hand side of the above inequality satisfies

1
γ− α

(
1
3
(a− c)(γ− α)

)
+

2
γ

(
1
3
(a− c)(γ− α)

)
≥ Ē

γ− α
+

2Ē
γ

.

Hence, it is sufficient to show that if

a− c >
1

γ− α

(
1
3
(a− c)(γ− α)

)
+

2
γ

(
1
3
(a− c)(γ− α)

)
,

then the quota is binding for the non-adopting firm. The inequality first reduces to

1 >
1
3
+

2(γ− α)

3γ
,

and, finally, to

1 >
3γ− 2α

3γ
,

which holds by assumption, and hence, the quota is also binding for the non-investing firm.
If a mixed strategy exists (where only one firm adopts the technology) and the probability that

firm j adopts the technology is σQ and the probability firm j does not invest is (1− σQ), then firm i is
indifferent between invest and no invest if



Games 2020, 11, 32 19 of 23

σQ(Π
INV,INV
i2 − Z) + (1− σQ)(Π

INV,NI
i2 − Z) = σQΠNI,INV

i2 + (1− σQ)Π
NI,NI
i2 ,

σQ(
Ē((a− c)(γ− α)− 2Ē)

(α− γ)2 − Z) + (1− σQ)(
Ē(γ(a− c)(γ− α)− Ē(2γ− α))

γ(γ− α)2 − Z)

= σQ

Ē
(

a− c− Ē
(

1
γ−α + 1

γ

))
γ

+ (1− σQ)(
Ē(γ(a− c)− 2Ē)

γ2 ),

which simplifies to

σQ

(
− α2Ē2

γ2(α− γ)2

)
=

αγĒ(a− c)(α− γ) + αĒ2(3γ− 2α) + γ2Z(α− γ)2

γ2(α− γ)2 ,

σQα2Ē2 = Ēαγ(a− c)(γ− α)− αĒ2(3γ− 2α) + γ2Z(γ− α)2,

σQ =
1

α2Ē2

(
Ēαγ(a− c)(γ− α)− αĒ2(3γ− 2α) + γ2Z(γ− α)2

)
.

4.3. Proof of Lemma 1

First, plug the equivalency of the quota in terms of the fee (Ē = (γ− α)[ 1
3 (a− c− (γ− α)t)]) into

the investment cost limit Z, where both firms invest in the technology Z < Ēα(γ(a−c)(γ−α)−Ē(3γ−α))
(γ−α)2γ2 ,

which yields

Z <
α(a− c + t(α− γ))(aα− αc + t(α− γ)(α− 3γ))

9γ2 .

Subsequently, directly compare this to the corresponding limit under the fee, Z < 1
9 (4tα(a− c−

tγ)). Solving for t, the cutoff for the quota being higher than the fee if either of the following hold is,

t < t ≡
(a− c)

(
γ2 − 2α2 + 5αγ

)
− γ

√
(a− c)2(γ− α)(7α + γ)

2 (α3 − 5α2γ + 7αγ2 + γ3)
, or

t > t̄ ≡
(a− c)

(
γ2 − 2α2 + 5αγ

)
+ γ

√
(a− c)2(γ− α)(7α + γ)

2 (α3 − 5α2γ + 7αγ2 + γ3)
.

The final comparison is on the lower limit of Z for which neither firm adopts. Under a quota with

the equivalent fee, this cutoff is Z =
α(a−c+t(α−γ))(2α(a−c+αt)−5αγt+3γ2t)

9γ2 . Comparing this to lower limit
under a fee yields the cutoff under a quota is higher if

t <
2α(a− c)

−2α2 + 5αγ + γ2 .

There is a second cutoff, t > a−c
γ−α ; however, this condition is not relevant, as I assume that t < a−c

γ+α .

Comparative Statics

For the comparative statics, I substitute A ≡ a− c into t and t̄. The resulting comparative statics
(and their signs) are:
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∂t
∂A

=
2α

γB + (γ2 − 2α2 + 5αγ)
> 0

∂t
∂γ

= −
A
(

5α4 − 30α3γ + 34α2γ2 + 10αγ3 + γ4 − 1
B
(
7α5 − 9α4γ− 36α3γ2 + 12α2γ3 + 9αγ4 + γ5))

2 (α3 − 5α2γ + 7αγ2 + γ3)
2 < 0

∂t
∂α

=
A
((

α2 − αγ− γ2) (α2 − 4αγ + γ2)+ 1
B γ
(
−7α4 + 25α3γ− 21α2γ2 + 9αγ3 + 2γ4))

(α3 − 5α2γ + 7αγ2 + γ3)
2 > 0

∂t̄
∂A

=
2α

(γ2 − 2α2 + 5αγ)− γB
> 0

∂t̄
∂γ

=
A
(
−5α4 + 30α3γ− 34α2γ2 − 10αγ3 − γ4 − 1

B
(
7α5 − 9α4γ− 36α3γ2 + 12α2γ3 + 9αγ4 + γ5))

2 (α3 − 5α2γ + 7αγ2 + γ3)
2 > 0

∂t̄
∂α

=
A
((

α2 − αγ− γ2) (α2 − 4αγ + γ2)− 1
B γ
(
−7α4 + 25α3γ− 21α2γ2 + 9αγ3 + 2γ4))

(α3 − 5α2γ + 7αγ2 + γ3)
2 < 0

where B ≡
√
(γ− α)(7α + γ).

4.4. Asymmetric Cost of Adoption under a Fee

When the adoption cost is asymmetric, the marginal conditions are the same as the previous
setting and only the cost of adoption is different. Therefore, equilibrium quantities are unchanged
from the previous case. The profit functions are:

• If both firms invest, each firm has profit ΠINV,INV
k = 1

9 (a− c− t(γ− α))2 − Zk

• If one firm invests, the investing firm has profit ΠINV,NI
k = 1

9 (a− c− t(γ− 2α))2 − Zk, and the
firm that does not invest has profit ΠNI,INV

k = 1
9 (a− c− t(γ + α))2

• If neither firm invests, each firm has profit ΠNI,NI
k = 1

9 (a− c− tγ)2

The equilibrium conditions are solved in a nearly identical way to the previous setting, where
only Z changes to Zk.

4.5. Investment Increases Marginal Cost of Production under a Fee

The only change from the baseline case that occurs here is if the firm decides to adopt the
technology. If firm i chooses to invest in the green technology, its profits in the second stage are

ΠINV
i = (a− (qi + qj))qi − c′qi − t(γ− α)qi.

Firm i’s first-order condition is
∂ΠINV

i
∂qi

= a− qj − 2qi − (c′ + t(γ− α)) = 0, with best-response

function qi =
a− c′ − t(γ− α)

2
− 1

2
qj. Using the best-response functions, I can find equilibrium

quantities presented in Table 4.

Table 4. Equilibrium quantity and profit under the emission fee when adoption is accompanied by an
increase in marginal cost.

Quantity Profit

Neither firm invests qi =
1
3 (a− c− γt)) ΠNI,NI

i = 1
9 (a− c− tγ)2

Both firms invest qi =
1
3 (a− c′ − t(γ− αt)) ΠNVI,INV

i = 1
9 (a− c′ − t(γ− α))2

Firm i invests, firm j does not qi =
1
3 (a− 2c′ + c− t(γ− 2α)) ΠINV,NI

i = 1
9 (a− 2c′ + c− t(γ− 2α))2

Firm j invests, firm i does not qi =
1
3 (a− 2c− t(γ + α) + c′) ΠNI,INV

i = 1
9 (a− 2c− t(α + γ) + c′)2
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I can use the same process for finding the equilibrium in Proposition 1 for Proposition 3.
The Nash equilibrium is (Invest, Invest) if the dominant strategy for both firms is to invest. For this,
both ΠINV,INV

k − Z > ΠNI,INV
k and ΠINV,NI

k − Z > ΠNI,NI
k , which simplifies to

4
9
(a− c− tγ)(tα + c− c′) > Z, and

4
9
(a− c′ − t(γ− α))(tα + c− c′) > Z.

Because Z < 4
9 (a − c − tγ)(tα + c − c′) is more restrictive than the second inequality, this is

needed for (Invest, Invest) to be the Nash equilibrium. Because t < a−c
γ , in order for this to be

a potential equilibrium, it must also be that t > c′−c
α . Or, combining, c′−c

α < t < a−c
γ , which simplifies

to c′ − c < (a−c)α
γ . The remaining equilibria are found by changing the signs on equality.

4.6. Type-Dependent Fee

In the case of the type-depenedent fee, the profit and response function for firm i if it does not
invest in the green technology are the same as in the baseline. If firm i chooses to invest in the green
technology, its profits are

ΠINV
i = (a− (qi + qj))qi − cqi − t′(γ− α)qi.

The firm i’s first-order condition is
∂ΠINV

i
∂qi

= a− qj− 2qi− (c+ t′(γ− α)) = 0, with best-response

function qi =
a− c− t′(γ− α)

2
− 1

2
qj. Using the best-response functions, I can find equilibrium

quantities. Table 5 presents the resulting equilibrium profits and quantities.

Table 5. Equilibrium quantity and profit under the type-dependent emission fee.

Quantity Profit

Neither firm invests qi =
1
3 (a− c− γt)) ΠNI,NI

i = 1
9 (a− c− tγ)2

Both firms invest qi =
1
3 (a− c− t′(γ− α)) ΠINV,INV

i = 1
9 (a− c− t′(γ− α))2

Firm i invests, firm j does not qi =
1
3 (a− c− 2t′(γ− α) + tγ) ΠINV,NI

i = 1
9 (a− c− 2t′(γ− α) + γt)2

Firm j invests, firm i does not qi =
1
3 (a− c− 2tγ + t′(γ− α)) ΠNI,INV

i = 1
9 (a− c− 2γt + t′(γ− α))2

I use the same procedure as in Proposition 1 to solve for the equilibrium. The Nash equilibrium
is (Invest, Invest) if the dominant strategy for both firms is to invest. For this, both ΠINV,INV

k − Z >

ΠNI,INV
k and ΠINV,NI

k − Z > ΠNI,NI
k (since the other two equilibria are found by changing signs on

these inequalities, they are not shown), which simplifies to

4
9
(a− c− tγ)(tγ− t′(γ− α)) > Z, and

4
9
(tγ− t′(γ− α))(a− c− t′(γ− α)) > Z.

Because Z < 4
9 (a− c− tγ)(tγ− t′(γ− α)) is more restrictive than the second inequality, this is

needed for (Invest, Invest) to be the Nash equilibrium.

4.7. Asymmetric Cost of Adoption under a Quota

The profit functions are the same as above, but allowing for Zi < Zj:

• If both firms invest, each firm has profit ΠINV,INV
k = Ē((a−c)(γ−α)−2Ē)

(α−γ)2 − Zk
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• If one firm invests, the investing firm has profit ΠINV,NI
k = Ē(γ(a−c)(γ−α)−Ē(2γ−α))

γ(γ−α)2 − Zk, and the

firm that does not invest has profit ΠNI,INV
k =

Ē
(

a−c−Ē
(

1
γ−α +

1
γ

))
γ

• If neither firm invests, each firm has profit ΠNI,NI
k = Ē(γ(a−c)−2Ē)

γ2

Solving for the equilibrium in this setting follows directly from the symmetric adoption under
a quota.

4.8. Investment Increases Marginal Cost of Production under a Quota

Because the quota is binding, a change in the marginal cost of production from adoption will not
affect the equilibrium quantities in each case, the only change from the symmetric quota is the profit of
the firm when they invest. Equilibrium quantities and profits are presented in Table 6.

Table 6. Equilibrium quantity and profit under the baseline quota when adoption increases the marginal
cost of production.

Quantity Profit

Neither firm invests qi =
Ē
γ ΠNI,NI

i = Ē(γ(a−c)−2Ē)
γ2

Both firms invest qi =
Ē

γ−α ΠINV,INV
i = Ē((a−c′)(γ−α)−2Ē)

(α−γ)2

Firm i invests, firm j does not qi =
Ē

γ−α ΠINV,NI
i = Ē(γ(a−c′)(γ−α)−Ē(2γ−α))

γ(γ−α)2

Firm j invests, firm i does not qi =
Ē
γ ΠNI,INV

i =
Ē
(

a−c−Ē
(

1
γ−α +

1
γ

))
γ

The limit on Z that supports the different equilibria is solved using the same process as Proposition 1.
The Nash equilibrium is (Invest, Invest) if the dominant strategy for both firms is to invest. For this,
both ΠINV,INV

k − Z > ΠNI,INV
k and ΠINV,NI

k − Z > ΠNI,NI
k , which simplifies to

Ē(αĒ(α− 3γ)− γ(α− γ)((a− c)α + (c− c′)γ))
γ2(α− γ)2 > Z, and

Ē(αĒ(2α− 3γ)− γ(α− γ)((a− c)α + (c− c′)γ))
γ2(α− γ)2 > Z.

Because Z < Ē(αĒ(α−3γ)−γ(α−γ)((a−c)α+(c−c′)γ))
γ2(α−γ)2 is more restrictive than the second inequality,

this is needed for (Invest, Invest) to be the Nash equilibrium. For this to be positive, both Ē <
γ(α−γ)((a−c)α+(c−c′)γ)

α(α−3γ)
, and c′ − c < (a−c)α

γ must hold.
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