
Games 2010, 1, 422-437; doi:10.3390/g1040422

OPEN ACCESS

games
ISSN 2073-4336

www.mdpi.com/journal/games

Article

The Insider-Outsider Model Reexamined
Pascal Billand 1, Christophe Bravard 1 and Sudipta Sarangi 2,⋆

1 Gate Lyon-Saint-Etienne, University Jean Monnet, Saint-Etienne, 42023 Cedex 02, France
2 DIW Berlin and Department of Economics, Louisiana State University, Baton Rouge, LA 70803, USA

⋆ Author to whom correspondence should be addressed; E-Mail: sarangi@lsu.edu.

Received: 31 August 2010 / Accepted: 15 October 2010 / Published: 20 October 2010

Abstract: In this note we introduce different levels of decay in the Goyal, Galeotti
and Kamphorst (GGK) insider-outsider model of network formation. First, we deal with
situations where the amount of decay is sufficiently low to avoid superfluous connections in
strict Nash networks and we examine the architectures of strict Nash networks. We show that
centrality and small diameter are robust features of strict Nash networks. Then, we study the
Nash and efficient networks when the decay vanishes.
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1. Introduction

Social networks play a vital role in the diffusion of information across society in setting as diverse
as referral networks for jobs (Granovetter, 1974) and assessing quality of products ranging from cars
to computers (Rogers an Kincaid, 1981). The role played by networks has led researchers to develop
theories of network formation. Several models have been proposed which address different types of
network situations.

Our paper deals with the two-way flow connections model introduced by Bala and Goyal (2000a). In
this model a player i can access a player j directly by forming a costly link with j. Moreover, through
her link with j, player i accesses other players that player j is accessing on her own. Finally the link
formed by player i creates a similar flow of information to player j, and hence the name two-way flow
model. A phone call is a typical example given to illustrate this type of situation.

In the basic two-way flow model of Bala and Goyal (2000a), the transmission of information between
two players is independent of the distance between these players in the network, that is there is no
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decay. Moreover, players are homogeneous, that is each player i benefits identically from accessing
other players and all the costs associated with the setting of links do not depend on the identity of
the initiator and the receiver of the link. In this context, Bala and Goyal (2000a) find that the set of
equilibrium networks is very small, i.e., only the empty network and the inward-pointing star (a star
network where the player at the center forms all the links) can be strict Nash networks.

Now in many situations they are delays as well as lowering of quality, when information is
transmitted through a series of agents, making decay a significant factor. Moreover individuals are often
heterogeneous. For instance some of them may be more interesting in a particular issue and therefore
better informed which makes them more valuable as contacts.

In this paper, we focus on the impact of the introduction of both decay and players heterogeneity
on the architectures of networks that will be formed in equilibrium. We ask what are the predictable
patterns of networks that will emerge when players have the opportunity to set links between each other,
in presence of decay in the flow of resources and players heterogeneity.1

Our paper revisits the insider-outsider model introduced by GGK (2006) and refines some of their
results. The authors introduce heterogeneity of players in the two-way flow model of Bala and Goyal
(2000a). More precisely, they assume that players belong to different groups and costs of forming links
within groups is lower than costs of forming inter-groups links. The model is called the insider-outsider
model in their paper. GGK (2006) first consider the transmission of value to be independent of the
length of the paths between players, that is there is no decay. Then they introduce a small amount of
decay into their framework to test the robustness of their findings.2 They show that for very small amount
of decay and for intermediate costs of intra-groups and inter-groups links3, the empty network and the
interlinked periphery-sponsored stars network are the only strict Nash networks. Note that a interlinked
periphery-sponsored stars network satisfies two conditions. First, in each group there exists a player,
called the center player, such that all other players of the group, called the periphery players, form a link
with the center player. Second, there exists a player belonging to one group who forms a link with the
center player of the other group.

In the paper we elaborate on the insider-outsider model introduced by GGK (2006) concerning decay
in two directions. First, we deal with situations where the amount of decay is sufficiently low to avoid
superfluous links in strict Nash networks and we examine the architectures of strict Nash networks. We
show that in this situation the set of non-empty strict Nash networks is larger than in GGK (2006). It
includes three other types of architectures in addition to interlinked periphery-sponsored stars networks.
It is interesting to note that all these architectures share similar structural properties, namely small
diameter and high asymmetries in centrality of players, since these properties are also features of
equilibrium networks in the homogeneous model of Bala and Goyal (2000a) and the insider-outsider

1It is worth noting that decay is just one way of modelling deficiencies in information transmission. Another way is to
introduce imperfect reliability of links (see Bala and Goyal, 2000b, for a paper dealing with this).

2Note that Bala and Goyal (2000a) also introduce decay in their basic model. However the authors still assume that players
are homogeneous.

3In what follows intermediate costs of intra-groups and inter-groups links has the following interpretation: costs of
intra-groups links are such that no player i can have any incentive to form a link with a player j when this link allows
i to access only to resources of j; costs of inter-groups links are not so high that this always prevents players to form
inter-groups links.
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model without decay of GGK (2006). Second, we refine the result of GGK (2006) by assuming that
the decay is sufficiently close to 1. More precisely, the class of interlinked periphery-sponsored stars
networks, that the authors show as the unique non-empty strict Nash network contains two types of
architectures. In the first one, the inter-groups link is sponsored by the center of a star, while in the
second one this link is sponsored by a periphery player. We show that if the amount of decay is very low,
then the second type of architecture cannot be strict Nash networks. So only the first type of architecture
can be non-empty strict Nash networks. This result is important since it shows that strict Nash networks
are also efficient networks when the amount of decay is low enough.4

The rest of the paper is organized as follows. In Section 2, we present the framework of our model.
Section 3 addresses the results that we obtain and Section 4 concludes.

2. Model Setup

We consider a society in which individuals are divided into pre-specified groups and costs of forming
links within the groups are lower as compared to costs of forming inter-groups links. To simplify,
we assume that there are only 2 groups. Let N t = {1t, 2t, . . . , n̄t} be the set of players belonging
to group t, t ∈ {0, 1}. The set of players is N = N0 ∪ N1. As in GGK (2006), we assume that
|N0| = |N1| = n̄ ≥ 4.5 In the following we will assume that players who belong to the same group
are similar and players who belong to different groups are different. In this paper the fact that two
players are similar will allow them to have relationships which are less costly than the relationships
between two players who are different. Indeed, if two players are similar they can communicate quickly
(they speak the same language), while if two players are different (they speak different languages) the
communication takes time and is most costly.

Each player i ∈ N is assumed to possess some information of value to other players.
She can augment her information by communicating with other people. This communication is
made possible via pair-wise links. A strategy of player it ∈ N t, t ∈ {0, 1}, is a vector
git = (git,1t , . . . , git,(i−1)t , git,(i+1)t , . . . , git,nt , git,11−t , . . . , git,n1−t), where gi,j ∈ {0, 1} for each player
j ∈ N . We say that player i has formed a link with player j in g iff gi,j = 1. We assume throughout
the paper that the link gi,j = 1 allows both players i and j to access each other’s information. The
set of strategies of player i is denoted by Gi. The set G = G1 × . . . × Gn is the set of pure strategies
of all players. A strategy profile g = (g1, . . . , gn) can be represented as a directed network. We use
g + gi,j (g − gi,j) to refer to the network obtained when the link gi,j = 1 is added (removed) from g.
Given a network g ∈ G, let g−i denote the network obtained when all of player i’s links are removed
from g. Let ḡi,j = max{gi,j, gj,i}. For a network g, a chain between player k and player j, j ̸= k ,
is a finite sequence j0, j1, . . . , jm of distinct players such that ḡjℓ,jℓ+1

= 1 and j0 = j, jm = k. The
distance d(i, j; g) between i and j in g is given by the number of links in the shortest chain between i

4It is also important from of the point of view of centrality of players in the network. Indeed, while in the first type of
architectures, only the players at the center of the stars play a central role in the flow of resources between players, in the
second type a third player plays a significant role, since this player allows ressources to flow between the two groups. It
follows that in both cases centrality values of the players differ. Note that we refer here to the notion of betweeness centrality,
presented by Faust and Wasserman (1994 chapter 5).

5The assumption n̄ ≥ 4 allows to simplify the proof of Proposition 3.
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and j (if there is no chain between two players i and j in g we set d(i, j; g) = ∞). The diameter of
a network g is D(g) = maxi,j∈N{d(i, j; g)}. Let M t(g) = {(it, jt) ∈ N t × N t \ {i} | d(it, jt; g) ≥
d(i′, j′; g) for all (i′, j′) ∈ N t × N t} be the couples of players who belong to the group N t that are at
maximal distance in g. A network g is minimal if gi,j = 0 whenever there is a chain between i and j in
g−gi,j . A network g is connected if D(g) ̸= ∞. Moreover we say that a group of players N t, t ∈ {0, 1},
is connected in g if for any two players i, j ∈ N t d(i, j; g) ̸= ∞. A network g is minimally connected
if it is connected and minimal. The subnetwork g(N t), t ∈ {0, 1}, of g is a network which consists of
the players in N t and such that g(N t)i,j = gi,j for all i, j ∈ N t. Finally, we say that a player i is an end
player if ḡi,j = 1 for one player j ∈ N \ {i}, and ḡi,k = 0 for all players k ∈ N \ {i, j}.

We now define five networks architectures that play a role in our results. A periphery-sponsored
star (PSS) is a network g in which there exists a center player, ic(g), such that gj,ic(g) = 1 for all
j ∈ N \ {ic(g)}, and there are no other links. A center interlinked periphery-sponsored stars (CIPSS)
is a network g in which g(N t) is a PSS for each t ∈ {0, 1} and there is a link between the two centers.
A non center interlinked periphery-sponsored stars (NCIPSS) is a network in which g(N t) is a PSS for
each t ∈ {0, 1}, and a non center player of a PSS forms a link with the center player of the other PSS.
It is worth noting that CIPSS and NCIPSS are not treated as distinct architectures in GGK (2006), since
the authors called both these architectures interlinked periphery-sponsored stars. A mixed star (MS) is
similar to a PSS except that there is a unique player called jp(g) ̸= ic(g) such that gic(g),jp(g) = 1 instead
of gjp(g),ic(g) = 1. A interlinked mixed stars network (IMS) is a network in which g(N t) is a MS, g(N1−t)

is a PSS, and jp(g(N
t)) forms a link with ic(g(N

1−t)). A distance 3 interlinked periphery-sponsored
stars network (D3PSS) is a network such that g(N1−t) is a PSS, and there are two players in N t, say it2
and it3, such that g(N t \ {it3}) is a PSS, git3,ic(g(N1−t)) = 1 and git2,it3 = 1. Figure 1 below depicts these
architectures. In this figure, players in group N0 are denoted by 0 and players in group N1 are denoted
by 1. In the following, we denote the set of networks which consists of all PSS, all CIPSS, all NCIPSS,
all IMS, and all D3PSS, by A .

Figure 1. Networks architectures.
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To complete the definition of a normal-form game of network formation, we specify the payoffs. Let
cL (cH) be the costs incurred by a player i ∈ N t, t ∈ {0, 1}, when she forms a link with a player j ∈ N t

(j ∈ N1−t). We assume that cH > cL > 0. Let δ ∈ (0, 1) be the value of the decay parameter. Define
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Ni(g) = {j ∈ N \ {i} | there is a chain between i and j in g} as the set of players who are observed by
player i in the network g. The payoff obtained by player it ∈ N t, t ∈ {0, 1}, in a network g is given by:

Πit(g) =
∑

j∈Nit (g)

δd(i
t,j;g) −

∑
j∈Nt

git,jcL +
∑

j∈N1−t

git,jcH


Note that this payoff function is identical to the one in GGK (2006) in their insider-outsider model with
decay. In this payoff function we take into account the three following assumptions: (i) the value that
player i obtains from player j does not depend on the group of j, (ii) the value that player i obtains from
player j depends on the distance between i and j, and (iii) the cost that player i incurs for a link with
player j depends on whether i and j belong to the same group or not.

The strategy gi is said to be a best response of player i to the network g−i if:

Πi(gi + g−i) ≥ Πi(g
′
i + g−i), for all g′i ∈ Gi

The set of all of player i’s best responses to g−i is denoted by BRi(g−i). A network g is said to be a
Nash network if gi ∈ BRi(g−i) for each player i ∈ N . We define a strict best response and a strict Nash
network by replacing ‘≥’ with ‘>’. The set of non-empty strict Nash networks is denoted by SNN .

A network g is said to be an efficient network if it maximizes the total payoffs of players, that is∑n
i=1 Πi(g) ≥

∑n
i=1 Πi(g

′), for all g′ ∈ G.

3. Results

Let δ(n) be the value of the decay parameter such that a non-empty strict Nash network is minimal.6

We are interested by the second point of Proposition 4.3 of GGK (pg.365, 2006) where the authors
choose cL such that cL > 1 > δ. We will show that if cL > 1, then it is possible to obtain a more precise
characterization of strict Nash networks than the one proposed by GGK. It is worth noting that if cL > δ,
then each end player sponsors her link in a strict Nash network. We now present a technical remark
which is useful in several proofs.

Remark 1 (R1) If it1, i
t
2, i

t
3 ∈ N t, t ∈ {0, 1}, git1,it2 = ḡit2,it3 = 1 and

∑
ℓ∈N ḡit2,ℓ = 2, then g ̸∈ SNN .

Indeed, if player it1 replaces the link git1,it2 by the link git1,it3 , then it1 obtains a payoff greater or equal to
the payoff she obtains in g.
The proposition that follows shows that a non-empty strict Nash network is minimally connected.

We first present a lemma that is used in the proposition. The proof of this lemma is put in Appendix.

Lemma 1 Let δ > δ(n) and cH < δ + (n̄ − 1)δ2. Suppose g ∈ SNN in which there are four players
i, j, i′, j′ ∈ N , such that gi,j = gi′,j′ = 1. If there is a chain between i and i′ which goes through players
j and j′, then i, j ∈ N t and i′, j′ ∈ N1−t, t ∈ {0, 1}.

Proposition 1 Suppose δ > δ(n) and cH < δ + (n̄ − 1)δ2. A non-empty strict Nash network is
minimally connected.

6Note that for all costs of linking, there always exists a δ(n) high enough such that if δ > δ(n), then no player can have
an incentive to form a link with a player she already indirectly accesses in the network.
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Proof Let N t
+(g) = {it ∈ N t |

∑
j∈N\{it} git,j = 0} be the set of players in N t who form no links with

any player, and let NNt(g) = {it ∈ N t | ∃j1−t ∈ N1−t, gj1−t,it = 1} be the set of players in N t who
received a link from a player in N1−t. Suppose δ > δ(n) and g ∈ SNN . It follows that g is minimal.
We now show that if cH < δ + (n̄− 1)δ2, then g is connected.
First we show that if player it ∈ N t has formed a link, then all players in N t must observe her. To
introduce a contradiction, assume that there exist in g two players, it, jt ∈ N t, t ∈ {0, 1}, and a player
k ∈ N \ {i, j}, such that it ̸∈ Njt(g) and git,k = 1. Since it ̸∈ Njt(g) and it plays a strict best response,
we have by linearity of the payoff function: Πjt(g+gjt,k)−Πjt(g) > Πit(g)−Πit(g−git,k) > 0. Hence
player jt does not play a strict best response in g. Therefore, g ̸∈ SNN , a contradiction. It follows
that either no player has formed a link in N t, t ∈ {0, 1}, or there exists a chain between all players who
belong to N t. Formally, for each t ∈ {0, 1}, we have either N t

+(g) = N t or N t is connected in g.
We now use this result to show that g is connected. We consider two cases.

1. Suppose NNt(g) = ∅ and NN1−t(g) = ∅, that is there are no links between the two groups. We
will show in the following that such a situation cannot happen.
First, since g is non-empty, we cannot have simultaneously N t

+(g) = N t and N1−t
+ (g) = N1−t.

Suppose that N t
+(g) ̸= N t, for one t ∈ {0, 1}. In that case, we know from the point above that N t

is connected.
Second, we show in two steps that N t constitutes a PSS. We begin to show that if (it, jt) ∈ M t(g),
then d(it, jt; g) = 2. To introduce a contradiction, suppose that d(it, jt; g) > 2. In that case there
exist two distinct players it1, j

t
1 such that ḡit,it1 = ḡjt,jt1 = 1. We have: (i) git,it1 = gjt,jt1 = 1 since

cL > δ, (ii) there is a chain between it and jt which goes through it1 and jt1, (iii) players it, jt, it1,
and jt1 belong to N t. When (i) and (ii) are valid, it is not possible for (iii) to be valid simultaneously
by Lemma 1. A contradiction. Thus we can conclude that g(N t) constitutes a star. In this star,
each end player sponsors her link with the center, since δ < cL. So g(N t) constitutes a PSS.
Third, we show that NNt(g) ̸= ∅. Indeed, since cH < δ+(n̄−1)δ2, a player i ∈ N1−t strictly gains
by forming a link with the center of the PSS formed by the group N t. It follows that NNt(g) ̸= ∅,
which contradicts the assumption NNt(g) = ∅.

2. Suppose NNt(g) ̸= ∅ or NN1−t(g) ̸= ∅ in g. We assume wlog that there are players it ∈ N t and
j1−t ∈ N1−t such that git,j1−t = 1. Since a player in N t has formed a link, N t is connected. We
now show that g is connected. To introduce a contradiction suppose g is not connected. In that
case there exists a player k1−t ∈ N1−t such that j1−t ̸∈ Nk1−t(g). We have: Πk1−t(g+gk1−t,j1−t)−
Πk1−t(g) > Πit(g) − Πit(g − git,j1−t) > 0 since cH > cL and player k1−t obtains more resources
due to the link with j1−t than it through her link with j1−t. It follows that k1−t does not play a
strict best response, a contradiction. Thus we conclude that g is connected.

The previous proposition means that in a non-empty strict Nash network, each player i obtains some
resources of all other players. Obviously, each player i does not obtain all the resources of other players
because of the decay.

The proposition that follows deals with the diameter of non-empty strict Nash networks. We first
present a lemma that is used in the proposition. This lemma shows that if there are several links between
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players of different groups in a strict Nash network, then there is a group, say N t, such that n̄−1 players
in N t are not directly linked with players who belong to N1−t.

Lemma 2 Let δ > δ(n) and cH < δ + (n̄ − 1)δ2. Suppose i ∈ N t and j ∈ N1−t. If g ∈ SNN and
ḡi,j = 1, then

∑
ℓ∈Nt\{i},ℓ′∈N1−t ḡℓ,ℓ′ = 0 or

∑
ℓ∈N1−t\{j},ℓ′∈Nt ḡℓ,ℓ′ = 0.

The proof of the lemma is put in Appendix.

Proposition 2 Suppose δ ∈ (δ(n), 1) and cH < δ + (n̄− 1)δ2. Let g ∈ SNN .

1. If g contains one inter-groups link: git∗,j1−t
∗

= 1 with it∗ ∈ N t and j1−t
∗ ∈ N1−t, then D(g(N t)) ≤ 3

and D(g(N1−t)) = 2, for t ∈ {0, 1}.

2. If g contains several inter-groups links between the two groups, then D(g(N)) = 2.

Proof Suppose δ ∈ (δ(n), 1) and cH < δ + (n̄ − 1)δ2. We know from Proposition 1 that a non-empty
strict Nash network is minimally connected. We prove successively the two parts of the proposition.

1. Let g ∈ SNN , with only one inter-groups link. We assume that this link is formed by it∗ ∈ N t

with i1−t
∗ ∈ N1−t, that is git∗,i1−t

∗
= 1.

First, we show that D(g(N t)) < 4. To introduce a contradiction, we assume that there are
it, jt ∈ N t such that D(g(N t)) ≥ 4. There are two cases.
(a) Let (it0, j

t
0) ∈ M t(g), with it0, j

t
0 ∈ N t \ {it∗}. There are players it1, j

t
1 ∈ N t such that

ḡit0,it1 = ḡjt0,jt1 = 1. In that case: (i) we have git0,it1 = gjt0,jt1 = 1 since δ < cL, (ii) there exists
a chain between players it0 and jt0 which contains players it1 and jt1, and (iii) it0, i

t
1, j

t
0, j

t
1 ∈ N t.

When (i) and (ii) are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1. A
contradiction.
(b) Suppose now that if (it, jt) ∈ M t(g), then either it = it∗, or j = it∗. In other words, the player
it∗ who has formed a link with a player in N1−t, is always one of the two players at maximal
distance in g(N t). In the following we deal with (it∗, j

t) ∈ M t(g). Note first that since jt is an end
player and δ < cL, jt has formed a link with a player, say jt1, who belongs to the chain between it∗
and jt in g. There are two cases.
(b1) Suppose player it∗ has formed a link in g with a player, say it1 ∈ N t, who belongs to the chain
between it∗ and jt. In such a case we have (i) git∗,it1 = gjt,jt1 = 1, (ii) there is a chain between
players it∗ and jt which contains players it1 and jt1, and (iii) it∗, i

t
1, j

t, jt1 ∈ N t. When (i) and (ii) are
valid, it is not possible for (iii) to be valid simultaneously by Lemma 1. A contradiction.
(b2) Suppose player it∗ has formed no links in g with a player who belongs to the chain between
it∗ and jt. In that case, there is a player, say it1 ∈ N t, who has formed the link with it∗ and belongs
to the chain between it∗ and jt.
We show that the link git1,it∗ = 1 is the only link player it1 has formed in g. Indeed, suppose it1 has
formed a link with a player say itk ̸= it∗. Suppose itk does not belong to the chain between it1 and
jt. We have (kt, jt) ∈ M t(g) and by point (a) we know that g is not strict Nash. Suppose now
that itk belongs to the chain between it1 and jt. We have (i) git1,itk = gjt,jt1 = 1, (ii) there is a chain
between it1 and jt which contains players itk and jt1, and (iii) it1, i

t
k, j

t
1, j

t ∈ N t. When (i) and (ii)
are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1.
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Since the link git1,it∗ = 1 is the only link that player it1 has formed in g, it follows that there is a
player it2 who belongs to the chain between it∗ and jt such that git2,it1 = 1. However in this situation
player it2 does not play a strict best response, by (R1). Consequently g ̸∈ SNN . A contradiction.

Second we show that D(g(N1−t)) = 2. Using arguments similar to those for N t it is easy
to see that D(g(N1−t)) < 4. We now show that D(g(N1−t)) < 3. To introduce a contradiction
suppose that D(g(N1−t)) = 3. We divide the proof into two cases.
(a) Suppose there are (i1−t, j1−t) ∈ M1−t(g) such that i1−t, j1−t ∈ N1−t \ {i1−t

∗ }. So there
are players i1−t

1 , j1−t
1 ∈ N1−t such that ḡi1−t,i1−t

1
= ḡj1−t,j1−t

1
= 1. In that case: (i) we have

gi1−t,i1−t
1

= gj1−t,j1−t
1

= 1 since δ < cL, (ii) there is a chain between i1−t and j1−t which contains
players i1−t

1 and j1−t
1 , and (iii) we have i1−t, j1−t, i1−t

1 , j1−t
1 ∈ N1−t. When (i) and (ii) are valid, it

is not possible for (iii) to be valid simultaneously by Lemma 1.
(b) Suppose now that if (i1−t, j1−t) ∈ M1−t(g), then either i = i1−t

∗ , or j = i1−t
∗ . In the following

we deal with (i1−t
∗ , j1−t) ∈ M1−t(g). Since j1−t is an end player, she has formed a link with a

player j1−t
1 ∈ N1−t who belongs to the chain between it∗ and j1−t. In such a case we have (i)

git∗,i1−t
∗

= gj1−tj1−t
1

= 1, (ii) there exists a chain between players it∗ and j1−t which contains players
i1−t
∗ and j1−t

1 , and (iii) it∗ ∈ N t, and i1−t
∗ , j1−t, j1−t

1 ∈ N1−t. When (i) and (ii) are valid, it is not
possible for (iii) to be valid simultaneously by Lemma 1.
The conclusion follows.

2. We now consider a minimally connected strict Nash network g in which there are more than one
inter-groups link. The arguments which allow to obtain the contradiction in this part are very
similar to the arguments used in the previous part. Therefore we briefly show the way to use
Lemma 1 in the proof. We know from Lemma 2 that there exists one player who belongs to one
group, say it∗ ∈ N t, such that it∗ is involved in all the inter-groups links.
We first deal with players in N1−t and show that ḡit∗,i1−t = 1 for all i1−t ∈ N1−t. Let B ⊂ N1−t be
the set of players i1−t ∈ N1−t such that ḡit∗,i1−t = 1 . By assumption we have |B| ≥ 2. Moreover
we know that we have ḡit,i1−t = 0 for all (it, i1−t) ∈ N t \ {it∗} ×N t.
To introduce a contradiction, we suppose that B ̸= N1−t. Since g is connected there are players
j1−t, k1−t ∈ B and a player i1−t ∈ N1−t such that ḡi1−t,k1−t = 1. Let ℓ1−t ∈ N1−t be an end
player such that k1−t belongs to the chain between it∗ and ℓ1−t. By construction there is a player
ℓ1−t
1 ∈ N1−t such that ḡℓ1−t

1 ,ℓ1−t
1

= 1. Note that we can have ℓ1−t
1 = k1−t and ℓ1−t = i1−t.

Moreover, since δ < cL, we have gℓ1−t,ℓ1−t
1

= 1.
Either j1−t is an end player, and gj1−t,it∗ = 1 since δ < cL, or there exists an end player
ℓ1−t
j ∈ N1−t \ {j1−t} such that ℓ1−t

j ∈ Nj1−t(g − ḡit∗,j1−t). In the second case by construction and
since δ < cL, we have gℓ1−t

j ,m1−t = 1 for one player m1−t ∈ N1−t.

If j1−t is an end player, then Lemma 1 is contradicted for players it∗, j
1−t, ℓ1−t

1 , ℓ1−t and g cannot
be a strict Nash network. If j1−t is not an end player, then Lemma 1 is contradicted for players
ℓ1−t
j ,m1−t, ℓ1−t

1 , ℓ1−t and g cannot be a strict Nash network. It follows that B = N1−t. It is worth
noting that gi1−t,it∗ = 1 for all i1−t ∈ N1−t since δ < cH .
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We now deal with players in N t and show that ḡit∗,i = 1 for all i ∈ N t. To introduce a contradiction,
suppose there is an end player kt ∈ N t, kt ̸= it∗, such that ḡit∗,kt = 0. Since g is connected and
δ < cL there is a player jt ∈ N t\{kt, it∗} such that gkt,jt = 1. In that case Lemma 1 is contradicted
for players kt, jt, it∗, i

1−t ∈ N1−t, since gi1−t,i1−t
∗

= 1. Therefore g is not a strict Nash network.
The result follows.
To conclude, since ḡit∗,i = 1 for all i ∈ N we have D(g(N)) = 2.

It follows from the previous proposition that the maximal diameter of strict Nash networks is equal
to five. It is worth noting that small diameter also characterizes non-empty strict Nash networks in the
model with no decay of GGK (2006). The proposition that follows gives an exact characterization of
strict Nash networks. We first present two lemmas that are used in the proposition. The proofs of these
lemmas are put in Appendix.

Lemma 3 Suppose δ > δ(n) and cH < δ + (n̄ − 1)δ2. Suppose g is a non-empty strict Nash network
and there is only one inter-groups link.

1. If there is t ∈ {0, 1} such that D(g(N t)) = 3, then g is a D3PSS.

2. If for each t ∈ {0, 1} we have D(g(N t)) = 2, then g is a CIPSS, a NCIPSS or a IMS .

Lemma 4 Suppose δ > δ(n) and cH < δ + (n̄− 1)δ2. Suppose g is a strict Nash network and there are
several inter-groups links. Then g is a PSS.

Proposition 3 Suppose δ > δ(n) and cH < δ + (n̄ − 1)δ2. Then, SNN ⊂ A. Moreover, there exists δ̄
such that for any δ ∈ (δ̄, 1), CIPSS are the only networks in SNN .

Proof Suppose δ > δ(n), and cH < δ + (n̄ − 1)δ2. Lemmas 3 and 4 establish that SNN ⊂ A.
Concerning the second part of the proposition, GGK (2006, Proposition 4.3 part (2a), pg.365) showed
that for δ sufficiently close to 1, only interlinked periphery-sponsored stars networks can be candidates
as strict Nash networks.
It is easy to check that in a CIPSS, g, no player has an incentive to change her strategy when δ is
sufficiently close to 1. Therefore, g ∈ SNN .
We now show that if δ is sufficiently close to 1, then a NCIPSS cannot be strict Nash. Indeed, suppose
a NCIPSS, g, in which players itc ∈ N t and i1−t

c ∈ N1−t are respectively the centers of the stars formed
with players in N t and N1−t. Let player ℓt∗ ∈ N t be the player such that gℓt∗,itc = gℓt∗,i1−t

c
= 1. Let

it0 ∈ N t \ {ℓt∗, itc}, be a periphery player. If it0 deletes her link with itc and forms a link with ℓt∗, then
the change in it0’s payoffs is Πit0

(g − git0,itc + git0,ℓt∗) − Πit0
(g) = −δ2(n̄ − 4 − (2n̄ − 5)δ + (n̄ − 1)δ2).

Consequently, for any δ ∈
(
n̄−4
n̄−1

, 1
)
, we have Πit0

(g − git0,itc + git0,ℓt∗)− Πit0
(g) > 0, and g ̸∈ SNN . The

result follows.
It follows from the previous proposition that in all non-empty strict Nash architectures few players

play a key role in the flow of resources. More precisely, we can distinguish two types of players, end
players and non-end players. If one player of the first type is deleted, then only her own resources will
not be accessed by other players. This is very different for the second type of players. As an illustration
suppose a population with 100 players, that contains two groups, denoted by N0, N1, of 50 players each.
We know from Proposition 3 that there are only at most 4 players who are not end players in a non-empty
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strict Nash network. Suppose we delete one of these players, say i ∈ N t, t ∈ {0, 1}. Then this will
prevent players of group N1−t the access to resources of at least 47 players of the group N t. In that
sense, non end players have a significant role in the flow of resources in the network, by contrast with
end players. It is worth noting that asymmetries in players centrality also characterizes non-empty strict
Nash networks in the model with no decay of GGK (2006).

We now give an example of parameter values such that all networks g ∈ A are strict Nash networks.

Example 1 Suppose n = 120, δ = 0.94, cL = 40, cH = 45. It can be checked that non minimal networks
cannot be strict Nash. Moreover, it can be checked that all networks g ∈ A are strict Nash networks.

We now show that for the same range of costs as in Proposition 3, if the decay parameter is sufficiently
close to 1, then CIPSS are efficient networks.

Proposition 4 Suppose cH < δ + (n̄− 1)δ2. Then there exists δ̂ such that for any δ ∈ (δ̂, 1), CIPSS are
efficient networks.

Proof Let g be an efficient network. First, we show that there exists δ̂ sufficiently close to 1 such that
there is at most one link between players in N t and players in N1−t in g. Suppose that there is no
decay, that is δ = 1. In that case, we are in the situation studied by GGK (2006, p.369). Consequently,
(a) each component part of an efficient network is minimal; (b) if g is non-empty and efficient, then
it is either minimally connected with 1 inter-groups link and 2(n̄ − 1) intra-groups links or partially
connected with each group generating a minimal connected component. Since cH < δ + (n̄ − 1)δ2, g
is connected by Proposition 1. The above observations hold when δ̂ is sufficiently close to 1. Suppose
now that δ < 1. To introduce a contradiction, suppose that there are two links between players i ∈ N t

and players j ∈ N1−t in g. If one of these links is replaced by a link between two players who belong
to the same group, then the difference in total cost is cH − cL, and the difference in the total gross
payoff cannot exceed 4n̄2(δn − δ). Clearly for all cH > cL, there is δ̂ sufficiently close to 1 such that
δ̂− δ̂n < (cH−cL)/(4n̄

2). Second, we show that CIPSS are efficient networks. We know that an efficient
network is minimally connected and contains one link between the two groups. Let E be the set of
minimally connected networks which contain one link between the two groups. E is the set of networks
candidate to be efficient. All the networks in E contain the same number of links. Consequently, we
do not need to take into account total cost of setting links in networks g′ ∈ E, but only the gross total
payoff:

∑
i∈N

∑
j∈Ni(g′)

δd(i,j;g
′). Only the distance between the players plays a role in this function. Let

Dis(k; g) = {(i, j) ∈ N ×N | d(i, j; g) = k}. We have:∑
i∈N

∑
j∈Ni(g′)

δd(i,j;g
′) =

∑
k∈{0,...,2n̄−1}

|Dis(k; g′)|δk

Since each g′ ∈ E is minimally connected, it contains 2n̄ − 1 links. It follows that in each g′ ∈ E we
have |Dis(1; g′)| = 2(2n̄ − 1). We know that in g′ ∈ E there is at most one link between players in
N t and players in N1−t. Let this link be between it∗ ∈ N t and i1−t

∗ ∈ N1−t. In that case, all players
jt ∈ N t \ {it∗} cannot be at distance 2 of players j1−t ∈ N1−t \ {i1−t

∗ }. Consequently, for any g′ ∈ E,
|Dis(2; g′)| ≤ 2n̄× (2n̄− 1)− 2(2n̄− 1)− 2(n̄− 1)2 = 2n̄(n̄ − 1), where 2n̄× (2n̄− 1) is the total
number of couples, 2(2n̄ − 1) is the number of couples at distance 1, and 2(n̄ − 1)2 is the number of
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other couples which cannot be at distance 2. In CIPSS networks there are 2n̄(n̄− 1) couples of players
who belong to Dis(2; g′). Since all couples which do not belong to Dis(1; g′) ∪ Dis(2; g′) belong to
Dis(3; g′) in a CIPSS, the result follows.

Recall that the class of interlinked periphery-sponsored stars networks that GGK (2006) find as the
unique non-empty strict Nash networks, contains two types of architectures, namely CIPSS and NCIPSS.
It is easy to see why NCIPSS are less efficient than CIPSS. Indeed, recall that in NCIPSS there exists a
link between a periphery player, say it∗ ∈ N0, and the center player of the star formed by the other group,
say i1−t

∗ ∈ N1. Suppose that this link is replaced by a link between the two center players, i1−t
∗ ∈ N1 and

say i0 ∈ N0. It is easy to see that the loss of the total value obtained by it∗ is the same as the additional
value obtained by i0, while the total value obtained by each player i ∈ N \ {i0, it∗} increases. Therefore
our result shows that if δ is high enough, then non-empty strict Nash networks are also efficient networks.

4. Conclusion

Heterogeneity of players and imperfect transitivity of information flows are central features of
economic and social networks. In this note we re-examine the insider-outsider model of GGK (2006)
which takes these features into account, by allowing for different degrees of decay in information
flows. We refine the results of GGK (2006) paper for the case decay is low and costs of intra-group
and inter-group links are intermediate. We find new strict Nash architectures for higher values of
decay. It is interesting to note that all these architectures have small diameter and high asymmetries
with regard to centrality of players, since these properties are also features of equilibrium networks
in the GGK (2006) insider-outsider model with no decay. We also refine the results of GGK (2006)
insider-outsider model when δ is sufficiently close to 1. We show for this case that only one type of
interlinked periphery-sponsored stars networks can be strict Nash networks. It follows from this result
that equilibrium networks are also efficient networks when δ is sufficiently close to 1.

In this note, we restrict our study to situations in which there are only two groups of players. Future
research may consider introducing a higher number of groups in the model to examine the robustness
of our finding concerning centrality and diameters of strict Nash networks as well as the compatibility
between strict Nash and efficient networks.
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Appendix

Proof of Lemma 1 Let i1, j1, i2 and j2 be four different players. We define πj(g) =
∑

ℓ∈Nj(g)
δd(ℓ,j,g) as

the gross payoff that player j obtains in a network g. Let g be a strict Nash network. Since δ > δ(n),
it follows that g is minimal. We suppose that gi1,j1 = gi2,j2 = 1 and there is a chain between i1 and i2

which goes through players j1 and j2. Let g′ = g − gi1,j1 − gi2,j2 and g′′ = g − gi2,j2 + gi2,j1 .
We have

πj1(g
′ + g′i1,j1)− πj1(g

′) ≥ πj2(g
′ + g′i1,j1)− πj2(g

′)

since player i1 is closer to player j1 than player j2 in g′.
We set ℓ ̸∈ Nj1(g

′) ∪ Nj2(g
′). We assume that πℓ(g

′ + gℓ,j1) ≥ πℓ(g
′ + gℓ,j2) and we focus on player i2

(if this assumption is not true, then we use the same kind of arguments but we focus on player i1).
We now show that i1, j1 ∈ N t and i2, j2 ∈ N1−t, t ∈ {0, 1}, otherwise g ̸∈ SNN . We have two cases.
1) Suppose j1 and j2 belong to the same group N t, t ∈ {0, 1}. Then the cost that player i2 incurs when
she forms a link with j1 is equal to the cost that i2 incurs when she forms a link with j2. Moreover, we
have

πi2(g
′′) = πi2(g

′) + (πℓ(g
′ + g′ℓ,j1)− πℓ(g

′)) + δ(πj1(g
′ + g′i1,j1)− πj1(g

′))

and
πi2(g) = πi2(g

′) + (πℓ(g
′ + g′ℓ,j2)− πℓ(g

′)) + δ(πj2(g
′ + g′i1,j1)− πj2(g

′))

We have πi2(g
′′) ≥ πi2(g). It follows that player i2 does not play a strict best response and g ̸∈ SNN .

Therefore, j1 and j2 do not belong to the same group N t.
2) Suppose j1 and j2 do not belong to the same group. We must show that i1 belongs to the same group
as j1 and i2 belongs to the same group as j2. Let j1 ∈ N t and j2 ∈ N1−t.
First, we show that i1 and i2 do not belong to the same group, say Nt. To introduce a contradiction,
suppose i1, i2 ∈ N t, we have:

Πi1(g)− Πi1(g + gi1,j2 − gi1,j1) = δ[(πj1(g
′ + g′i2,j2)− πj1(g

′))− (πj2(g
′ + g′i2,j2)− πj2(g

′))]

+(πℓ(g
′ + g′ℓ,j1)− πℓ(g

′ + g′ℓ,j2))− cL + cH

> 0

since player i1 plays a best response in g. Likewise we have

Πi2(g)− Πi2(g
′′) = δ((πj2(g

′ + g′i1,j1)− πj2(g
′))− (πj1(g

′ + g′i1,j1)− πj1(g
′)))

+(πℓ(g
′ + g′ℓ,j2)− πℓ(g

′ + g′ℓ,j1))− cH + cL

> 0

Since player i2 plays a strict best response in g. By summing the two previous inequalities we obtain:

δ(πj1(g
′ + g′i2,j2)− πj2(g

′ + g′i2,j2) + πj2(g
′ + g′i1,j1)− πj1(g

′ + g′i1,j1)) > 0,

that is
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(πj1(g
′ + g′i2,j2)− πj1(g

′)) + (πj2(g
′)− πj2(g

′ + g′i2,j2))

+(πj2(g
′ + g′i1,j1)− πj2(g

′)) + (πj1(g
′)− πj1(g

′ + g′i1,j1)) > 0

which is not true since i2 is closer to j2 than i1, and i1 is closer to j1 than i2, a contradiction. Second by
using the same kind of arguments, we show that it is not possible to have i1 ∈ N1−t and i2 ∈ Nt. The
result follows.
Proof of Lemma 2 Suppose g ∈ SNN . First, since δ > δ(n) and cH < δ + (n̄ − 1)δ2, we know by
Proposition 1 that g is minimally connected. We prove the lemma by contradiction. Suppose there are
four players, it, jt ∈ N t and i1−t, j1−t ∈ N1−t, t ∈ {0, 1}, such that ḡit,i1−t = ḡjt,j1−t = 1. We have two
possibilities which we analyze in turn.

1. The two inter-groups links are sponsored by two players who belong to the same group. Suppose
wlog that git,i1−t = 1 and gjt,j1−t = 1. Since g is minimally connected, there are four cases which
we analyze in turn.

C1. There is a chain between it and jt which contains players i1−t and j1−t. We know that we
have also (i) git,i1−t = 1, gjt,j1−t = 1. (ii) it ∈ N t, i1−t ∈ N1−t. When C1 and (i) are valid, it is
not possible for (ii) to be valid simultaneously by Lemma 1.

C2. There is a chain between i1−t and jt which does not contain it and j1−t. In that case, there
exists a player k ∈ N such that ḡj1−t,k = 1, otherwise player jt does not play a strict best response
since δ < cL. Either k is an end player, and gk,j1−t = 1 since δ < cL, or there exists an end
player k′ ̸= k such that k′ ∈ Nj1−t(g − gjt,j1−t). Suppose k is an end player. We have (i)
git,i1−t = gk,j1−t = 1, (ii) there is a chain between it and k which contains players i1−t, j1−t,
(iii) it ∈ N t, i1−t ∈ N1−t. When (i) and (ii) are valid, it is not possible for (iii) to be valid
simultaneously by Lemma 1. Next suppose the end player is k′ ∈ Nj1−t(g − gjt,j1−t). Then there
is a player k′′ such that gk′,k′′ = 1 (since δ < cL). So we have (i) git,i1−t = gk′,k′′ = 1, (ii) there is
a chain between it and k′ which contains players i1−t, k′′, (iii) it ∈ N t, i1−t ∈ N1−t. When (i) and
(ii) are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1.

C3. There is a chain between it and j1−t which does not contain players i1−t and jt. This case is
symmetric to C2.

C4. There is a chain between it and jt which does not contain players i1−t and j1−t. In that case,
there exist players ki, kj ∈ N such that ḡi1−t,ki = ḡj1−t,kj = 1, otherwise players it and jt do not
play a strict best response since δ < cL. This gives rise to two situations: either both ki and kj

are end players, or at least one is not an end player. If both ki and kj are end players, we have
(i) gki,i1−t = gkj ,j1−t = 1, (ii) there is a chain between ki and kj which contains players i1−t and
j1−t, (iii) i1−t, j1−t ∈ N1−t. When (i) and (ii) are valid, it is not possible for (iii) to be valid
simultaneously by Lemma 1.
Suppose now wlog that ki is not an end player. Then there exists an end player
k′
i ∈ Ni1−t(g − git,i1−t). By construction and since δ < cL, we have also gk′i,k′′i = 1 for one

player k′′
i such that k′′

i ∈ Ni1−t(g − git,i1−t) \ {k′
i}. Therefore we have (i) git,i1−t = gk′i,k′′i = 1, (ii)

there is a chain between it and k′
i which contains players i1−t and k′′

i , (iii) it ∈ N t and i1−t ∈ N1−t.
When (i) and (ii) are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1.
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2. The two inter-groups links are sponsored by players who belong to two distinct groups. Suppose
wlog that git,i1−t = 1, gj1−t,jt = 1. Since g is minimally connected, as before there are four cases
which we analyze in turn.

C1’. There is a chain between it and jt which contains players i1−t and j1−t. In that case, there
exists a player k ∈ N such that ḡjt,k = 1, otherwise player j1−t does not play a strict best response
since δ < cL. Either k is an end player, and gk,jt = 1 (since δ < cL), or there exists an end player
k′ ̸= k such that k′ ∈ Njt(g − gj1−t,jt). In the second case by construction and since δ < cL, we
have also gk′,k′′ = 1 for one player k′′ such that k′′ ∈ Njt(g − gj1−t,jt). In the first case, by using
Lemma 1 for players it, i1−t, jt, k, it is easy to check that g cannot be a strict Nash network. In the
second case we obtain the same result for players it, i1−t, k′, k′′.

C2’. There is a chain between i1−t and jt which does not contain it and j1−t. We have
(i) git,i1−t = gj1−t,jt = 1, (ii) there is a chain between it and j1−t which contains players i1−t

and jt, (iii) it, jt ∈ N t, and i1−t, j1−t ∈ N1−t. When (i) and (ii) are valid, it is not possible for (iii)
to be valid simultaneously by Lemma 1.

C3’. There is a chain between it and j1−t which does not contain i1−t and jt. In that case, there
exist players k0, k1 ∈ N such that ḡjt,k0 = ḡi1−t,k1 = 1, otherwise players it, j1−t do not play a
strict best response since δ < cL. This gives rise to two situations: (I) both k0 and k1 are end
players, and (II) at least one is not an end player.
(I) Both k0 and k1 are end players. We have gk0,jt = gk1,i1−t = 1, since δ < cL. We show that
k0 ∈ N t, k1 ∈ N1−t. Indeed we have (i) gk0,jt = gk1,i1−t = 1, (ii) there is a chain between k0 and
k1 which contains players jt and i1−t, (iii) jt ∈ N t, i1−t ∈ N1−t. By Lemma 1, (i), (ii) and (iii)
can be simultaneously satisfied only if k0 ∈ N t and k1 ∈ N1−t.
We now focus on players it and j1−t to obtain a contradiction when k0 ∈ N t, k1 ∈ N1−t.

• Suppose ḡit,j1−t = 1. Let git,j1−t = 1. We have (i) gk0,jt = git,j1−t = 1, (ii) there is a chain
between k0 and it which contains players jt and j1−t, (iii) k0, jt, j1−t ∈ N t, and i1−t ∈ N1−t.
When (i) and (ii) are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1.
Let gj1−t,it = 1. By the same reasoning we obtain a contradiction.

• Suppose ḡit,j1−t = 0. Let i1, i2, . . . , is be the sequence of players in the chain between it and
j1−t in g, with i1 = it and is = j1−t.
(a) We first show that , if ip ∈ N t, then gip+1,ip = 1 for p ∈ {1, .., s − 1}. By construction
we have ḡip,ip+1 = 1. Suppose ip ∈ N t. Then we have: (i) gk0,jt = 1, (ii) there is a chain
between k0 and ip which contains players jt and ip+1, (iii) k0, jt, ip ∈ N t. By Lemma 1, (i),
(ii) and (iii) can not be simultaneously valid if gip,ip+1 = 0. The result follows.
(b) We now show that if ip ∈ N t, then ip+1 ∈ N t for p ∈ {1, .., s − 1}. By (a) we have
gip+1,ip = 1. It follows that we have (i) gk1,i1−t = gip+1,ip = 1, (ii) there is a chain between k1

and ip+1 in g which contains players i1−t and ip, (iii) k1, i1−t ∈ N1−t, ip ∈ N t. By Lemma
1, (i), (ii) and (iii) can be simultaneously valid only if ip+1 ∈ N t.
It follows that is ∈ N t since it ∈ N t. A contradiction since we know that is ∈ N1−t.

(II) At least one of players k0 or k1 is not an end player. Suppose w.l.o.g. that k1 is not
an end player. Then there exists an end player k′

1 ̸= k1, such that k′
1 ∈ Ni1−t(g − git,i1−t).
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By construction and since δ < cL, we have also gk′1,k′′1 = 1 for one player k′′
1 such that

k′′
1 ∈ Ni1−t(g − git,i1−t) \ {k1, k′

1}. Therefore we have (i) git,i1−t = gk′1,k′′1 = 1, (ii) there is a
chain between it and k′

1 which contains players i1−t and k′′
1 , (iii) it ∈ N t, i1−t ∈ N1−t. When

(i) and (ii) are valid, it is not possible for (iii) to be valid simultaneously by Lemma 1.

C4’. There is a chain between it and jt which does not contain players i1−t and j1−t. In
that case, there exists a player k ∈ N such that ḡi1−t,k = 1, otherwise player it does not
play a strict best response since δ < cL. Either k is an end player, and gk,i1−t = 1 since
δ < cL, or there exists an end player k′ ̸= k such that k′ ∈ Ni1−t(g − git,i1−t). Let k be an
end player. We have (i) gj1−t,jt = gk,i1−t = 1, (ii) there is a chain between j1−t and k which
contains players jt and i1−t, (iii) jt ∈ N t, and j1−t ∈ N1−t. When (i) and (ii) are valid, it
is not possible for (iii) to be valid simultaneously by Lemma 1. Next let the end player be
k′ ∈ Ni1−t(g − git,i1−t). Then there is a player k′′ such that gk′,k′′ = 1 (since δ < cL). We
have (i) gj1−t,jt = gk′,k′′ = 1, (ii) there is a chain between j1−t and k′ which contains players
jt and k′′, (iii) jt ∈ N t, and j1−t ∈ N1−t. When (i) and (ii) are valid, it is not possible for
(iii) to be valid simultaneously by Lemma 1.

Proof of Lemma 3 Suppose δ > δ(n) and cH < δ + (n̄ − 1)δ2. Let g be a strict Nash network such
that there is only one inter-groups link, say the link formed by player it∗ ∈ N t with player i1−t

∗ ∈ N1−t,
t ∈ {0, 1}. Since δ > δ(n) and cH < δ + (n̄ − 1)δ2, we know from Proposition 1 that g is minimally
connected. We prove successively the two parts of the lemma.

1. We assume that D(g(N t)) = 3. First, we characterize the architecture of g(N t). Let it∗ ∈ N t and
i1−t
∗ ∈ N1−t be such that git∗,i1−t

∗
= 1. Let disit∗(k; g) = {j ∈ N t | d(it∗, j; g) = k}. We know by

the proof of Proposition 2 1.(a) that if (it, jt) ∈ M t(g), then either it = it∗, or jt = it∗. Likewise,
we know that |disit∗(1; g)| = 1 and it1 ∈ disit∗(1; g) is involved only in two links otherwise there
is (it, jt) ∈ M t(g), with it ̸= it∗ and jt ̸= it∗. Consequently, |disit∗(2; g)| = 1 and we call it2 the
player in disit∗(2; g). By R1, it2 does not form a link with it1 ∈ disit∗(1; g). It follows that player
it1 ∈ disit∗(1; g) forms a link with it2 ∈ disit∗(2; g). Finally, we have disit∗(3; g) = N t \ {it∗, it1, it2}
and since δ < cL for all players who belong to this set we have gk,it2 = 1.
Second, we characterize the architecture of g(N1−t). We show that all players k ∈ N1−t \ {i1−t

∗ }
has formed a link with i1−t

∗ . Indeed, we know by Proposition 2 that D(g(N1−t)) = 2, that is this
subnetwork is a star. We now show that i1−t

∗ is the center of this star. To introduce a contradiction
assume that a player k1−t ̸= i1−t

∗ is the center of this star. We have Πit∗(g − git∗,i1−t
∗

+ git∗,k1−t) =

(n−3)(δ2− δ3) > 0 and player it∗ has an incentive to replace her link with i1−t
∗ by a link with k1−t

in g. A contradiction. As each player j1−t ∈ N1−t \ {i1−t
∗ } is an end player, each player j1−t has

formed a link with i1−t
∗ since δ < cL. The result follows.

2. Assume that for each t ∈ {0, 1}, we have D(g(N t)) = 2. By using the same arguments as in the
previous point, we can show that the subnetwork formed by players of group N1−t is a star with
i1−t
∗ as the center and each player k1−t ∈ N1−t \ {i1−t

∗ } forming her link with i1−t
∗ . Concerning the

architecture of the star formed by players of group N t, we can have two cases: (i) Either it∗ is the
center of the star, or (ii) a player kt ∈ N t \ {it∗} is the center of the star. In case of (i), all players
j ∈ N t \ {it∗} are end players and have formed a link with it∗. So g is a CIPSS. In case of (ii),
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all players j ∈ N t \ {kt, it∗} are end players and have formed a link with kt. Regarding the link
between k and it∗, we can have either gk,it∗ = 1, or git∗,k = 1. If gk,it∗ = 1, then g is a NCIPSS, and
if git∗,k = 1, then g is a IMS.

Proof of Lemma 4 Suppose δ > δ(n) and cH < δ+(n̄−1)δ2. Let g be a non-empty strict Nash network.
We know by Proposition 2 that g is a star. In that case, each periphery player sponsors her link with the
center since δ < cL. Consequently, g is a PSS.

c⃝ 2010 by the authors; licensee MDPI, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
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