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Abstract: Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian
natural selection. They are popular heuristic optimisation methods based on simulated genetic
mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction,
selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer
using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs
known as “Quantum Genetic Algorithms” (QGAs). In this review, we present a discussion, future
potential, pros and cons of this new class of GAs. The review will be oriented towards computer
scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

Keywords: quantum genetic algorithms; quantum evolutionary algorithms; reduced quantum
genetic algorithm; quantum computing

1. Introduction

In the late 1980s, genetic algorithms [1] achieved enough popularity as a method of optimization
and machine learning. During this decade the Nobel Prize-winning physicist Richard Feynman
thought the possibility of a quantum computer, a computer that operates using the effects of quantum
mechanics. However, it would have to wait some time for the emergence of the exciting idea of
designing a genetic algorithm capable of running on a quantum computer. However, is this possible?

Genetic Algorithms (GAs) are search algorithms based on Darwinian natural selection and
genetic mechanisms present in organisms [2]. In a simple genetic algorithm (SGA) [1], solutions
are encoded in arrays that are referred as chromosomes. Usually, the algorithm begins with an
initial population of chromosomes, thus the initial set of solutions, which is randomly generated.
Henceforth, the algorithm evolves over and over the population in search of an optimal solution.
At each generation the chromosomes in the population are evaluated before selection, obtaining their
fitness f values, thus the degree of achievement or goodness of the encoded solution. Immediately after
chromosomes are evaluated, the algorithm selects the “parents” or mating pool of the next generation,
simulating a concept introduced by Darwin: the survival of the fittest. Once a new generation of
offspring chromosomes is obtained, the algorithm simulates genetic mechanisms such as crossover and
mutation. However, there are genetic algorithms based on other genetic mechanisms such is the case of
bacterial conjugation [3]. These mechanisms are very important in living organisms because they are
responsible for the biological variability. In the case of crossover this genetic mechanism takes place
during the mating between individuals promoting the population convergence towards sub-optimal
solutions present in the search space. Nevertheless, in the case of mutation this genetic mechanism
involves a random change that occurs in chromosomes, pushing the population to perform a random
walk through the search space. The described steps are shown in Table 1, concluding the search
once the SGA meets the termination condition, i.e., the algorithm has found an optimal solution [4].
At present, GAs have many applications in optimization problems, e.g., automated design, quality
control, manufacturing systems, software design, financial forecasting, robotics, etc. being widely used
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in fields either economics, biology, chemistry and many others. However, from a theoretical point
of view, is it possible to simulate “Darwinian evolution” in a quantum computer? In 1987 Calvin [5]
coined the term “Darwin machine” to refer to a machine (analogous to a Turing machine) which
returns as output the result of an iterative process similar to a GA. From a theoretical point of view the
architecture of a conventional computer is adequate to implement GAs, and also to simulate from a
Darwinian perspective the most important aspects of biological evolution. Consequently, whereas a
digital computer can successfully simulate a Darwin machine the possibility to simulate a “Darwin
quantum machine” in a quantum computer remains today a controversial question. However, what is
known as “Quantum Darwinism” [6] will open up the possibility. Therefore, the Darwin’s concept of
survival of the fittest could be simulated in any device capable of data manipulation based on quantum
mechanical phenomena [7]. In any case, and without going into theoretical issues, since 1956 [8] when
was first proposed the genetic algorithms Evolutionary Computation has made great progress. In 2002
Han [9] introduced a novel evolutionary algorithm inspired by quantum computing, growing from this
date the number of publications on quantum-inspired genetic algorithms. In 2010 Ying [10] proposed
that quantum computing could be used to achieve certain goals in Artificial Intelligence (AI). Over the
last decade, the possibility to emulate a quantum computer has led to a new class of GAs known as
“Quantum Genetic Algorithms”. In this review, we present a discussion, future potential, pros and
cons of this new class of GAs, including some material presented in a lecture delivered at [11].

Table 1. Main steps of a simple genetic algorithm (SGA).

Step

1 Randomly initialize a population P(0)
2 Evaluate P(0)
3 while (not termination condition) do
4 begin
5 t← t + 1
6 Selection of parents from population P(t)
7 Crossover
8 Mutation
9 Evaluate P(t)
10 end

2. What is Quantum Computing?

One of the most striking ideas of quantum computing is that as long as a digital computer is a
symbolic machine, i.e., an instruction execution engine, a quantum computer is a physical machine.
This means that in a quantum computer the hardware-software duality is less obvious than in a classical
computer, being the quantum circuit “hardware” itself an isolated “quantum system”. Therefore while
in a digital computer a computation is given by the logical operations performed in a “symbolic
system”, in a quantum computer a computation is the evolution experienced by the quantum system.

According to quantum mechanics the evolution of an isolated quantum system from an initial
state to another final state, e.g., a quantum computer, is governed by the Schrödinger equation:

i} ∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉

where i is the imaginary number
√
−1 and } is a constant term named “reduced Planck constant”.

Planck’s constant plays the role of relating the energy in a photon to frequency, and since frequency is
measured in cycles per second it is more convenient to use } = h/2π. According to the mathematical
expression the Schrödinger equation is a partial differential equation which “physical variable” is a
state vector |ψ(t)〉 written in a somewhat special notation that we will discuss later. The |ψ(t)〉 vector
depends on time and describes the state of a quantum system at time t, in this case the quantum
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computational state. Since we are dealing with a differential equation, the equation also includes a rate
of change or differential term, i.e., ∂

∂t |ψ(t)〉. The Schrödinger equation is the holy grail of quantum
computing because it characterizes the evolution of a computing state through time. The term H(t) is
known as “Hamiltonian operator” and somehow given the initial state |ψ(0)〉 it represents the sequence
of operations performed by a quantum computer. Establishing a parallelism between quantum and
digital computers we assume that quantum state |ψ(0)〉 resembles the input of a digital computer.
An interesting point is that if we know the Hamiltonian then the Schrödinger equation can be solved,
so without going into details we will denominate U(t) as the solution of this equation. Hence, given an
initial state |ψ(0)〉 the solution of the Schrödinger equation at time t is given by the following linear
mapping in the state space:

|ψ(t)〉 = U(t) |ψ(0)〉

Therefore and according with the above reasoning we can conclude that in a quantum computer
the output is the result of the (i) evolution of the Schrodinger equation and subsequent (ii) measurement
(the meaning of measurement in quantum mechanics is introduced later). As may be seen, the equation
uses for the state vector a notation that is rather unusual. The reason is because quantum mechanics
has its own customized notation for classical vector and matrix operations [12]. In 1930 the theoretical
physicist Paul Dirac published the book “The Principles of Quantum Mechanics” introducing the ket
notation to refer to a column vector:

|V〉 =


v1

v2
...

vi


and bra notation to denote a row vector:

〈W| =
(

w1 w2 . . . wi

)
Hence, the product of a bra and a ket vectors, which is written in the notation of Dirac as follows,

is the ordinary inner product:

〈W| V〉 =
(

w1 w2 . . . wi

)


v1

v2
...

vi

 = w1v1 + w2v2 + ... + wivi

Alternatively, the product of a ket and bra vectors, is the outer product of the two vectors:

|V〉 〈W| =


v1

v2
...

vi


(

w1 w2 . . . wi

)
=


v1w1 v1w2 v1wi
v2w1 v2w2 v2wi

viw1 viw2 viwi


In quantum computing the elements of vectors and matrices are complex numbers but in practice

we can ignore this detail.
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2.1. Quantum Information

The unit of information in a quantum computer is the quantum bit or qubit, storing |0〉 and |1〉
states as well as a linear combination of both states (superposition principle). This linear combination
represents a qubit in its “coherent state” or “quantum superposition”, i.e., |ψ〉 = α |0〉+ β |1〉 where α

and β are the qubit amplitudes of the states |0〉 and |1〉. Amplitudes are complex numbers (α, β ∈ C) so
the exact state of a qubit is specified by two complex numbers describing the particular combination of
0 and 1 in the superposition state. The normalization of the states to the unit ensures that |α|2 + |β|2 = 1
and therefore |α|2, |β|2 are the probabilities of finding the qubit in |0〉 or |1〉 states. According to Dirac
notation such superposition is represented in vector form as follows:

|ψ〉 =
(

α

β

)

and therefore we will represent |0〉 and |1〉 states of a qubit:

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)

In the realm of quantum mechanics the states of a qubit are represented geometrically in what is
called as Bloch sphere. From a mathematical point of view, the state vector |ψ〉 representing the state of
a qubit is defined in a space referred as Hilbert space. In a very general sense and without going into
details a Hilbert space is a complex vector space with the advantage that allows us to treat a function
|ψ〉 as a vector, conducting mathematical operations by the simple application of standard algebraic
methods. In consequence the quantum computing state which evolution is ruled by Schrödinger
equation is defined by a Hilbert space associated with a finite number of n qubits. Despite all these
abstract concepts finally the definition of a universal quantum computer is close to the conceptual
framework of classical computation [13].

One of the most amazing ideas of quantum mechanics is that any attempt to measure a quantum
superposition, or equivalently any interaction of the quantum system with the environment, causes
the destruction of the superposition (interference principle). This is a natural phenomenon known in
quantum physics as “collapse of wave function |ψ〉” and represents a major challenge in building a
quantum computer. Consequently a measurement or observation of the qubit in its coherent state
results in a lost of the superposition, transforming the qubit in a classic decoherent bit, i.e., 0 or 1 state.
The interference principle has recently been simulated based on a new class of hybrid cellular
automata [14] performing as either a quantum cellular automata (QCA) or as a classical von Neumann
automata (CA).

In a quantum computer the input is stored in a quantum memory register:

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ . . .⊗ |ψ〉n

The register state is the result of Kronecker or tensor product among two or more qubits
(operation that is represented with the symbol ⊗) as:

(
x0

x1

)
⊗
(

y0

y1

)
=


x0y0

x0y1

x1y0

x1y1
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For instance, number 5 is represented in binary numbering system as |101〉, being the register state:

|5〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3 = |1〉 ⊗ |0〉 ⊗ |1〉 =
(

0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
=



0
0
0
0
0
1
0
0


However, there are quantum states which cannot be written as a tensor product of two states,

being known these special states as entangled states (entanglement principle). In this case, measurement
results are dependent as it will occur at the following quantum state:

1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =

1√
2
(|00〉+ |11〉)

Once the information is processed by a quantum circuit, the output is the result of a measurement
or observation of the qubits states resulting the collapse of wave function |ψ〉. Computation concludes
once such measures have been made. In summary, in terms of computing a quantum algorithm
maps an input state |ψ(0)〉 (or represented for simplicity as |ψ〉0) onto the output or final state |ψ(t)〉
(represented as |ψ〉F):

|ψ〉F = U |ψ〉0
where U (or U(t), the solution of the Schrödinger equation) is referred to as “unitary evolution
operator”. An important issue is that U operator can be decomposed in a sequence of q elementary
quantum gates (abbreviated as Q-gates) defining these gates a quantum circuit. Q-gates perform
unitary transformations on qubits, bearing in their function a resemblance with classical Boolean gates.
Consequently from left to right:

U = Uq.Uq−1. . . . .U1

A quantum circuit, thus the U decomposition, represents a quantum algorithm being somehow
equivalent to a classical algorithm in a digital computer. However, quantum circuits show special
features allowing to a quantum computer conduct computations with a lower number of exponential
operations than classical computers.

2.2. Quantum Gates

Quantum gates (Q-gates) operate on qubits undergoing unitary transformations being such
operations represented by matrices. Since these unitary transformations are rotations in the Bloch
sphere then Q-gates are reversible gates. The most important quantum gates that operate with a single
qubit are the identity gate I and Pauli gates X, Y and Z:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

The identity gate I leaves a qubit unchanged. Pauli X gate performs a Boolean NOT operation,
Pauli Y gate maps |0〉 → i |1〉 or |1〉 → −i |0〉 and Pauli Z gate changes the phase of a qubit, thus
|0〉 → |0〉 , |1〉 → |−1〉 . For instance, let’s consider the following operations between one of the above
quantum gates and |0〉 or |1〉 qubit states:

I. |0〉 =
(

1 0
0 1

)(
1
0

)
=

(
1
0

)
X. |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
Z. |1〉 =

(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
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One of the most useful Q-gates is the Hadamard or H gate. This gate is a generalization of the
discrete Fourier transform which can be defined recursively for two, three or more qubits:

H =
1√
2

(
1 1
1 −1

)

Let’s be |ψ〉 a superposition vector: (
α

β

)
multiplying the matrix H by the above vector we obtain:

H. |ψ〉 = 1√
2

(
1 1
1 −1

)(
α

β

)
=

1√
2

(
α + β

α− β

)

For example, if we multiply H by |0〉 we obtain:

H. |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)

or using a different notation 1√
2
|0〉+ 1√

2
|1〉 (Figure 1). Therefore, if we measure or observe the qubit

state then we will have exactly 50% chance of seeing as 0 or 1. Similarly if now we multiply H by |1〉
we obtain:

H. |1〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
or in the alternative notation 1√

2
|0〉 − 1√

2
|1〉 (Figure 1).
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One of the applications of Hadamard gate is the initialization of a quantum register. Generalizing
the H gate multiplication by |0〉 to an n-qubit register that stores the value |0n〉 results in a superposition
or mixed state:

1√
2n

2n−1

∑
x=0
|x〉
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It is interesting to note that in the case we could observe the quantum register in the above mixed
state then we would see each of the 2n binary numbers x with equal probability.

Of course, there are also Q-gates for two or more qubits operations (e.g., SWAP, CNOT, Toffoli,
Fredkin gates, etc.). The SWAP gate swaps two qubits:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Other Q-gates exhibit the special feature of including one or more qubits controlling the

operation. These gates are called U-controlled gates, (e.g., CNOT, Toffoli and Fredkin gates).
For instance, the CNOT gate (2 qubits) performs according to truth table (Table 2) the operation
CNOT |Q1, Q2〉 = |Q1, Q2⊕Q1〉 (Figure 2a). Note that ∗Q2 = Q2 ⊕ Q1 value is observed after
performing the measurement.

Table 2. CNOT gate.

Q1 Q2 Q1 * Q2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

* Observed after performing the measurement.
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In contrast, Toffoli gate (3 qubits) conducts the CCNOT |Q1, Q2, Q3〉 = |Q1, Q2, Q3⊕Q1Q2〉
operation (Figure 2b) according to the truth table (Table 3). The gate inverts the state of Q3 when
Q1 and Q2 are set to |1〉. Note that ∗Q3 = Q3 ⊕ (Q1∧Q2) value is observed after performing
the measurement.

Table 3. CCNOT gate.

Q1 Q2 Q3 * Q3

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

* Observed after performing the measurement.
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Another controlled gate is the Fredkin gate or CSWAP gate (3 qubits). This gate performs a
controlled swap operation: if the control qubit state is equal to |1〉 then it swaps Q1 and Q2 qubits.
In summary, the operations conducted by these controlled gates are represented by the following
unitary matrices:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Finally, a common element in quantum circuits is termed as oracle. It is a black box function that

receives as input n qubits, performs a unitary transformation U and returns the result as output. One of
its most important features is that it can measure and modify a quantum state without collapsing the
state to a classical state. Furthermore, an oracle could solve a decision problem in linear time on a
quantum computer. In the context of the quantum evolutionary algorithms an oracle would play the
role of a classical algorithm conducting operations that are specific of a classical computer. The oracle
is usually represented as U or in a more specific symbol as O.

In summary, quantum computer operations are ruled by quantum mechanics, data are qubit
arrays and operations are reversible and carried out with quantum gates. Such quantum gates are
represented by unitary matrices, so that operations are defined by a linear algebra in a Hilbert space.
In contrast, a digital computer is governed by classical physics, data are represented by bit sequences
(1010001101 . . . ) and operations are irreversible and performed by Boolean logic gates (AND, OR,
NOT, NAND, etc.).

2.3. Quantum Algorithms and Quantum Circuits

Usually quantum algorithms (e.g., Shor’s algorithm, Grover’s algorithm, Deutsch’s algorithm, etc.)
include quantum mechanical phenomena represented in Table 4 (modified from [15]).

Table 4. Main steps of a quantum algorithm.

Step

1 Prepare an input state
2 Apply quantum parallelism
3 Performs quantum information processing
4 Use interference to exploit the parallelism
5 Make a measure

In agreement with the main steps described above a quantum algorithm could be represented
with a quantum circuit as shown in Figure 3. Thus, there is a correspondence between a quantum
algorithm and quantum circuit. The circuit receives the input from the quantum register providing an
output as a result of measuring or observing the state of each qubit. Once defined the ends of the circuit,
several lines or cables are located in parallel between both ends, placing the quantum gates, oracle etc.
(Table 5) according to the quantum algorithm. We will illustrate how a quantum circuit operates with
the following example. Consider the EPR (Einstein, Podolsky and Rosen) circuit (Figure 4), one of
the classic circuits in quantum computing. Based on this circuit it is possible conduct experiments of
quantum teleportation, thus the transfer of quantum information based on entanglement. First, if we
look at the left end of the circuit we note that in the top wire there is an H gate while the bottom wire
does not have a quantum gate (or equivalently there is an I gate).
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Since H and I are located in parallel lines then we perform the Kronecker product between
both gates:

H ⊗ I =
1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
obtaining the following matrix:

1√
2


1

(
1 0
0 1

)
1

(
1 0
0 1

)

1

(
1 0
0 1

)
−1

(
1 0
0 1

)
 =

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


Second, if we now look at the section of the circuit on the right side there is a CNOT gate connected

in series with the wire where we obtained the above matrix. Since both are connected in series then we
carry out the inner product or multiplication between matrices, such that:

CNOT. (H ⊗ I) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


obtaining the “EPR matrix” shown below:

1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


In practice this means that the EPR circuit is represented by the above matrix. Suppose now that

EPR circuit receives as input the following vector state:

|Q1〉 ⊗ |Q2〉 =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0


The register information will be processed by the quantum circuit simply carrying out the inner

product between the EPR matrix and the vector state, obtaining a new vector:

1√
2


0
1
1
0


Once we obtained the above vector the output will be the result of measuring or observing the

state of each qubit.

2.4. Quantum Computing in Practice

Nowadays the Canadian D-Wave Systems, Inc. is the only commercial company that offers
quantum computers [16]. D-Wave One and Two models are adiabatic computers based on Washington
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2048-qubit chip. According to this technology a quantum state converge to a solution based on
Boltzmann probability distribution:

p(x1, x2, ..., xn) =
1
z

e−
G(x1,x2,...,xn)

kT ; z = ∑ ∑ e−
G(x1,x2,...,xn)

kT

Since they are adiabatic computers the best performance is obtained for continuous optimization
problems. In recent years D-Wave computers have been acquired by Lockeed Martin and Google
(shared with NASA) having spent a total 10–15 mill US dollars. Interestingly, although most researchers
lack enough money to buy one of these models, it is feasible to emulate a quantum computer on
a conventional computer. Is possible to emulate the operations and algorithms characteristic of
a quantum computer using a computer with good performance. At present quantum computing
emulation could be conducted applying any of the procedures listed below:

2.4.1. Q-Circuit Simulators

Quantum circuit (Q-circuit) simulators are programs including a GUI for designing and evaluating
quantum circuits. Some programs—e.g., [17]—include a compiler option to design a gate to be used
in larger circuits. To take the first step there are available two good Q-circuit emulators: QCAD [18],
a Windows-based environment for quantum computing simulation (see Table 5 and Figure 4) and
jQuantum [19], a quantum computer simulation applet.

2.4.2. Q-Programming Languages

Another possibility is the programming of a quantum algorithm using imperative programming
languages oriented to quantum computing [20]. A good example of this option is QCL (Quantum
Computing Language) [21]—a programming language (Figure 5) for quantum computers developed
by Bernhard Ömer. QCL has been applied in a variety of problems, e.g., solving systems of nonlinear
equations [22], the implementation of Bernstein-Vazirani algorithm [23], parallelization of quantum
gates [24], simulation of Dijkstra’s algorithm [25] and programming quantum genetic algorithms [26].Computers 2016, 5, 24 12 of 31 
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Figure 5. An example of QCL program (for explanation see text).

In the example shown in Figure 5, two qubits are declared with qureg command: a first qubit
in a register labeled as u and the second qubit in a register v. Consequently, we have implemented
a quantum memory |ψ〉 = |u, v〉. Following, using the reset command all qubits are forced to state
zero, i.e., we reset the quantum state of the machine such that the machine state is empty |ψ〉 = |0, 0〉.
After the reset command a Hadamard function H(u) is applied over u and returns it in a quantum
superposition. Since it is only an example without practical purpose, next the example illustrates
the use of CNot(v,u), i.e., a controlled not gate with a target qubit v and a control qubit u. The gate
mentioned flip v if u is in state one. Following, for the second time we reinitiated the quantum memory
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with reset command. Thereafter, Not(u) gate is applied to u qubit conducting a NOT operation in a
similar manner to classical computing. Finally, we perform again a CNot(v,u) operation.

QCL emulates a “Quantum RAM” (QRAM) model (Figure 6), thus a hybrid architecture by which
a computer simultaneously performs classical and quantum operations. According to QRAM model
the classical computer performs classical computing, controls the quantum register evolution and send
the quantum operations to the quantum computer. The quantum computer, which is really simulated
on the classic computer, conducts the initialization of the quantum register state, performs unitary
transformations and measurements, sending to the classical computer the output. Even when QCL is a
fairly representative programming language [27], at present there are other programming languages
oriented to quantum computers [28–30].
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2.4.3. Simulated Q-Computer

Nowadays, programming on a conventional computer under a QRAM environment is the most
common option. However, the program can be written in a simulated quantum computer, e.g., Google’s
Quantum Computing Playground [31]. A user have accesses to a simulated GPU-accelerated quantum
computer with an IDE interface and its own scripting language. The Google’s system has the ability to
set quantum registers up to 22 qubits. Using a similar methodology the University of Bristol, Centre
for Quantum Photonics (United Kingdom), offers an online quantum photonic chip simulator [32]:
an example of quantum computing in the cloud. In this case, the program is written through an IDE
showing a circuit, setting the user some photons into the input ports.

2.4.4. Do-It-Yourself: Quantum Computing with Python

Finally, in our opinion, one of the most useful approaches is to write your own program. Using a
general purpose language, i.e., Python, we can efficiently implement any quantum algorithm combined
with non-quantum computational procedures. Moreover, in the case of Python are available several
quantum computing libraries, e.g., PyQu [33], qitensor [34], QuTiP [35], etc. In addition, SymPy [36],
a Python library for symbolic computation, includes procedures to perform quantum operations.

3. Quantum Computing and Quantum Evolutionary Algorithms

Since the origins of quantum genetic algorithms (QGAs) [9] until today, lots of QGAs have been
proposed in the scientific literature [37–41]. All kinds of quantum evolutionary algorithms have
been successfully applied to optimization problems, such as the personnel scheduling problem [42],
dynamic economic dispatch problem, e.g., in power systems [43], multi-sensor image registration [44],
cryptanalysis [45], etc.
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Quantum evolutionary algorithms share the main steps and features of their non-quantum
counterparts. In its simplest form and adopting a QRAM architecture (Figure 6) a quantum
(or quantum-inspired) evolutionary algorithm consists of the steps shown in Table 6.

Table 6. Main steps of a quantum evolutionary algorithm.

Step Quantum Computing Classical Computing

1 Initialize a quantum population Q(0)
2 Make P(0), measure of every individual Q(0)→ P(0)
3 Evaluate P(0)
4 while (not termination condition) do
5 begin
6 t← t + 1
7 Update Q(t) applying Q-gates: Q(t + 1) = U(t).Q(t)
8 Make P(t), measure of every individual Q(t)→ P(t)
9 Evaluate P(t)

10 end

The first step consists in the initialization of a quantum population Q(0) of chromosomes.
A quantum chromosome i is defined as a string of j qubits representing a quantum system |ψ〉i

with 2j simultaneous states:(
α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
i

→ |ψ〉i = ∑
j

ci
∣∣ψj
〉

being the gene j, the qubit represented by vector (Figure 7):(
αj
β j

)
→
∣∣ψj
〉
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Consequently a quantum population is defined by a set of quantum chromosomes or vectors,
as shown below: (

α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
1(

α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
2

, ...,(
α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
i

The most common technique to initialize the population is to set the value of the amplitudes of all
qubits in the chromosomes to a value representing the quantum superposition of all states with equal
probability. This is achieved from the product of the Hadamard matrix by the vector |0〉:

H. |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)

obtaining a superposition vector. Subsequently to this product a phase angle θ (0, π
2 ] is randomly

obtained, being the argument of the trigonometric functions or elements in the rotation matrix U(t):

U(t) =

(
Cos(θ) −Sin(θ)
Sin(θ) Cos(θ)

)

The initialization step concludes conducting the product of the rotation matrix by the
superposition vector, resulting in a pair of amplitudes (α, β) which define the state of j qubit:(

αj
β j

)
=

(
Cos(θj) −Sin(θj)

Sin(θj) Cos(θj)

)
1√
2

(
1
1

)

Following, in a second step, we obtain a population P(t) composed of classical chromosomes or
bit strings. This population is the result of a measure or observation of qubits states in the quantum
chromosomes of the population Q(t). After measurement we get the classical population, such that P(t)
is given by a set of vectors: (

x1 x2 x3 . . . xj

)
1(

x1 x2 x3 . . . xj

)
2(

x1 x2 x3 . . . xj

)
i

Qubit observation is simulated, modelling the wave function collapse as follows: p(α) ≤
∣∣∣α2

j

∣∣∣ , xj = 0 (basisstate |0〉)

p(α) >
∣∣∣α2

j

∣∣∣ , xj = 1 (basisstate |1〉)

being p(α) a random number in the range [0, 1). Assuming we are running the simulation under a
QRAM architecture, this step has the purpose to create a population P(t) of classical chromosomes.
The aim is to conduct the fitness evaluation on a classical population using a digital computer.
Otherwise, fitness evaluation on a quantum computer would produce the collapse of the quantum
system destroying the superposition state. The evaluation of fitness is one of the main obstacles in the
implementation of QGAs in a quantum computer.
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A third step consists in the population update applying Q-gates, thus:

Q(t + 1) = U(t).Q(t)

From a theoretical point of view the evolution of the population is governed by Schrödinger’s
equation, being Q-gates the operators that play the role of the “genetic mechanisms” transforming
chromosomes. Since evolution takes place in a complex vector space, i.e., a Hilbert space, such
transformations are unitary transformations. Thus, let U be a unitary matrix, e.g., a rotation matrix,
then it will be a unitary transformation if it holds that U.U’ = I.

In the following section we describe the most characteristic quantum genetic operators.

3.1. Quantum Genetic Operators

At present there are several proposed quantum genetic operators performing genetic operations
on quantum chromosomes. It is important to note that in the scientific literature sometimes these
operators are termed indifferently like “interference gates” which can confuse the reader. In this review,
we have renamed the operators, indicating between parentheses the term interference when in the
literature such term is used in reference to such operator.

3.1.1. Qubit (Interference) Rotation Gate

Although there are several updating operators the most characteristic is the interference or rotation
Q-gate. The rotation operator or quantum interference is defined as a gate U(t):

U(t) =

(
Cos(δθj) −Sin(δθj)

Sin(δθj) Cos(δθj)

)

Applying this operator the evolution of a population is the result of a process of unitary
transformations. In particular, rotations approximating the state of chromosomes to the state of the
optimum chromosome in the population. Thus, this gate amplifies or decreases the amplitude of qubits

or genes according to the chromosome with maximum fitness f
(

x1 x2 x3 . . . xj

)maximum

i
.

Consequently, the evolution of the quantum state is guided by the best individual (Figure 8):(
αt+1

j
βt+1

j

)
=

(
Cos(δθj) −Sin(δθj)

Sin(δθj) Cos(δθj)

)(
αt

j
βt

j

)

being

(
αt

j
βt

j

)
and

(
αt+1

j
βt+1

j

)
the amplitudes of the j qubit before and after the updating, respectively.

In general, the rotation angle is obtained according to the following expression:

δθ = sg
(
αj, β j

)
∆θj

where sg
(
αj, β j

)
and ∆θj represent the direction and rotation value, respectively. Note that rotation

value plays the role of an “evolution rate”. Consequently, we should avoid too high or too low values.
The values of these parameters are summarized in a look-up table (Table 7), comparing the fitness of
the current chromosome f (xj) with the fitness of the best individual f (bj).
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Table 7. Lookup table of the rotation angle (δ is the angle step).

xj bj f(xj) ≥ f(bj) ∆θj sg
(

αj βj

)
αjβ j > 0 αjβ j < 0 αj = 0 β j = 0

0 0 False 0 - - - -
0 0 True 0 - - - -
0 1 False δ +1 −1 0 ±1
0 1 True δ −1 +1 ±1 0
1 0 False δ −1 +1 ±1 0
1 0 True δ +1 −1 0 ±1
1 1 False 0 - - - -
1 1 True 0 - - - -

A disadvantage of rotation operator is that the look-up table depends on the optimization problem,
which affects the algorithm performance. Therefore the values in the table should be set according to
the optimization problem: e.g., knapsack problem [46–49], OneMax problem [47], benchmark functions
(i.e., De Jong, six-peaks and many-peaks functions) [50]. However, there is a standard table (Table 7)
that is usually useful in many optimization problems [51]. In Table 7 δ is the angle step, having an
effect on convergence speed, such that a very large value causes the population converges or diverges
very quickly with respect to a local optimum. Unfortunately quantum genetic algorithm performance
depends on look-up table values [48], being a general criterion to set δ values between 0.1 π and
0.005 π. One common solution is to use an adaptive strategy [37]. For example, suppose we define a
range between 0.005 π and 0.05 π. In this example and according to [52] ∆θj is changed as:

∆θj = 0.005π + (0.05π − 0.005π)

∣∣ f (xj)− f (bj)
∣∣

max
(

f (xj), f (bj)
)

Note that rotation operator plays the role of the selection operator in SGA. In a classical SGA
the selection operator simulates Darwinian natural selection, enhancing populations by promoting
individuals with better fitness and punishing those with poorer performance. However, in QGA
selection pressure is replaced by a change of all individuals towards the best individual. Therefore,
when population is updated with the rotation operator the population converges to the fitter states,
but usually QGAs are trapped in local optima undergoing premature convergence. In order to
avoid this problem sometimes quantum genetic algorithms include either roulette or elite selection.
For instance, a QGA with a selection step is used in an improved K-means clustering algorithm [53].
In fact, there are more extreme approaches such as [54] where a QGA includes selection and simulated
annealing avoiding premature convergence. In other cases a selection step is included without resorting
to operators commonly used in SGAs. Such is the case of a semiclassical genetic algorithm [55] where
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a selection operator seeks for the maximum fitness individual by means of a quantum approach,
in particular using a variant of the Grover’s search algorithm.

According to [56] given the following determinant:

A =

[
αb αj
βb β j

]

it is interesting to note that when xj 6= bj (Table 7), e.g., xj = 1 and bj = 0, and A 6= 0 then the direction
of the rotating angle is -sgn(A). Otherwise, thus when (A = 0) the direction of the rotating angle can
be either positive or negative.

3.1.2. Quantum Mutation (Inversion) Gate

In imitation of SGAs there is also available a quantum version of the classic mutation operator [57].
The gate performs an inter-qubit mutation of the jth qubit, swapping the amplitudes with the quantum
Pauli X gate:

U(t) =

(
0 1
1 0

)
resulting in: (

βt+1
j

αt+1
j

)
=

(
0 1
1 0

)(
αt

j
βt

j

)

3.1.3. Quantum Mutation (Insertion) Gate

This gate [57,58] reminds the biological mechanism for chromosome insertion. Chromosome
insertion means that a chromosome segment has been inserted into an unusual position on the same
or different chromosome. The quantum version of this genetic mechanism involves the permutation or
swap between two randomly chosen qubits (left qubit, right qubit). For example, suppose that given
the following chromosome we choose randomly the first and third qubits:(

α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)

once applied the insertion operator, we get the new chromosome:(
α3 α2 α1 . . . αj
β3 β2 β1 . . . β j

)

3.1.4. Quantum Crossover (Classical) Gate

Quantum crossover [57] is simulated resembling the classical recombination algorithm used in
SGAs but operating with amplitudes. However, whereas the quantum version of mutation could be
implemented on a quantum computer, there are theoretical reasons preventing this with crossover.
Nevertheless, and despite the theoretical limitations, the quantum version of classical crossover
operator is applied in many practical optimization problems. In these cases a solution is searched
using a quantum evolutionary “inspired” approach. Following, the operator is illustrated for the case
of one point crossover. In this example if the cut point is randomly chosen, e.g., a point between first
and second positions, then an exchange of chromosomal segments occurs:(

α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
m
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(
α
′
1 α

′
2 α

′
3 . . . α

′
j

β
′
1 β

′
2 β

′
3 . . . β

′
j

)
n

resulting the following recombinant chromosomes:(
α1 α

′
2 α

′
3 . . . α

′
j

β1 β
′
2 β

′
3 . . . β

′
j

)
m∗(

α
′
1 α2 α3 . . . αj

β
′
1 β2 β3 . . . β j

)
n∗

3.1.5. Quantum Crossover (Interference) Gate

The present quantum operator [59] performs crossover by recombining according to a criterion
based on drawing diagonals. In consequence, all individuals interfere with each other resulting
the offspring. Consider the following example. When the crossover is performed with the next
six chromosomes: (

α11 α12 α13 α14 α15 α16

β11 β12 β13 β14 β15 β16

)
1(

α21 α22 α23 α24 α25 α26

β21 β22 β23 β24 β25 β26

)
2(

α31 α32 α33 α34 α35 α36

β31 β32 β33 β34 β35 β36

)
3(

α41 α42 α43 α44 α45 α46

β41 β42 β43 β44 β45 β46

)
4(

α51 α52 α53 α54 α55 α56

β51 β52 β53 β54 β55 β56

)
5(

α61 α62 α63 α64 α65 α66

β61 β62 β63 β64 β65 β66

)
6

we obtain the following first and second recombinant chromosomes:(
α11 α22 α33 α44 α55 α66

β11 β22 β33 β44 β55 β66

)
1∗(

α21 α32 α43 α54 α65 α16

β21 β32 β43 β54 β65 β16

)
2∗

3.2. A Canonical Classification of Quantum Evolutionary Algorithms

In order to summarize this review as much as possible, most of the quantum evolutionary
algorithms have been grouped into two major classes: Quantum Genetic Algorithms (QGAs) and
Hybrid Genetic Algorithms (HGAs). Since there is no agreement on terminology, different names are
used interchangeably: Quantum Evolutionary Algorithms (QEAs), Quantum-Inspired Evolutionary
Algorithms (QIEAs), etc. Anyway, in general a QGA includes the main steps shown in Table 8.
Likewise an HGA comprises the main steps set out in Table 9.
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Table 8. Main steps of a QGA.

Step Quantum Computing Classical Computing

1 Initialize a quantum population Q(0)
2 Make P(0), measure of every individual Q(0)→ P(0)
3 Evaluate P(0)
4 while (not termination condition) do
5 begin
6 t← t + 1
7 Rotation Q-gate
8 Mutation Q-gate
9 Make a measure Q(t)→ P(t)

10 Evaluate P(t)
11 end

Table 9. Main steps of an HGA.

Step Quantum Computing Classical Computing

1 Initialize a quantum population Q(0)
2 Make P(0), measure of every individual Q(0)→ P(0)
3 Evaluate P(0)
4 while (not termination condition) do
5 begin
6 t← t + 1
7 Rotation Q-gate
8 Crossover operator
9 Mutation Q-gate

10 Make a measure Q(t)→ P(t)
11 Evaluate P(t)
12 end

4. Towards True Quantum Evolutionary Algorithms

QGA and HGA algorithms can be considered as classical optimization methods inspired by the
principles of quantum computing. Programs implementing such methods can be executed on a digital
computer, without this implying practical or theoretical difficulties. At present one of the challenges in
Quantum Artificial Intelligence is the design of true quantum evolutionary algorithms and therefore
of programs that in the future can run on a quantum computer. However, some problems arise when
we translate the main steps of a SGA to the quantum version. This is a paradoxical situation because a
SGA bears a resemblance to Grover’s quantum algorithm: SGAs are parallel search methods although
this feature is not implemented in their usual applications. One of the main problems with QGA and
HGA algorithms [60] is to find a method to perform measurements of the population of individuals
but without collapsing the superposition state of chromosomes. Furthermore, [60] notes that to date a
key issue not addressed is how to implement in a quantum computer a crossover operator. Whereas
mutation could be easily conducted in a quantum computer, i.e., using a Pauli X gate, it is unclear how
to carry out crossover using for this purpose quantum mechanical phenomena.

One of the most interesting ideas is proposed in 2006 by [61,62] taking the first steps in the
implementation of a genetic algorithm on a quantum computer. The authors of these papers proposed
a true quantum evolutionary algorithm, which was termed as Reduced Quantum Genetic Algorithm
(RQGA). The algorithm consists of the main steps described below (Table 10).
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Table 10. Main steps of a RQGA.

Step Quantum Computing

1 Initialize a superposition of all possible chromosomes
2 Evaluates fitness with operator F
3 Apply Grover’s algorithm
4 Ask to the oracle O
5 Apply Grover’s diffusion operator G
6 Make a measure

In the first place, the algorithm begins preparing a superposition of all individuals, i.e., N,
or chromosomes of population Q(t):

|ψ〉Q(t) =
1√
N

∑ |ψ〉i

Therefore, all individuals are represented by only one individual quantum register. That is,
the entire population is represented by a single chromosome in a superposition state:(

α1 α2 α3 . . . αj
β1 β2 β3 . . . β j

)
i

= c0 |00 . . . 00〉+ c1 |00 . . . 01〉+ . . . + c2n−2 |11 . . . 01〉+ c2n−1 |11 . . . 11〉

One of the key steps of RQGA is the correlation between the individual quantum register |x〉i and
a fitness quantum register | f itnessx〉i:

|ψ〉i = |x〉i ⊗ | f itnessx〉i

From a formal point of view, we have a fitness quantum gate F which evaluates the fitness of
individuals (Figure 9). In 2008 [63], a similar idea is also applied to other version of a true quantum
evolutionary algorithm which was termed as Quantum Genetic Optimization Algorithm (QGOA).
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In a second step the algorithm searches for the maximum fitness:

| f itnessx〉max
i

In the late 1990s, [64] proposed a quantum algorithm for searching the maximum value among
N values. Once the operator F is applied, RQGA searches for the maximum fitness value based on
the Grover’s search algorithm [65]. This is one of the most popular quantum algorithms oriented to
search in an unstructured database. Without going into details on this algorithm, RQGA performs the
following two steps. First, given a register with a set of fitness values an oracle O is designed to mark
all the kets:

|ψ〉i
having a fitness value greater than a cutoff value:

O |ψ〉Q(t) = (−1) f (x) |ψ〉Q(t)
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such that:

f (x) =

{
1, i f | f itnessx〉i = | f itnessx〉max

i
0, otherwise

Secondly, the algorithm concludes applying Grover’s diffusion operator G. This operator aims at
finding the marked states, i.e., f (| f itnessx〉i) = 1:

|ψ〉Q(t) = G |ψ〉Q(t)

Finally, making a measure in |ψ〉Q(t) the chromosome with maximum fitness is obtained. All these
steps are summarized in the quantum circuit shown in Figure 10.

Computers 2016, 5, 24 21 of 31 

max

x i
fitness

 
 

In the late 1990s, [64] proposed a quantum algorithm for searching the maximum value among 

N values. Once the operator F is applied, RQGA searches for the maximum fitness value based on 

the Grover’s search algorithm [65]. This is one of the most popular quantum algorithms oriented to 

search in an unstructured database. Without going into details on this algorithm, RQGA performs 

the following two steps. First, given a register with a set of fitness values an oracle O is designed to 

mark all the kets: 

i


  

having a fitness value greater than a cutoff value:  

 
( ) ( )( )

1
Q t Q tf x

O   
 

 

such that: 

max
 1  ,   

( )
0  ,   otherwise                          

x xi i
if  fitness fitness

f x
 

 
  

 

Secondly, the algorithm concludes applying Grover’s diffusion operator G. This operator aims 

at finding the marked states, i.e.,   1
x i

f fitness  : 

( ) ( )Q t Q t
G    

Finally, making a measure in 
( )Q t

  the chromosome with maximum fitness is obtained. All 

these steps are summarized in the quantum circuit shown in Figure 10. 

 

Figure 10. Quantum circuit representing the RQGA. 

5. Simulation Experiments 

In this review, we illustrate how to implement the above quantum genetic algorithms, using a 

simple optimization problem. The goal is to find the value of x within the range 0 15x   that 

maximizes the value of the benchmark function shown below:  

5
( )

2 sin( )

x
f x

x




  
 

The f(x) function has an optimum reached with x = 11, thus 1011 in binary numbering system. 

Since in the experiments f(x) is multiplied by 100, the maximum fitness is equal to 599.9941. QGA, 

HGA and RQGA codes were written in Python 3.4.4 language and they can be downloaded from [66–

68]. In the simulation experiments conducted with QGA we defined three experimental protocols: 

QGA in the absence of mutation (QGA1), QGA setting population and qubit mutation probabilities 

equal to 0.01 (QGA2) and QGA setting these parameters to lower values, in particular equal to 0.001 

(QGA3). In HGA one-point crossover probability was set equal to 0.75, also conducting three kinds 

Figure 10. Quantum circuit representing the RQGA.

5. Simulation Experiments

In this review, we illustrate how to implement the above quantum genetic algorithms, using a
simple optimization problem. The goal is to find the value of x within the range 0 ≤ x ≤ 15 that
maximizes the value of the benchmark function shown below:

f (x) =
∣∣∣∣ x− 5
2 + sin(x)

∣∣∣∣
The f(x) function has an optimum reached with x = 11, thus 1011 in binary numbering system.

Since in the experiments f(x) is multiplied by 100, the maximum fitness is equal to 599.9941. QGA, HGA
and RQGA codes were written in Python 3.4.4 language and they can be downloaded from [66–68].
In the simulation experiments conducted with QGA we defined three experimental protocols: QGA in
the absence of mutation (QGA1), QGA setting population and qubit mutation probabilities equal to
0.01 (QGA2) and QGA setting these parameters to lower values, in particular equal to 0.001 (QGA3).
In HGA one-point crossover probability was set equal to 0.75, also conducting three kinds of
experiments: simulation experiments in the presence of mutation, i.e., setting population and qubit
mutation probabilities equal to 0.01 (HGA2) and setting these parameters to 0.001 (HGA3). As in the
previous experiments with QGA we also conducted simulation experiments without mutation (HGA1).
The simulation experiments conducted with above quantum genetic algorithms were compared with a
non-quantum simple genetic algorithm (SGA). The SGA code can be downloaded from [69]. In this
latter algorithm the one-point crossover probability was equal to 0.75 and the population and bit
mutation probabilities were both equal to 0.01. Simulations were performed for 150 generations,
with a population size of 50 chromosomes. Thereafter, we performed five experimental replicates
with each of the above algorithms. Next, from each experimental replicate we selected the average
fitness values from the last 10 generations. Finally, for each of the algorithms a total of 50 values
(5 replicates × 10 fitness averages) was collected in a single sample. Statistical analysis [70] of the
seven samples (SGA, HGA1, HGA2, HGA3, QGA1, QGA2 and QGA3) was accomplished using
the statistical package STATGRAPHICS Centurion XVII version 17.1.12 (Statpoint Technologies, Inc.
Warrenton, VA, USA).
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6. Results

The obtained results show how the classical algorithm SGA has greater performance than the
quantum versions of the genetic algorithm (Figure 11). In fact, SGA is the only evolutionary algorithm
that achieves the maximum value of fitness, i.e., 599.9941 (Figure 12). The Kruskal-Wallis test (Table 11)
shows with a p-value equal to zero that there are statistically significant differences among medians at the
95.0% confidence level. Compared to each other the algorithms we conclude that SGA differs significantly
from HGA and QGA. The HGA algorithm without mutation (HGA1) differs significantly from HGA
with mutation (HGA3), whereas there are not significant differences among the QGA protocols. One
possible explanation for the better performance of SGA could be the mechanism that drives evolution.
That is, in QGA and HGA evolution is the result of unitary transformations, particularly rotations
approximating the state of chromosomes to the state of the optimum chromosome with maximum
fitness. Since this procedure is repeated generation after generation the result is a fast convergence
to local optima, taking place a phenomenon of local trapping. A general strategy to improve QGA
performance consists of using minor enhancements of the algorithm. For instance, including new
operators, e.g., a quantum disaster [56], perturbation [71] or other “customized” algorithms [72]. In many
cases, these operators are only useful in highly specific applications, e.g., in Bioinformatics specific
quantum operators (ResidueBlockShuffle, GapBlockShuffle, BlockMove, etc.) were devised by their
authors [73] in a problem of multiple sequence alignment.
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(HGA) with mutation; (c) Hybrid genetic algorithm (HGA) without mutation; (d) Simple genetic
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Table 11. Kruskal-Wallis test.

Algorithm Sample Size Mean Rank

SGA 50 325.5
HGA1 50 119.12
HGA2 50 111.52
HGA3 50 202.98
QGA1 50 151.3
QGA2 50 184.38
QGA3 50 133.7

Statistic = 161.425; p-value = 0.0.
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Figure 12. Notched Box-and-Whisker Plots, one boxplot per evolutionary algorithm showing
the medians (notches) and means (crosses) of the fitness [70]. Squares indicate outliers
(unusual fitness values).

Therefore, we could conclude that in quantum evolutionary algorithms evolution (or optimization)
is the result of a rotation quantum gate, which introduces an interference phenomenon. Thus,
individuals are adjusted or modified to be more similar to the best individual in the population.
Consequently, the population is subjected to a lower Darwinian selection pressure. However, in SGA
once individuals are evaluated the algorithm simulating selection (e.g., wheel parents selection
operator) will replace the old population P(t) with a new population P(t + 1) of individuals. Since
individuals are selected according to their fitness values we are evolving a population of solutions via
Darwinian evolution but with a greater selection pressure than QGA and HGA. Hence, SGA replaces
obsolete strategies by innovative strategies represented by the offspring. Likewise, when crossover is
included as a step in HGA algorithm, its performance usually improves approaching to SGA.

An advantage of the quantum genetic algorithms is that they require fewer chromosomes than
SGA. Under a theoretical realm in a “true” quantum genetic algorithm, i.e., RQGA, we can consider
that the population is made up of a single chromosome in a state of superposition. Although this
fact may be bizarre at first sight, it is not from the perspective of quantum mechanics. Moreover,
the algorithm RQGA demonstrates that using quantum computing the genetic search strategy becomes
unnecessary (Figure 13): evolution takes place in a single generation.Computers 2016, 5, 24 24 of 31 

 

Figure 13. Performance graph obtained in the benchmark function optimization experiment 

conducted with RQGA, a true quantum genetic algorithm based on Grover’s algorithm. 

In order to illustrate above idea let us consider the results we have obtained once the RQGA 

program was executed on a “quantum computer”. First, the program creates the superposition state: 

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In second place, the oracle O marks the maximum fitness of  : 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0



0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. Performance graph obtained in the benchmark function optimization experiment conducted
with RQGA, a true quantum genetic algorithm based on Grover’s algorithm.
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In order to illustrate above idea let us consider the results we have obtained once the RQGA
program was executed on a “quantum computer”. First, the program creates the superposition state:

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25


In second place, the oracle O marks the maximum fitness of |ψ〉:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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such that when O |ψ〉Q(t) = (−1) f (x) |ψ〉Q(t) is applied we obtain the superposition shown below:

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
−0.25
0.25
0.25
0.25
0.25


This second step is repeated a given number of iterations. The Grover’s maximum number of

iterations is calculated as:
π

4

√
2n

being n the number of qubits or length of the quantum chromosome, thus n = 4 in the example of the
function described in Section 5. Repeating the second step resulted in:

0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
0.1875
−0.6875
0.1875
0.1875
0.1875
0.1875
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In third and last place the Grover’s diffusion operator G finds the chromosome in |ψ〉Q(t) with a
marked state. Therefore, performing the following operation |ψ〉Q(t) = G |ψ〉Q(t) the result is:



0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.078125
0.953125
0.078125
0.078125
0.078125
0.078125


Finally, making a measure in |ψ〉Q(t) we get the state that points to chromosome with

maximum fitness:

|11〉 =



0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0


In other words, in the present example we have 15 possible chromosomal states represented as:

|0〉 =



1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



|1〉 =



0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0



|2〉 =



0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0



. . . |15〉 =



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
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Consequently, since RQGA algorithm found the state |11〉 then according to Table 12 the optimum
chromosome is |1011〉11 with fitness |599〉11.

Table 12. Chromosomal states.

State |x〉i |fitnessx〉i
|0〉 = . . . |0000〉0 |250〉0
|1〉 = . . . |0001〉1 |140〉1
|2〉 = . . . |0010〉2 |103〉2
|3〉 = . . . |0011〉3 |93〉3
|4〉 = . . . |0100〉4 |80〉4
|5〉 = . . . |0101〉5 |0〉5
|6〉 = . . . |0110〉6 |58〉6
|7〉 = . . . |0111〉7 |75〉7
|8〉 = . . . |1000〉8 |100〉8
|9〉 = . . . |1001〉9 |165〉9
|10〉 = . . . |1010〉10 |343〉10
|11〉 = . . . |1011〉11 |599〉11
|12〉 = . . . |1100〉12 |478〉12
|13〉 = . . . |1101〉13 |330〉13
|14〉 = . . . |1110〉14 |300〉14
|15〉 = . . . |1111〉15 |377〉15

7. Future Directions

Over the next years the incorporation of quantum computing in Artificial Intelligence will
lead to a fast development of related research areas, e.g., machine learning, as a consequence of an
increased execution speed and effectiveness of the algorithms. For instance [74] report an experimental
implementation of a quantum support vector machine algorithm for an optical character recognition
problem. In the experiments, they implemented a 4 qubit processor using the NMR technique with
13C-iodotrifluroethylene and a spectrometer at 306 K. Furthermore, in the future we will achieve the
physical realization [75] of 50–100 qubits and therefore the hardware to build a quantum computer.
At present, it is possible to experience with a 5 qubits quantum computer via a cloud computing
platform and run experiments, such is the case of IBM’s quantum processor [76]. However, today,
even when QGAs are inspired by principles of quantum computing they are eventually executed
on a classical computer. In our opinion this scenario will change once we achieve the design and
implementation of a RQGA on a quantum computer. Consequently, this will accelerate research on
quantum evolutionary algorithms designing higher-order QGA [77], QGAs with entanglement [78] or
hybridizing QGAs with the quantum version of optimization algorithms, e.g., artificial bee colony [79],
cuckoo search [58], etc. The leap from emulation to the actual implementation of quantum algorithms
is a big step that should be accompanied by a good training of future computer scientists on the
fundamentals of quantum mechanics [80]. The result of these changes will be a dramatic increase of
the applications of quantum evolutionary algorithms, either on specific problems, e.g., the analysis
of cancer microarray data [81] or in classical engineering optimization problems [82]. Moreover,
it is also expected an increase in the number of applications in the field of Artificial Intelligence,
e.g., the N-Queens problem [83], and even in the field of Artificial Life [84]. In the future quantum
computing may also have a profound influence on Darwinism [85], transforming our vision of life on
Earth. However, until these advancements occur we must exploit the advantages that provides us the
current software and hardware technologies, e.g., designing more efficient QGAs with the support of
CUDA (from NVIDIA) platform and the Matlab Graphic Processing Unit (GPU) library [86].

8. Conclusions

In this paper, we survey the main concepts in quantum computing and quantum evolutionary
computation. In recent years, the possibility to emulate a quantum computer has led to a new class
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of GAs, i.e., QGAs. At present, in this class of algorithms research is splitted between two trends or
flavors. On the one hand, some researchers are “inspired” by quantum mechanics developing a new
class of GAs. In this case, the researcher does not intend in the near future to run the algorithm in
a quantum computer. The aim is to solve an optimization problem on a digital computer, either to
test a novel improvement or hardware technology in the QGA, or solve real-world problems using
a novel class of algorithm instead classical GAs. In our opinion, at present this is the main trend in
research on QGAs. On the other hand, in recent years there has arisen a line of research that explores
the possibility to design a “true” QGA, so that in the future the algorithm can be run on a quantum
computer. According to the way of thinking we have followed through this paper, we believe that this
last line of research may have a profound influence on Artificial Intelligence and Artificial Life as well
as in disciplines such as Biology.
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