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Abstract: Active learning strategies respond to the costly labeling task in a supervised classification
by selecting the most useful unlabeled examples in training a predictive model. Many conventional
active learning algorithms focus on refining the decision boundary, rather than exploring new
regions that can be more informative. In this setting, we propose a sequential algorithm
named exponentiated gradient (EG)-active that can improve any active learning algorithm by an
optimal random exploration. Experimental results show a statistically-significant and appreciable
improvement in the performance of our new approach over the existing active feedback methods.
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1. Introduction

In active learning, the learning algorithm has access to a large set of unlabeled examples and
some oracle that can query to get the label of an individual example [1]. Query oracles are assumed
to be expensive, so it is only feasible to label a small subset. Thus, the goal of the algorithm is to
actively select examples so that a good hypothesis is learned while using as few labeled examples
as possible.

Many conventional active learning algorithms choose to label points that are near the decision
boundary of the current hypothesis [2,3]. This can work well if the active learner is aware of all of the
important regions of the instance space, i.e., there are no large examples that the learner’s hypothesis
will misclassify, since it has not seen labeled examples from them. Such active learners are good at
labeling examples near the boundary to refine it, but they do not conduct a random searching for
large regions in the instance space that they would incorrectly classify.

Recent work done in this sense considers random exploration in active learning. The author
in [4] uses two types of active learners, the first of which is dedicated to exploiting based on refining
the decision boundary and the second is dedicated to exploring (random). The more the random
exploration gets rewarded, the greater is the exploration.

The drawback of this approach is the fact that it takes a long time to find the optimal random
exploration rate. To tackle this problem, we propose an algorithm named exponentiated gradient
(EG)-active which can improve any existing active learning algorithm by using a random exploration,
which is parametrized with an exponentiated gradient optimization.

We have tested EG-active with real data, where we have observed its performance regarding the
state of the art.

The remainder of the paper is organized as follows. Section 2 reviews related works. Section 3
describes the model and the proposed algorithm. The experimental evaluation is illustrated in
Section 4. The last section concludes the paper and points out possible directions for future works.
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2. Related Works

We refer in the following to recent works that address the active learning problem.

2.1. Active Learning

A variety of active learning algorithms have been proposed in the literature employing various
query strategies. One of the most popular strategies is called uncertainty sampling (US), where the
active learner queries the point whose label is uncertain [5].

The uncertainty in the label is usually calculated using entropy or the variance of the label
distribution [6,7]. The authors in [8] have introduced the query by committee (QBC) strategy, where
a committee of potential models, which all agree with the currently labeled data, is maintained, and
the point where most of the committee members disagree is considered for querying. Other strategies
include the maximum expected reduction in error [9] or variance-reducing query strategies, such
as [10], to query the optimal point.

Recently, different new active learning processes have been proposed. For instance, in [11],
the authors propose a strategy for data-driven classifiers, which is based on an unsupervised
criterion during the off-line training phase, followed by a supervised certainty-based criterion during
incremental on-line training. In [12], the authors propose an effective and efficient active learning
paradigm by applying an a priori process for the identification and organization of a small relevant
subset. Furthermore, the concomitant classification and selection processes enable the classification
of a very small number of samples, while selecting the informative ones. To adapt active learning
to online learning, the authors in [13] propose an active learning with two concepts called “conflict
and ignorance”; conflict models the extent to which a new query point lies in the conflict region
between two or more classes and, therefore, reflects the level of certainty in the classifier’s prediction;
ignorance represents the distance of a new query point from the training samples seen so far.

All of the above proposed approaches have just exploited the data and do not consider the
random exploration that can help to find the best point to label.

2.2. Random Exploration in Active Learning

Recently, random exploration has been used in different domains, such as recommender system
(RS) and information retrieval. For example, in [14,15], the authors model RS as a contextual bandit
problem. The authors propose an algorithm that provides a random recommendation according to
the risk of upsetting the user. However, to our knowledge, there has been only one paper addressing
random exploration in active learning. The authors in [4] address this problem by randomly choosing
between exploration and exploitation at each round and then receive feedback on how effective the
exploration is. The impact of exploration is measured by the induced change in the learned classifier
when an exploratory example is labeled and added to the training set. The active learner updates the
probability of exploring in subsequent rounds based on the feedback it has received. However, none
of the optimization techniques are used to compute the optimal exploration, and the work has only
been done to improve the uncertainty sampling technique.

2.3. Our Contributions

As shown above, none of the mentioned works propose to improve any active learning by
random exploration. This is precisely what we intend to do by exploiting the following new features:

(1) We propose a new generic algorithm named EG-active that can improve the results of any
active learning algorithm by considering the exploration at each iteration.

(2) We propose to parametrize this exploration using an exponentiated gradient that allows
EG-active to use the optimal exploration.
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3. Active Learning with Random Exploration

This section focuses on the proposed model, starting by introducing the key notions used in
this paper.

Pool-based active learning:
In pool-based active learning, we have provided a pool X = {x1, ...xn} of unlabeled points and

a labeling oracle O, which when queried for the label of x returns y ∼ PY|X = x. Algorithms in the
pool-based setting have to decide which points to query by looking at the entire pool.

Reward:
A metric is used to measure the variation of the hypotheses learned by the model between two

iterations. The more the hypotheses learned by the model vary, the more is the reward. We now
define the function d(h, h′) that we use to get the variation of the model.

Let X = x1, ..., xm = L ∪ U be the set of labeled and unlabeled training examples that
we have. Then, for each of the two real-valued hypotheses h(.), h′(.), we define the vectors
H = (h(x1), h(x2), ..., h(xm)) and H′ = (h′(x1), h′(x2), ..., h′(xm)), i.e., vectors of the real-valued
predictions of h and h′ on X.

Now, we define d(h, h′),

d(h, h′) =
H · H′

||H|| · ||H′|| (1)

In Equation (1), we compute the cosine similarity between the two vectors H and H′.
Thus, d(h, h′) ∈ [1,+1] is the cosine of the angle between H and H′, and we normalize the ratio
of classes in the interval [0, 1] using Equation (2).

rt =
2 · cos−1(d(h|h′))

π
(2)

3.1. ε-active

In order to improve the results of any active learning algorithm, we propose to overlap any
existing algorithm by an algorithm that considers at each iteration a random exploration ε.

In Algorithm 1, Activelearning can be any existing active learning, for example query by
committee, uncertainty sampling or others.

Algorithm 1 ε-active

1: Input: X, ε
2: Output: xt, rt

3: xt =

{
Activelearning(X) i f (q < ε)

Random(X) i f (q ≥ ε)
4: if x was not queried in the past then Query O for label y of x
5: Observe reward rt

3.2. Computing the Optimal Random Exploration

To consider the random exploration on the active learning algorithms, the proposed method
updates the exploration value ε dynamically.

In each iteration, the algorithm runs a sampling procedure to select a new ε from a ε finite set
of candidates. The probabilities associated with the candidates are uniformly initialized and updated
with the exponentiated gradient (EG) [16]. This updating rule increases the probability of a candidate
ε if it leads to a reward.

First, we assume that we have a finite number of candidate values for ε, denoted by (ε1, ..., εT ),
and we try to learn the optimal ε from this set. To this end, the EG-active introduces p = (p1, ..., pT),
where pi stands for the probability of using εi in the ε-active algorithm. These probabilities are
initialized to be 1

T at the beginning and then iteratively updated through iterations.
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The algorithm uses a set of weights w = (w1, ..., wT) to keep track of the performance of each
εi and updates them using the EG algorithm. The idea is to increase wi if the algorithm receives a
reward using εi. Finally, the algorithm calculates p by normalizing w with smoothing. Algorithm 2
shows EG-active.

Algorithm 2 EG-active.

Input: (ε1, ..., εT) : candidate values for ε

β, τ and k: parameters for EG
N: number of iterations
pk ⇐ 1

T and wk ⇐ 1, k = 1, ..., T
for i=1 to N do

Sample d from discrete (p1, ..., pT)
Run the ε-active with εd
Receive the feedback rt

wk ⇐ wk exp( τ[ri I(k=d)+β]
pk

), k = 1, ..., T

pk ⇐ (1− k)( wk
∑T

j=1 wj
+ k

T ), k = 1, ..., T

end for

In Algorithm 2, I[z] is the indicator function, and τ and β are smoothing factors in the weight
updating. k is a regularization factor to handle singular wi.

4. Experimental Evaluation

To conduct our experiments, we have evaluated our algorithm in both corporate data and public
datasets from the University of California, Irvine (UCI), Machine Learning Repository (https://
archive.ics.uci.edu/ml/datasets.html).

4.1. Corporate Data

We have obtained from our company a corpus containing utterances in French of a typical
communication between a customer and a call center of a telecom company.

There are 7765 utterances annotated by human experts that have been collected in four different
datasets. The unannotated part consists of 3,911,695 utterances.

We use a corporate supervised algorithm (rule-based algorithm). We simulate in the experiments
an expert (oracle) on the unannotated corpus by using the rule-based algorithm, which is trained by
7765 utterances. Note that the objective of this evaluation is to observe the improvement that can add
the random exploration to the existing active learning.

In our experiments, we consider a version of the rule-based algorithm without training, where
at each iteration, the active learning tries to select from the unannotated corpus the most interesting
utterances to annotate and integrate into the training set of the rule-based algorithm.

By relating the results to the newer versions, one can verify the usefulness of the proposed
approach. Moreover, we calculate the regret every 100 iterations, and we run the process during
2000 iterations, which corresponds to our budget in terms of labeling.

In addition to the randomness (baseline), we compare our methods by constructing four
groups of algorithms: the first group is the state-of-the-art algorithms described in the related work
(Section 2), which are the sampling by committee, request uncertainty sampling and density weight
method (DW).

The second group contains modified state-of-the-art algorithms, where we have added a fixed
random exploration to the existing state-of-the-art algorithms, for example 0.5-QBC means that with
a probability of 0.5, the algorithm does a random exploration, and otherwise, it does request by
committee.
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The third group contains the proposed model EG-active tested with different existing algorithms,
for example EG-active(committee) means that we have used sampling by committee in our model.

In the fourth group, we have added a dynamic random exploration to the existing state-of-the-art
algorithms as is done in [4]; for example, P-US, P-QBC and P-WD are algorithms that do a random
exploration with probability P, and otherwise, they do respectively P-US, P-QBC or P-WD, these
algorithms use the strategy of [4] to compute the probability P of the random exploration.

In Figure 1, the horizontal axis represents the number of iterations, and the vertical axis is the
performance metric.

Figure 1. Average regret for active learning algorithms.

We have several observations regarding the different active learning algorithms. We observe
from the plot that a fixed and non-tuned random exploration leads to a bad result. This confirms that a
pure exploration is not interesting, and it justifies the need for a dynamic random exploration tuning.

A dynamic exploration leads to an improvement result of the active learning, as is shown by
P-US, P-QBC and P-WD. As expected, EG-active(US), EG-active(QBC) and EG-active(WD) effectively
have the best convergence rates.
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EG-active(US), EG-active(QBC) and EG-active(WD) decrease the average regret respectively by
a factor of 0.84, 1.3 and 0.9 over the baseline. The improvement comes from an optimization strategy
for defining exploration.

These algorithms rapidly find the optimal random exploration to use, which is not the case of
the P-US, P-QBC and P-WD, which take more time.

4.2. Public Benchmarks

We randomly chose nine datasets: Abalone, Breast, Ecoli, Glass, Haberman, Iris, Wine, Wdbc
and Yeast. A brief summary of the datasets is listed in Table 1.

Table 1. Datasets used for benchmarking. UCI, University of California, Irvine.

UCI Datasets Instances Attributes Classes

Abalone 1484 7 3
Breast 699 9 2
Ecoli 336 7 8
Glass 214 9 7

Haberman 306 3 2
Iris 150 4 3

Wine 178 13 3
Wdbc 569 32 2
Yeast 1484 6 8

We simulate in the experiments an expert (oracle) on the unannotated corpus by using support
vector machine (SVM) [17], which is trained by 100% of the dataset. We consider a version of the
SVM algorithm without training; where at each iteration, the active learning tries to select from the
unannotated points the most interesting points to annotate and integrates them into the training set
of the SVM algorithm.

We run the process until the algorithm reaches 10% of the dataset, and because active learning
algorithms contain a degree of randomness, we repeat our evaluations 100 times. We measured the
classification quality using the average accuracy.

We observe from Tables 2–4 that the results in public datasets confirm our expectation, where in
the three algorithms tested, the proposed EG-active performs better than the other versions. The gap
between the EG-active results and the original algorithms depends on the dataset. For instance, the
gap is smaller in the Yeast, Ecoli and Iris datasets than in the rest of the datasets. We also observe that
the performance of EG-active depends on the type of algorithm that we use.

Table 2. Accuracy of the query by committee (QBC) versions on the UCI datasets.

UCI Datasets QBC 50-QBC P-QBC EG-active(QBC)

Abalone 84.82 83.74 85.69 86.09
Breast 67.85 66.86 68.83 70.86
Ecoli 69.82 67.90 69.97 70.09
Glass 71.77 60.34 72.66 74.94

Haberman 56.55 52.46 56.96 58.48
Iris 66.45 61.18 67.06 68.48

Wine 53.16 45.17 54.78 56.84
Wdbc 51.32 41.31 51.30 53.31
Yeast 67.58 60.70 68.92 69.62
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Table 3. Accuracy of the uncertainty sampling (US) versions on the UCI datasets.

UCI Datasets US 50-US P-US EG-active(US)

Abalone 80.69 76.09 84.44 85.91
Breast 60.83 57.86 61.86 62.25
Ecoli 60.87 59.09 62.45 61.92
Glass 55.66 59.94 73.32 76.44

Haberman 51.46 46.48 52.44 53.08
Iris 70.06 65.48 69.08 69.94

Wine 48.78 43.84 56.99 71.39
Wdbc 49.30 45.21 50.32 51.82
Yeast 66.92 57.62 68.46 67.87

Table 4. Accuracy of the density weight method (DW) versions on the UCI datasets.

UCI Datasets DW 50-DW P-DW EG-active(DW)

Abalone 78.23 73.61 80.68 83.46
Breast 58.22 57.01 60.32 60.35
Ecoli 59.78 59.45 61.12 60.45
Glass 53.45 55.44 61.12 66.43

Haberman 50.09 44.28 51.34 52.18
Iris 66.44 63.08 67.98 67.98

Wine 47.53 41.99 56.84 61.36
Wdbc 47.21 43.11 48.86 49.82
Yeast 64.81 55.71 67.44 66.91

5. Conclusions

In this paper, we have proposed an improvement of active learning by considering a random
exploration. We have validated our work with data from real-world applications and showed that
the proposed model offers promising results. This study yields the conclusion that an optimal random
exploration used with any active learning algorithm increases its result. In considering these results,
we plan to try to explain why the gap between the EG-active results and the rest of algorithms
depends on the dataset.

Conflicts of Interest: The author declares no conflict of interest.
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