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Abstract: The increasing incorporation of Graphics Processing Units (GPUs) as
accelerators has been one of the forefront High Performance Computing (HPC) trends
and provides unprecedented performance; however, the prevalent adoption of the
Single-Program Multiple-Data (SPMD) programming model brings with it challenges of
resource underutilization. In other words, under SPMD, every CPU needs GPU capability
available to it. However, since CPUs generally outnumber GPUs, the asymmetric resource
distribution gives rise to overall computing resource underutilization. In this paper, we
propose to efficiently share the GPU under SPMD and formally define a series of GPU
sharing scenarios. We provide performance-modeling analysis for each sharing scenario
with accurate experimentation validation. With the modeling basis, we further conduct
experimental studies to explore potential GPU sharing efficiency improvements from
multiple perspectives. Both further theoretical and experimental GPU sharing performance
analysis and results are presented. Our results not only demonstrate the significant
performance gain for SPMD programs with the proposed efficient GPU sharing, but also the
further improved sharing efficiency with the optimization techniques based on our accurate
modeling.
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1. Introduction

Recent years have seen the proliferation of Graphics Processing Units (GPUs) as application
accelerators in High Performance Computing (HPC) Systems, due to the rapid advancements in graphic
processing technology over the past few years and the introduction of programmable processors in GPUs,
which is also known as GPGPU or General-Purpose Computation on Graphic Processing Units [1]. As
a result, a wide range of HPC systems have incorporated GPUs to accelerate applications by utilizing
the unprecedented floating point performance and massively parallel processor architectures of modern
GPUs, which can achieve unparalleled floating point performance in terms of FLOPS (Floating-point
Operations Per Second) up to the TeraFLOP (Tera Floating-point Operations Per Second) barrier [2,3].
Such systems range from clusters of compute nodes to parallel supercomputers. While computer clusters
used by academia are increasingly equipped with GPU co-processors for accelerating applications [4,5],
the contemporary offerings from supercomputer vendors have begun to incorporate professional GPU
computing cards into the compute blades of their parallel computer products; examples include the latest
Cray XK7 [6], Cray XK6 [7] and SGI (Silicon Graphics, Inc.) Altix UV [8] supercomputers. Yet, more
notably, one of the most powerful supercomputers currently ranking second in the world [9], Titan [10],
is equipped with 18,688 NVIDIA GPUs and thereby able to deliver a sustained 17.59 PFLOPS (Peta
Floating-point Operations per Second) LINPACK (LINear equations software PACKage) performance
[9].

Development of parallel applications for any of these GPU-based heterogeneous HPC systems
requires the use of parallel programming techniques composed of both CPU and GPU parallel programs
to fully utilize the computing resources. Among the different parallel programming approaches, the most
commonly followed programming approach is the Single-Program Multiple-Data (SPMD) model [11].
Under the SPMD scenario, multiple processes execute the same program on different CPU cores,
simultaneously operating on different data sets in parallel. Techniques of message passing, such as
MPI (Message Passing Interface) [12] are often deployed to achieve the SPMD parallelism effectively
with the required inter-processor communication. By allowing autonomous execution of processes at
independent points of the same program, SPMD serves as a convenient, yet powerful, approach for
efficiently making use of the available hardware parallelism.

With the introduction of hardware accelerators, such as GPUs, as co-processors, HPC systems are
exhibiting an architectural heterogeneity that has given rise to programming challenges not previously
existing in traditional homogeneous parallel computing platforms. With the SPMD approach used for
programming most of the homogeneous parallel architectures, directly offloading the program instances
on to GPUs is not feasible, due to the different Instruction Set Architectures (ISAs) of CPUs and GPUs.
Moreover, GPUs are primarily suited for the compute-intensive portions of the program, serving as
co-processors to the CPUs in order to accelerate these sections of the parallel program. The “single
program” requirement of SPMD, therefore, means that every program instance running on the CPUs
must necessarily have access to a GPU accelerator. In other words, it is necessary to maintain a
one-to-one correspondence between CPUs and GPUs, that is, the number of CPU cores must equal the
number of GPUs. However, due to the proliferation of many-core microprocessors in HPC systems,
the number of CPU cores generally exceeds the number of GPUs, which is also true for all four
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GPU-based supercomputers in the top 30 list, as shown in Table 1 [9,10,13–15]. Therefore, the problem
of system computing resource underutilization with the SPMD approach is general across GPU-based
heterogeneous platforms and urgently needs to be solved with the increasing number of CPU cores in a
single CPU, due to the fast advancement of multi-/many core technologies.

Table 1. Graphics Processing Unit (GPU)-based supercomputers in the top 30 List.

Supercomputer (Ranking) # of CPU Cores # of GPUs CPU/GPU Ratio
Titan (2nd) 299,008 18,688 16
Tianhe-1A (10th) 102,400 7,168 14.3
Nabulae (16th) 55,680 4,640 12
Tsubame2.0 (21st) 17,984 4,258 4.2

However, even though the number of physical GPUs cannot match the number of CPU cores found
in contemporary HPC systems, modern high-end GPU architecture is designed as massively parallel and
composed of up to thousands of processing cores [3]. Moreover, since GPU programs are composed
of parallel threads executed in parallel on these many processing cores physically, it is possible to
achieve the execution concurrency of multiple GPU programs on the single GPU. For example, the
NVIDIA Fermi [16] architecture consisting of up to 512 Streaming Processor (SP) cores allows the
concurrent execution of up to 16 GPU kernels [17]. The increasing parallel computation capabilities
of modern GPUs enable the possibility of sharing a single GPU to compute different applications or
multiple instances of the same application, especially when the application problem size and parallelism
is significantly smaller than the inherent parallelism capacity of the GPU.

In this paper, targeting the problem of resource underutilization under the SPMD model, we propose
to efficiently share the GPU resources among the microprocessors through streaming for modern
heterogeneous systems. Our proposed sharing approach is to provide multiple folds of execution
concurrencies. The sharing of a single GPU from a SPMD parallel program can be further divided
into process-level and thread-level sharing, depending on the SPMD program. Note that here, we
are primarily focused on the SPMD programs for which all processes/threads carry out identical
GPU tasks. Therefore, our further discussions related to the SPMD programs are concentrated on
identical GPU kernels from multiple processes/threads. For process-level GPU sharing, our previous
work [18] provided a GPU virtualization approach to eliminate Fermi [16] or earlier GPUs’ sharing
inefficiency among multiple processes by providing a virtualization layer to the processes, while all GPU
kernels from SPMD processes are launched from a single daemon process (virtualization layer) through
Compute Unified Device Architecture (CUDA) streams [17] to achieve concurrent kernel execution and
kernel concurrency with GPU I/O (Input/Output). In other words, Fermi or earlier series of GPUs do not
natively support inter-process concurrencies, since multiple GPU contexts [17] are created for processes
and current execution features can only happen within a single GPU context. Only till very recently, the
NVIDIA Kepler series of GPUs [19] provide Hyper-Q hardware support along with the CUDA proxy
feature, which allows multiple processes to share a single GPU context. Thus, in order to achieve the
efficient process-level GPU sharing for the Kepler series of GPUs, programmers can utilize Hyper-Q
and CUDA proxy support directly. For thread-level GPU sharing, the latest CUDA release [17] provides
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necessary supports to share a single GPU context among multiple threads for both Fermi and Kepler
series of GPUs. Thus, thread-level GPU sharing can be directly achieved by using streaming execution.
Therefore, from an overall perspective, to achieve GPU sharing, our proposed sharing approach is to
launch multiple GPU kernels from multi-processes/threads using CUDA streaming execution within a
single GPU context, while the single context requirement is met by launching kernels from a single
process, such as our virtualization implementation.

By describing the efficient GPU sharing approach, in this paper, we provide both theoretical and
experimental analysis of the proposed GPU sharing. On the theoretical side, we formally define that
multiple identical GPU kernels from a SPMD program can share the GPU under four GPU sharing
scenarios (depending upon the kernel profiles): Exclusive Space, Non-Exclusive Space, Space/Time and
Time Sharing. Along with the defined scenarios, we propose a series GPU sharing execution models as
our analytical basis to analyze possible performance improvements under the four sharing scenarios. On
the experimentation side, we utilize multiple GPU benchmarks to verify the accuracy of the proposed
modeling. We further employ multiple benchmarks to study the performance characteristics of each
sharing scenario. As a further step, we perform several experimental studies on exploiting possible
sharing efficiency improvements based on these performance characteristic studies and modeling
analysis. Multiple perspectives of optimization are being considered for different sharing scenarios,
ranging from the problem/kernel size and parallelisms of the SPMD program to optimizable sharing
scenarios. Based on these factors, we provide experimental optimization analysis and achieve an
optimized I/O concurrency for kernels under Time Sharing, a better Streaming Multiprocessor (SM)
utilization for kernels under Exclusive Space Sharing and an optimized parallelism strategy for parallel
programs. We also propose the concept of Sharing Scenario Casting as a means to switch the possible
SPMD sharing scenario with improved performance, as well as a general optimization guideline with
our sharing scenario analysis. Our further experimental results also demonstrate the significantly
achievable performance advantage with efficient GPU sharing through streaming execution, along with
the fine-grained GPU sharing modeling analysis.

The rest of this paper is organized as follows. Section 2 provides an overview of related work on
GPU resource sharing in heterogeneous HPC systems and related fields. A background of the GPU
architectural and programming model, as well as the GPU kernel execution flow is given in Section 3,
followed by a formal definition of the proposed GPU sharing scenarios and the analytical GPU sharing
execution model in Section 4. A series of experimental analysis and results, as well as performance
optimization strategies, are presented and discussed in Section 5, which is followed by our conclusion in
Section 6.

2. Related Work

There are several streams of research endeavors targeting GPU resource sharing within the HPC field.
One direction of such research has focused on the problem of GPU device underutilization. Guevara
et al. [20] proposed a GPU sharing approach that allows GPU requests from multiple processes to be
intercepted at run-time. They also introduced a GPU kernel merging approach to merge two kernels
into a single kernel for reduced sharing overheads. By using the similar kernel merging approach
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to reduce GPU resource underutilization, Saba et al. [21] presented an algorithm that allocates GPU
resources for tasks based on the resource goals and workload size. While they target a different
problem of a time bound algorithm that optimizes the execution path and output quality, the employed
GPU sharing approach is to merge the kernels similarly. Although the kernel merging approach is
useful to increase the GPU resource utilization in the scenario of GPU sharing, it needs compiler-level
support with merged kernel generation. Moreover, with merged kernels, multiple kernels are “invoked”
simultaneously; therefore, it does not exploit the possibility to hide data transfer overhead with kernel
execution, which can be achieved through concurrent kernel execution and data transfer on the current
GPU architecture. Moreover, the latest GPU architecture further provides concurrent kernel execution
support as a straightforward approach to eliminate possible resource underutilization, which makes the
kernel-merging approach currently unnecessary.

Two other categories of solutions for GPU sharing target two different levels of GPU sharing. One
focuses on thread-level GPU sharing. Peters et al. [22] proposed a method to share a single NVIDIA
GPU device within a GPU compute node among multiple host threads. They provide a persistent kernel
that has been initialized and executing continuously under a single GPU process (context). Meanwhile,
the host thread acts as a management thread to accept requests from other threads, with the requested
GPU functions essentially using a single thread-block on the GPU. While devices that do not support
concurrent kernel execution can also benefit from kernel concurrencies with this solution, the persistent
kernel limits the total blocks to be executed, and the programming efforts to fit the application into the
single-block size is also another limitation. The other category of solutions is to provide process-level
GPU sharing. Our previous work [18] presented a GPU virtualization infrastructure that provides a
virtual SPMD model by exposing multiple virtual GPU interfaces to the processors. The virtualization
infrastructure allows for multiple processes to share the GPU using a single GPU context and to
concurrently execute GPU kernels, as well as to achieve concurrency between data transfer and kernel
execution. This is achieved by using a centralized running process, known as the Virtualization Manager
(VM), to take requests and allocate GPU resources, as well as to provide synchronizations. Another
example is described by the S GPU project [23], which uses a custom software stack to ensure the
time-sharing of the GPU between MPI processes. In their implementation, each MPI process inserts
GPU commands into a stream object, and when the process initiates the execution of the stream,
all the enqueued GPU commands are executed in the desired sequence. Although S GPU may have
drawbacks in terms of always time-sharing the GPU and GPU context-switch overheads, their work is
complementary to our previous work and may be combined as a general process-level GPU sharing
implementation approach. In addition, our previous work in [24] preliminarily models the GPU sharing,
which lays the analytical basis for this paper.

Another direction of research on GPU resource sharing has focused on efficient GPU resource sharing
within the cloud/virtual machine environment. Ravi et al. [25] proposed a GPU sharing framework for
the cloud environment, based on that they provided a GPU kernel consolidation algorithm to combine
kernel workloads within the cloud and, thus, achieved improved throughput, while considering both GPU
space and time sharing, from a coarse and general perspective. However, their analysis only considered
a limited case of GPU sharing when two kernels are present. Thus, further sharing efficiency cannot
be achieved unless a detailed device-level GPU sharing analysis is conducted and more kernels are
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considered. Similarly, [26–28] also focused on approaches to provide access to GPU accelerators within
virtual machines. Nevertheless, these approaches only enable time sharing of the GPU at a coarse level of
granularity, while incurring context-switch overheads among processes, due to the native process-level
sharing approach. Moreover, they are not particularly suited for GPU sharing within SPMD programs,
since it would require the use of a dedicated virtual machine for every SPMD process within a multi-core
node, leading to significant overheads.

3. Background of GPU Computing

In this section, we present a general overview of the GPU computing architecture, on which our
further analysis will be based. We will describe both the GPU programming model and the architectural
model of current GPU technology. Some advanced features and the device-level execution flow of
modern GPUs are also discussed to support our further analysis.

3.1. Programming Models

The current two prevalent GPU programming models are Compute Unified Device Architecture
(CUDA) [17], developed by NVIDIA, and Open Computing Language (OpenCL) [29], provided by
Khronos Working Group. For convenience, we use CUDA terms in the rest of this paper. Currently, both
models follow a master-slave flow, under which the CPU master process sends input data to GPU device
memory, launches the GPU kernel, waits for the kernel to finish and retrieves the output data. The kernel
executed on the GPU follows Single-Instruction, Multiple-Thread (SIMT) to achieve the parallelism.
Threads are the lightest execution unit of the kernel function. Each GPU kernel is launched per grid,
which can be decomposed into thread blocks consisting of a number of threads. The provided three
levels of thread hierarchies require the programmer to write the kernel for a single thread and specify the
total number of parallel threads. The thread hierarchies are then decided based on the data and resource
considerations. Note that, here, we are mainly concentrating on the programming styles and features
provided by CUDA. Therefore, we will use the CUDA terminology for the rest of the paper.

3.2. An Architectural Model

Modern GPUs are composed of massively parallel processing units and hierarchies of memories.
Figure 1 shows a top-down architectural overview of the NVIDIA Fermi [16] GPUs. The GPU is
composed of 16 Streaming Multiprocessors (SMs) as the first processing unit hierarchy, each of which is
further composed of 32 Streaming Processors (SPs) as the second hierarchy. For the memory hierarchies,
all SMs on chip share the global device memory, and each SM has its private shared memory, which is
shared by all SPs within each SM. Each SP holds a number of registers for each thread. Within each SM,
there are two thread schedulers, each of which schedules a warp (a batch of 32 threads) at one time to be
executed on the SPs. Multiple warps are allowed to co-exist on the same SM. Especially when threads
have high memory access latency, increasing the warp occupancy by having multiple warps co-exist on
a single SM simultaneously can improve the overall execution performance.
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Figure 1. A GPU architecture overview: Fermi.

Global GPU Memory

Interconnection Network

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Warp Scheduler Warp Scheduler

Interconnection Network

Shared Memory

Streaming 
Processor

Streaming 
Processor

Streaming 
Processor

Streaming 
ProcessorThread Block

A thread block is executed 
only on a SM

Streaming
Multiprocessor

3.3. GPU Device-Level Execution Flow

When a kernel is launched, each block can only be executed on a single SM. Multiple blocks can
reside on the same SM only if resources permit, and the resources include the shared memory usage, the
register usage of each thread and the total number of warps within the block. Since each SM has a limited
number of registers, a fixed size of shared memory and a maximum number of warps that can co-exist
and be scheduled, only multiple blocks meeting these constraints can be scheduled within a single SM.
However, blocks are only limited to a single kernel. In other words, blocks from different kernels cannot
be concurrently scheduled in conventional GPU devices. Nevertheless, current CUDA devices with a
computing capability higher than 2.0 (Fermi) support concurrent kernel execution, which allows different
kernels to be launched from the same process (GPU program) using CUDA streams. Concurrent kernel
execution allows blocks from different kernels to be scheduled simultaneously. Furthermore, by using
asynchronous CUDA streams, concurrent data transfer and kernel execution can also be achieved among
multiple streams, each of which carries a GPU kernel. Note, however, that GPU kernels launched from
independent CPU processes cannot be concurrently executed, since each process creates its own GPU
context, and CUDA kernels from a different GPU context cannot achieve execution concurrency. In
other words, to efficiently execute multiple GPU kernels on a single GPU, kernels should be launched
within the same GPU context within a single process.

4. GPU Sharing Scenarios

4.1. GPU Sharing Approach with Streams for SPMD Programs

For a given SPMD program, the program parallelism can be expressed at two different levels:
process-level and thread-level. In other words, while the SPMD program can be written using
process-level parallelism, such as MPI [12], or thread-level parallelism, such as OpenMP (Open
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Multi-Processing) [30], each process or thread from the given SPMD program composed of both CPU
and GPU codes needs access from the GPU, and thus shares the GPU on the process/thread level. In
this paper, for both process/thread-level GPU sharing, we propose an efficient sharing approach utilizing
the advanced concurrency features of modern GPUs through streaming execution. In other words, as
explained earlier, modern GPUs can execute multiple GPU kernels simultaneously while establishing
concurrent kernel execution and GPU I/O transfer between different kernel executions. These features
can thus be utilized by SPMD programs executing many identical GPU kernels.

Currently, concurrent kernel execution support from CUDA specifically on Fermi GPU or newer
families uses CUDA streams to achieve kernel parallelism, with each kernel being launched through
a CUDA stream. However, as we mentioned earlier, in order to achieve the kernel-level concurrency,
all kernels (streams) need to be launched within the same process (GPU context), since each process
accessing the GPU creates its own GPU context. For a SPMD parallel program to efficiently share the
GPU, multiple processes or threads thus need to be able to establish the required inter-process/thread
kernel execution concurrency using CUDA streams, depending on the level (process/thread) at which
the SPMD program is written.

When a SPMD program is composed of parallel processes, each of which carries a GPU kernel
execution, the GPU is shared at the process-level. Since multiple processes create multiple GPU contexts,
kernel execution cannot natively achieve concurrency among processes for Fermi or earlier GPUs [16].
As we explained earlier, the latest Kepler GPU architecture [19] provides native hardware Hyper-Q
support, which allows multiple processes to share a single GPU context using the CUDA proxy server
feature. As the purposes of utilizing our GPU virtualization approach (for Fermi or earlier GPUs), as
well as using the Hyper-Q feature (for Kepler series of GPUs) are both to meet the single GPU context
requirement for efficient GPU sharing, here, we provide a brief description of the GPU virtualization
approach addressed by our previous work [18]. Figure 2 shows that all SPMD GPU kernels are executed
within the single daemon process using CUDA streams. In other words, since each SPMD GPU kernel
is launched with a separate CUDA stream, improved sharing efficiency can be achieved, due to possible
execution concurrency among kernels. The GPU virtualization solution also provides the programmers
with simple APIs (Application Programming Interfaces) to launch the GPU kernel within each process
to realize efficient GPU sharing.

On the other hand, when an SPMD program is composed of parallel threads, each of which carries
a GPU kernel execution, the GPU is shared at the thread level. For NVIDIA Fermi or earlier GPUs,
different CUDA versions provide varied thread-level GPU sharing support. Before CUDA 4.0, similar to
process-level sharing, each thread launching a GPU kernel created its own GPU context with no possible
inter-thread kernel execution concurrency. CUDA 4.0 and later versions [17] provide further improved
multi-threading concurrency support for Fermi or earlier GPUs, as well as Kepler GPUs. The improved
thread-level concurrency support allows multiple threads to share the single GPU context created for the
multi-threaded SPMD program launching process, as shown in Figure 3. Thus, as long as each thread
within the SPMD program launches its kernel with the CUDA stream natively, efficient GPU sharing
(inter-thread concurrency) can be achieved.
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Figure 2. Efficient Single-Program Multiple-Data (SPMD) process-level GPU sharing.
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Figure 3. Efficient SPMD thread-level GPU sharing.
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Figure 4. Exclusive Space Sharing scenario.
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Therefore, for a given SPMD program to efficiently share the GPU, our sharing approach utilizes
CUDA streams to execute the GPU kernel from each process/thread in general. The achievable GPU
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sharing efficiency from the SPMD program is specifically determined by the streaming execution
efficiency of multiple kernels. Therefore, our further analysis first studies the device-level multi-kernel
behavior as the modeling basis when SPMD kernels are all simultaneously executed through CUDA
streams.

4.2. GPU Sharing Scenarios

In this section, we analyze several scenarios when multiple GPU kernels invoked from CUDA streams
share a single, physical GPU. The GPU kernels are identical in function and launched simultaneously,
but they operate on different data. In order to study the different scenarios, we analyze them based
on the manner in which the kernels utilize the underlying processing cores (SMs) in the GPU, through
space-multiplexing, time-multiplexing or hybrid space-time multiplexing [31]. Our analysis for each
scenario is based on the device-level multi-kernel concurrency behaviors. As we shall see shortly,
the occurrence of different sharing scenarios depends on the profile characteristics of the SPMD GPU
kernels.

The primary goal of our analysis is to provide a general and formalized GPU space/time sharing
boundary for different SPMD GPU applications, which will, in turn, aid us in estimating the possible
performance gains that can be achieved using our sharing approach. Of more significance, insights
gained from our analyses are also to be used for fine-tuning the applications to achieve better GPU
sharing performance.

As previously described, a typical GPU is composed of multiple SMs, which execute multiple thread
blocks. When multiple kernels are simultaneously launched with CUDA streams, blocks from all kernels
are to be scheduled for execution on SMs. Based on how blocks from different kernels occupy the SMs,
we expect the following four GPU sharing scenarios: Exclusive Space Sharing, Non-Exclusive Space
Sharing, Space/Time Sharing and Time Sharing. These terms will be explained shortly. We illustrate the
four sharing scenarios by using a simple example GPU that has six SMs that is shared by three SPMD
Parallel processes/threads (represented as SPMD Ps - SPMD P1; SPMD P2 and SPMD P3), which are
demonstrated in Figure 4 to Figure 5. In order to generalize the required condition for each sharing
scenario, we define several parameters, as shown in Table 2.

When a parallel SPMD program launches multiple, identical GPU kernels to share a single GPU,
all kernels are executed simultaneously through CUDA streams within a single GPU context. Kernels
are composed of thread blocks, and every thread block can execute only on one SM, as previously
explained. We further assume that the GPU hardware assigns all thread blocks to free SMs until every
SM is occupied, before assigning additional thread blocks to an SM. Based on this assumption, if the
total number of thread blocks from all SPMD kernels does not exceed the number of available SMs
(NSM), kernels will execute on independent SMs, resulting in a Space-Sharing scenario.
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Figure 5. Time Sharing scenario.
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Table 2. Parameters defined for GPU sharing scenarios.

Symbol Definition
NSM # of SMs in the GPU
Nregs per SM # of registers in each SM
Sshm per SM The size of shared memory in an SM
Nthds per warp # of threads per warp
Nmax warps SM The maximum # of warps allowed in an SM

Nthds per blk # of threads per block
Nregs per thd # of registers per thread
Nregs per blk Nthds per blk × Nregs per thd

Sshm per blk The size of shared memory per block
Nwarps per blk Nthds per blk / Nthds per warp

Nblks per SM # of blocks per SM within one SM round
Nmax blks per SM The maximum # of blocks per SM
Nblks per knl # of blocks per SPMD kernel
NSPMD P # of SPMD parallel processes/threads sharing the GPU
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4.2.1. Exclusive Space Sharing

As shown in Figure 4, as an example, each SPMD kernel has two blocks of threads, and the total
of six blocks from all three kernels are launched on six available SMs, respectively, under concurrent
kernel execution. Thus, kernels from different SPMD Ps can co-exist on the GPU and be processed
by different SMs simultaneously. We term this Exclusive Space Sharing, which will occur under the
following condition.

Exclusive Space Sharing Condition.

Nblks per knl × NSPMD P ≤ NSM (1)

4.2.2. Non-Exclusive Space Sharing

If each GPU kernel requires a larger number of thread blocks and consequently does not satisfy
condition (1), we can no longer have exclusive sharing of the SMs by GPU kernels. Instead, more than
one thread block (from different kernels) will be assigned to an SM. In other words, warps from thread
blocks belonging to different kernels will execute on the same SM in an interleaved fashion. Note that
warps from the same or different thread blocks always execute sequentially within an SM. However,
switching between warps is very fast and often aids execution by allowing memory access latencies
from one warp to be hidden by the execution of another warp [16]. Hence, the scenario considered here
qualifies as space-sharing. Nevertheless, each SM is not exclusively used by one kernel; we therefore
term this case Non-Exclusive Space Sharing.

In this scenario, the number of thread blocks mapped to a single SM depends on the availability of
resources. Specifically, it is limited by three factors: (a) the register usage of all blocks mapped to an
SM must not exceed the available registers within the SM, Nregs per SM; (b) the shared memory usage of
all blocks mapped to the SM must not exceed the available shared memory in the SM, Sshm per SM; and (c)
the total number of warps mapped to an SM must not exceed the warp capacity of the SM, Nmax warps SM.
The influence of these three factors is captured by the following expression for the number of blocks that
can be mapped to an SM:

Nmax blks per SM =Minimum
(⌊

Nregs per SM

Nregs per blk

⌋
,

⌊
Sshm per SM

Sshm per blk

⌋
,

⌊
Nmax warps SM

Nwarps per blk

⌋)
(2)

The Non-Exclusive Space Sharing scenario described here occurs only when the number of blocks
that can be mapped to an SM is greater than unity, that is, Nmax blks per SM > 1. On the other hand, if only
one block can be mapped to an SM based on (2), then the SM will have to be time-shared between thread
blocks, which is a different scenario described later. An illustration of non-exclusive space sharing is
given in Figure 6. After blocks from SPMD P1 fill four SMs, only two blocks from SPMD P2 can be
scheduled on the remaining two free SMs. Since all SMs still have room for more blocks, the remaining
two blocks from SPMD P2 and all blocks from SPMD P3 can be scheduled to co-execute on the same
six SMs.
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Figure 6. Non-Exclusive Space Sharing scenario.
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Figure 7. Space/Time Sharing scenario.
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In addition to supporting more than one block per SM, the Non-Exclusive Space Sharing case occurs
only if the number of thread blocks from all kernels is large enough so that it violates (1). However, in
order to ensure that an excessively large number of blocks does not force time-sharing, the total number
of thread blocks from all kernels needs to be limited. This limiting number is the maximum number of
thread blocks that can be handled by all SMs taken together, Nmax blks per SM × NSM . These conditions
may be summarized as follows.

Non-Exclusive Space Sharing Conditions.

Nmax blks per SM > 1 (3)

NSM < Nblks per knl NSPMD P ≤ Nmax blks per SM NSM (4)
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4.2.3. Space/Time Sharing

Irrespective of the number of thread blocks supported by an SM, if the total number of thread blocks is
so large that it exceeds the RHS (Right Hand Side) of (4), the available SMs will have to be time-shared
through multiple rounds of SM executions. As an example, consider the scenario in Figure 7, which uses
Nmax blks per SM = 1 for simplicity.

Here, the first four blocks from SPMD P1 occupy four SMs and leave two SMs available for other
SPMD Ps in the first execution round. Only two blocks from SPMD P2 can therefore execute and
space-share the GPU with SPMD P1. Meanwhile, the other two blocks from SPMD P2 have to be
executed in the second round, thus time-sharing the GPU with blocks from SPMD P1. We thus observe
that within an execution round, there is space sharing between different kernels, and across multiple
execution rounds, time sharing occurs. As a result, both space sharing and time sharing co-exist, and we
call this scenario the Space/Time Sharing scenario. Note that the space-sharing that is exhibited within
an execution round may be exclusive or non-exclusive, as described earlier.

The conditions for Space/Time Sharing may be listed as below. Firstly, the total number of thread
blocks must be large enough to violate (4). Secondly, the number of thread blocks from a single kernel
must be smaller than the total block capacity Nmax blks per SM × NSM ; otherwise, one kernel occupies the
entire execution round, which indicates that time-sharing predominates between different kernels, and we
classify that accordingly under time-sharing. The two conditions for space/time sharing are summarized
as the following.

Space/Time Sharing Conditions.

Nblks per knl NSPMD P > Nmax blks per SM NSM (5)

Nblks per knl < Nmax blks per SM NSM (6)

4.2.4. Time Sharing

We classify the execution to be in a Time-Sharing scenario when (a) multiple execution rounds are
required to process all kernels, as exemplified by (5) and (b) the number of thread blocks within a single
kernel is large enough to occupy at least one execution round. In other words, the number of blocks in
a single kernel must exceed the single-round thread block capacity of the GPU, Nmax blks per SM × NSM .
These conditions may be summarized as follows.

Time Sharing Conditions.

Nblks per knl NSPMD P > Nmax blks per SM NSM (7)

Nblks per knl ≥ Nmax blks per SM NSM (8)

An illustration is provided in Figure 5, with Nmax blks per SM = 1, Nblks per knl = 6 and NSM = 6. The six
blocks in each kernel fully occupy six SMs, which forces the three kernels to be executed sequentially in
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separate rounds. Note that if this example had seven blocks for every kernel, there would be some space
sharing occurring between SPMD P1 and SPMD P2 during the second execution round. However, for
simplicity, we classify this under Time Sharing, because the number of execution rounds is at minimum
equal to the number of NSPMD P, and a large kernel generally executes many rounds.

Note that our analysis of the four sharing scenarios only considers the execution phases of the kernels,
without consideration of data transfers between the CPU and the GPU. Accurate performance estimates
can be achieved only when the I/O transfers are taken into account for all the SPMD Ps. Using the
analysis of different sharing scenarios as the foundation, we build the SPMD-based GPU sharing and
execution model as described next.

4.3. GPU Sharing and Execution Model

As an analytical basis, we model the execution of a GPU program to consist of the following stages:
GPU device initialization; transferring input data into GPU memory; executing the GPU kernel and
transferring the result data to the main memory, as shown in Figure 8. In addition, we define the necessary
analytical parameters in Table 3.

Figure 8. GPU execution stages.
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Tdata_in Tcomp Tdata_out

Initialization

Tinit

As the first step, we set our performance evaluation baseline as the native GPU sharing,
wherein multiple processes share the GPU in a sequential manner, while process-level sharing incurs
context-switch overhead. This is because each process creates its GPU context, and there is no
concurrency possible among multiple GPU contexts. Here, we are primarily modeling the process-level
native sharing baseline, since thread-level sharing can be achieved under a single GPU context natively
with the latest CUDA support. Thus, for process-level native sharing, as shown in Figure 9, we model an
average context-switch overhead by switching from one process to another, as well as an average GPU
initialization overhead, due to the fact that the GPU resource needs to be initialized in each new context.
With this execution model, we derive the Tnative sh accordingly, as shown in (9):
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Table 3. Parameters defined for analytical modeling.

Symbol Definition
Tdata in The time to transfer input data into the GPU memory
Tdata out The time to transfer the result data into the main memory
Tcomp The time for the GPU kernel computation
Tinit The time overhead for the GPU resource to be initialized
Tctx switch The average context-switch overhead between processes (process-level)
Tnative sh The total time to execute all SPMD process using the native sharing approach
Tsh sce The total execution time for a given sharing scenario
Tex sp The total execution time for Exclusive Space Sharing
Tn ex sp The total execution time for Non-Exclusive Space Sharing
Tsp tm The total execution time for Space/Time Sharing
Ttm The total execution time for Time Sharing
Ttm io i The total execution time for I/O-intensive applications
TSM str The SM time stretch of adding a block per SM
TSM str (Nblks per SM) The SM time stretch of adding a block per SM with current Nblks per SM

RSM The total number of SM execution rounds
Tfull rnd str The time stretch of one full SM execution round
Tfs rnd str The stretch of adding the first SM execution round to the full one
Tls rnd str The stretch of the last SM execution round (may not be full)
T (Nblks per SM) The execution time when there are Nblks per SM blocks per SM

Tnative sh = NSPMD P(Tinit + Tdata in + Tcomp + Tdata out) + (NSPMD P − 1)Tctx switch (9)

Figure 9. The native sequential GPU sharing (process level).
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Different from the native sharing approach, our sharing approach through streaming execution
achieves inter-process parallelism using CUDA streams. Three types of overlappings are possible: (a) the
overlapping of the execution of multiple concurrent kernels; (b) the overlapping of kernel execution with
either the GPU input or output data transfer; and (c) the overlapping of the input data transfer with the
output data transfer. These possible overlappings are to be employed in our further modeling. However,
the latest release of CUDA supports streams being programmed in two styles aimed at achieving either
kernel execution concurrency or I/O concurrency [17]. When targeting I/O concurrency (Programming
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Style-2 or PS-2), both input and output I/O can be inter-overlapped and also overlapped with kernel
execution, although the execution phases of different kernels cannot overlap. On the other hand, if
streams are programmed to achieve kernel concurrency (Programming Style-1 or PS-1), the output data
transfer can overlap with only a very small portion of kernel execution, while concurrent execution
of multiple kernels, as well as execution overlapping with input data transfer can be maintained. The
latter programming style (PS-1) is adopted by us for analyzing GPU sharing scenarios, unless otherwise
specified.

For modeling our SPMD Execution scenario, we bear in mind that there is the possibility of
overlapping computation phases from multiple kernels only if the I/O transfer time is sufficiently
small. To elaborate, consider the case when multiple kernels are initiated from CUDA streams, each
requiring input data transfer, execution and output data transfer. Since input data transfers need to occur
sequentially, if we have Tdata in ≥ Tcomp, the input data transfer of a subsequent kernel can only finish
after the computation phase of the earlier kernel. In other words, the computation phases cannot overlap,
and we categorize this as I/O-intensive. Only time-sharing can thus occur for I/O-intensive cases. We
therefore begin our analysis for the compute-intensive case, for which Tdata in < Tcomp with PS-1 adopted.

4.3.1. Execution Model for Compute-Intensive Applications

We first lay out the GPU execution and sharing models for compute-intensive applications. We make
the following assumption for the model: I/O in each direction consumes the full I/O bandwidth and
cannot be overlapped with another I/O transfer in the same direction; the output I/O cannot be overlapped
with kernel execution, due to the aforementioned CUDA feature for the chosen programming style
(PS-1). Furthermore, we assume that kernels finish execution following the order in which they are
initiated; in other words, the output data transfer sequence follows the kernel launching sequence, even
though output needs to wait until all kernels have finished execution, as mentioned earlier. This last
assumption on the sequence does not affect the estimation of total execution time.

Exclusive Space Sharing. As discussed earlier, Exclusive Space Sharing allows all kernels to achieve
complete concurrency, due to the fact that all kernel blocks are executed on different SMs. With CUDA
streams, input data transfer can also be overlapped with kernel execution. However, the retrieve data
stages have to wait until all computing stages have finished, since streams are programmed for concurrent
kernel execution. Thus, we define the execution model as in Figure 10 and derive the total execution time
as given in (10) below:

Tex sp = NSPMD P(Tdata in + Tdata out) + Tcomp (10)
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Figure 10. Execution model for exclusive space sharing.
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Non-Exclusive Space Sharing. Non-Exclusive Space Sharing allows blocks from all kernels to reside
in all SMs simultaneously without moving to the next SM execution round. However, scheduling more
blocks on each of the single SM stretches the execution time of each SM, compared with when only one
kernel is executed on the GPU. We use the term “SM time stretch” to denote increased execution time
when the number of blocks per SM increases. We define TSM str as the time stretch when the number
of blocks per SM increases by one. TSM str can be expressed as a function of the number of blocks per
SM (Nblks per SM), as shown in (11). Depending upon the nature of the GPU kernel, TSM str can be derived
empirically in our following experimentation section.

TSM str ≡ TSM str(Nblks per SM) = T(Nblks per SM + 1) − T(Nblks per SM) (11)

Thus, under Non-Exclusive Space Sharing, the total time stretch of the execution time component,
Tcomp, is the SM time stretch when the number of blocks per SM increases with the added (NSPMD P-1)
SPMD kernels. We describe the model behavior of this scenario in Figure 11, the basis upon which we
derive the execution time in Equation (12) below. The number of blocks per SM with only one kernel

executing is: N1 =

⌈
Nblks per knl

NSM

⌉
. Under SPMD execution with NSPMD P processes, the number of blocks

executing on each SM increases to N2 =

⌈
Nblks per knl · NSPMD P

NSM

⌉
.

The total execution time is therefore:

Tn ex sp = NSPMD P(Tdata in + Tdata out) + Tcomp +
N2−1∑
i=N1

TSM str(i) (12)

Figure 11. Execution model for non-exclusive space sharing.
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Space/Time Sharing. Under Space/Time Sharing, when each SM executes one or more blocks, the
increased block number per SM due to the added kernels from other processes can be accounted for
using the same TSM str as previously defined. The time taken for the execution phase is given by the sum
of the execution phases in each computation round. An illustration of this case under the SPMD scenario
is given in Figure 12.

Figure 12. Execution model for space/time and time sharing.
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However, since the execution phases of the different kernels are intermingled, they cannot be
separately depicted in the figure. Instead, for ease of calculation, we show the execution times for
the different rounds that need to be added to the execution time of the first kernel, shown in Figure 12
for SPMD P1. The added components consist of the following:

1. Tfs round str: This term captures the stretch in the execution time of the first kernel during the first
round. The first execution round will definitely execute according to its full capacity; that is, each
SM will execute Nmax blks per SM thread blocks. Accordingly, the stretch is computed based on an

increase in the number of blocks per SM from N fs
1 =

⌈
Nblks per knl

NSM

⌉
to N fs

2 = Nmax blks per SM.

Therefore:

Tfs rnd str =

Nfs
2 −1∑

i=Nfs
1

TSM str(i) (13)

2. Tfull rnd str: This term quantifies the execution time of every execution round that occurs subsequent
to the first round. Effectively, this is the stretch in execution time that occurs due to the presence
of the particular execution round. Again, the round is expected to execute according to its full
capacity, with Nmax blks per SM blocks per SM. The execution time of the round is computed as a
stretch that occurs when the number of blocks per SM is increased from N full

1 = 0 to N full
2 =

Nmax blks per SM. We therefore have:

Tfull rnd str =

Nfull
2 −1∑

i=Nfull
1

TSM str(i) (14)

Note that the final execution round may not be able to run at its full capacity and is therefore
modeled separately, as explained next.

3. Tls rnd str: This term captures the time duration of the final execution round, since the last round
may not have the required number of thread blocks to occupy SMs at their maximum capacity. If
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there are a total of RSM rounds, the number of thread blocks available for the final round, defined
as F , is:

F = Nblks per knl · NSPMD P − (RSM − 1) · Nmax blks per SM (15)

which is based on the assumption that all the earlier (RSM-1) rounds will execute SMs with their
maximum capacity. The time duration of the final round, computed as a stretch resulting from
increasing the number of SMs per block from N ls

1 = 0 to N ls
2 =

⌈
F

NSM

⌉
, is therefore:

Tls rnd str =

N ls
2 −1∑

i=N ls
1

TSM str(i) (16)

The total number of execution rounds in the foregoing analysis is computed by dividing the total
number of thread blocks from all kernels by the maximum SM capacity that is possible in each round:

RSM =

⌈
Nblks per knl · NSPMD P

NSM · Nmax blks per SM

⌉
(17)

The total execution time for the SPMD application can now be computed by referring to Figure 12:

Tsp tm = NSPMD P(Tdata in + Tdata out) + Tcomp + Tfs rnd str + (RSM − 2)Trnd str + Tls rnd str (18)

Time Sharing. We define Time Sharing for compute-intensive applications (under PS-1) to be the
scenario when a single kernel is large enough to be executed for one or more SM round. While merely
many more SM execution rounds are present, time sharing can be modeled the same as Space/Time
Sharing, as shown in Figure 12.

Accordingly, the execution time for the Time-Sharing scenario can be derived as in (19) below, similar
to (18):

Ttm = NSPMD P(Tdata in + Tdata out) + Tcomp + Tfs rnd str + (RSM − 2)Trnd str + Tls rnd str (19)

4.3.2. Execution Model for I/O-intensive Applications (Always Time Sharing)

For I/O-intensive applications, the data transfer time dominates and leaves no kernel execution
concurrency. As described previously, this scenario occurs when Tdata in≥Tcomp. In other words,
computations will always occur in a time-shared fashion. Since we are sure that kernel executions cannot
overlap, our sharing approach adopts the stream programming style aimed at I/O concurrency (PS-2), as
previously described. This allows overlap to occur between output data transfer and kernel execution,
while maintaining concurrency between input transfer and kernel execution, as well as bidirectional I/O
capability.

These features are captured in the execution model shown in Figure 13; both Tdata in and Tdata out can
be inter-overlapped, as well as overlapped with Tcomp, while Tdata out can only be sequential and possibly
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waits, as shown in the figure. In other words, the output “wait” happens when Tdata in<Tdata out and vice
versa. Thus, by combining two conditions, the total time can be derived as shown in (20):

Ttm io i =NSPMD PMax(Tdata in,Tdata out) + Tcomp + Min(Tdata in,Tdata out) (20)

Figure 13. Execution model for I/O-intensive application.
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4.4. Theoretical Performance Gains

Our modeling analysis provides estimates of total execution time under different sharing scenarios.
Using our baseline as described in (9), the performance gain in terms of speedup can be derived
accordingly using Tnative sh/Tsh sce, which provides the theoretical performance estimate for process-level
GPU sharing using our sharing approach through streaming execution.

5. Experimental Analysis and Performance Results

In this section, based on the theoretical analysis provided previously, we experimentally analyze the
proposed GPU sharing scenarios in terms of efficiencies and approaches targeting further performance
improvements. All of our experiments are conducted on our GPU computing node, which is equipped
with an NVIDIA Tesla C2070 GPU consisting of 14 SMs running at 1.15 GHz and 6 GB of device
memory. The node also has dual Intel Xeon X5570 quad-core processors (8 cores at 2.93 GHz) with
48 GB of system memory and runs under Ubuntu 11.04 with the 2.6.38-8 Linux kernel. CUDA 4.0 has
been used as the GPU development environment.

5.1. Experimental Validation of the Sharing Model

We first conduct several benchmarks to experimentally verify the proposed modeling analysis. Here,
we utilize five application benchmarks from different scientific fields representing each of the sharing
scenarios. Each benchmark is preliminarily profiled with necessary parameters, as shown in Table
4. By also considering the SM specification of NVIDIA C2070 (Nmax warps SM=48; Sshm per SM=48KB;
Nregs per SM=32K), we are able to derive Nmax blks per SM for each application. The profiled five benchmarks
are used to cover all described scenarios, so that each benchmark is used to verify a specific sharing
scenario, as also shown in Table 4.
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Table 4. Profiling results of GPU kernel benchmarks.

Embarrassingly Parallel (EP) Black–Scholes (BS) Electrostatics (ES) Multi–Grid (MG) Vector Multiplication (VecM)
Class Comp-intensive Comp-intensive Comp-intensive Comp-intensive I/O-intensive
Problem Size M=24 3.92M options/64 iterations 100’000 atoms Class W 16M floats/15 iterations
Grid Size(Blocks) 1 14 48 4096 16’000
Block Size(Threads) 128 128 256 64 1024
Tdata in(ms) 0 8.67 0.03 6.71 36.20
Tcomp(ms) 494.49 423.29 210.457 50.51 11.98
Tdata out(ms) 0.013 18.37 1.97 12.82 15.51
Nregs per thd 35 16 24 52 10
Sshm per blk(Byte) 0 0 0 0 0
Nmax blks per SM from eq. (2) 7 8 5 8 1
Profiled Sharing Scenario Exclusive Space Non-Exclusive Space Space/Time Time Time

As we described, the proposed sharing scenarios can be achieved both with process-level and
thread-level parallelisms, while SPMD kernels are launched with CUDA streams on both levels. In this
section, we utilize process-level SPMD program emulation as the example approach for implementation
and verification. In other words, we emulate the SPMD program by launching the same GPU benchmark
kernel on multiple processes simultaneously using our implemented GPU virtualization infrastructure.
Here, we primarily compare the GPU time with the execution time analyzed through the model. The
GPU time refers to the time that all processes spend on sharing the GPU within the single Daemon
Process, which is provided by our GPU virtualization approach. The model results are derived by using
the previously defined equations with the profiling results for each sharing scenario, respectively. With
each process being set with affinity to a CPU core to the maximum number of 8 cores, we vary the
number of emulated SPMD processes from 1 to 8.

We first utilize the NASA advanced supercomputing Parallel Benchmarks (NPB) [32] Embarrassingly
Parallel (EP) GPU kernel(smallest class) [33], which is written using one single block merely for the
purpose of Exclusive Space Sharing verification. Since each single block EP only takes a single SM out
of the total of 14 SMs, all processes exclusively space-share the GPU when the number of processes
increase from 1 to 8. The verification comparison is shown in Figure 14, and all 8 model cases perfectly
match the GPU results.

Figure 14. Model validation (Exclusive Space).
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To verify both Non-Exclusive Space and Space/Time Sharing scenarios, we respectively utilize
Black–Scholes (BS) [34], a European option pricing benchmark, and the fast molecular electrostatics
algorithm (ES), which is a part of the molecular visualization program, Visual Molecular Dynamics
(VMD) [35].

Two initial microbenchmarks are conducted to analyze the TSM str, for both BS and ES, respectively,
when Nblks per SM increases. This is performed by increasingly feeding the same benchmark kernel blocks
into the GPU until the number of blocks per kernel reaches Nmax blks per SM, while at each x-axis point,
ensuring that all SMs hold the certain same number of blocks. As shown in Figure 15 and 16, the
execution time of BS and ES are plotted for each number of blocks per SM (1 to 8 for BS and 1 to 5 for
ES). In our modeling analysis, we defined TSM str as a function of the number of increased blocks per SM.
Note that many warps (blocks) being executed within an SM execution round is to hide the GPU memory
access latencies, even though warps are executed sequentially. Thus, TSM str with adding one/two more
blocks in the SM does not linearly double/triple the execution time. As comparisons to TSM str, in both
figures, we use “Increasing Without Latency Hiding” lines to represent the theoretical scenario when
all block execution is sequential and no memory latency is hidden, so as to show the effectiveness of
memory hiding for both kernels.

Figure 15. SM stretch (Black–Scholes).
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Figure 16. SM stretch (ES).
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Since Non-Exclusive Space Sharing (BS) only involves TSM str within a single SM execution round,
the modeled execution time for BS can be derived from Figure 15, and the model validation comparison
is shown in Figure 17. To validate Space/Time Sharing using ES, we utilize the previous analysis
to determine the number of SM execution rounds and corresponding Tfull rnd str, Tfs rnd str and Tls rnd str,
while the time for each round is derived from TSM str in Figure 16. Thus, the execution time from
the model can be determined and compared with experimental results, as shown in Figure 18. Both
validation comparisons show a good model accuracy for both Non-Exclusive Space and Space/Time
Sharing scenarios.

Figure 17. Model validation (Non-Exclusive Space).
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Figure 18. Model validation (Space/Time).
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In verifying the Time Sharing scenario, we utilize our NPB Multi–Grid (MG) kernel (Class W with
4,096 blocks) [33] and, thus, only time shares of the GPU among multiple processes. As our Time
Sharing model follows the Space/Time Sharing model, similarly, the comparison results of the model
and the GPU are described in Figure 19 and also demonstrate good agreement. Figure 20 shows the
Time Sharing scenario for I/O-intensive applications, for which we use a simple Vector Multiplication
benchmark. While our model assumes only I/O overlapping, the derived model results match the GPU
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nicely. Therefore, in Table 5, we summarize the average model deviations (averaged from 1 to 8
processes) for each sharing scenario, as a general model accuracy demonstration with less than 5%
deviation for all cases.

Figure 19. Model validation (Time).
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Figure 20. Model validation (I/O-intensive).
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Table 5. Average model deviations for all scenarios (averaged from 1 to 8 processes).

Exclusive Space (EP) Non-Exclusive Space (BS) Space/Time (ES) Time (MG) Time-I/O-I (VecM)
0.42% 2.73% 1.92% 4.10% 4.76%

5.2. Performance Prediction from the Model

One purpose in using the model is to analyze the possible performance gain with GPU sharing.
With the previous verified model accuracy, we use several benchmarks with the aid of the model
to demonstrate the sharing efficiency that can be achieved through varied sharing scenarios. This is
done by varying the SPMD kernel sizes (problem sizes in general) to extend each benchmark kernel
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across different sharing scenarios. Here, we utilized the same aforementioned EP, BS and MG kernel
benchmarks, but with different problem sizes. For each of the three benchmarks, four different problem
sizes for each SPMD GPU benchmark kernel are employed to represent four sharing scenarios. We
first provide detailed profiling for each of the 12 benchmarks as our basis for the model, as shown in
Table 6. Further similar microbenchmarks are conducted to analyze the SM stretch for EP and MG, as
shown in Figure 21 and 22, with theoretical linear increasing without latency hiding as the comparison.
The previous analyzed SM stretches of BS and ES are also utilized as shown in Figure 15 and 16.
Therefore, the model results for the 12 benchmarks can be derived. As shown in Figure 23, 24 and 25,
the modeled execution time under GPU sharing is compared with modeled sequential time for all four
sharing scenarios. Please note that the modeled sequential time does not consider Tinit and Tctx switch.
This is due to the fact that Tinit can be hidden and Tctx switch does not apply to thread-level sharing. Thus,
the sequential comparison baseline provides the lower bound of performance gain, due to efficient GPU
sharing.

Table 6. Benchmark profiles across varied sharing scenarios.

Scenario Problem Size (Kernel) Grid Size Tdata in(ms) Tcomp(ms) Tdata out(ms) Nmax blks per SM SM Rounds Nblks per SM of last round
EP1 Exclusive Space M=24 1 0 494.49 0.013 7 1 1
EP2 Non-Exclusive Space M=28 16 0 558.01 0.013 7 1 2
EP3 Space/Time M=30 64 0 950.87 0.013 7 1 5
EP4 Time M=31 128 0 1823.33 0.013 7 2 3

BS1 Exclusive Space 0.28M Options 1 1.04 413.13 1.99 8 1 1
BS2 Non-Exclusive Space 3.92M Options 14 10.32 469.65 17.98 8 1 1
BS3 Space/Time 19.6M Options 70 48.24 808.25 92.62 8 1 5
BS4 Time 98M Options 350 306.01 3641.87 466.93 8 4 1

MG1 Exclusive Space 4x4x4 1 0.088 0.491 0.107 8 1 1
MG2 Non-Exclusive Space 28x8x4 14 0.096 0.685 0.135 8 1 1
MG3 Space/Time 28x14x12 84 0.142 1.191 0.192 8 1 6
MG4 Time 28x32x16 224 0.242 2.763 0.340 8 2 8

Figure 21. SM stretch (EP).
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Figure 22. SM stretch (MG).
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Figure 23. Performance from the model (EP).
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Figure 24. Performance from the model (BS).
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Figure 25. Performance from the model (MG).
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In Figure 23, we are able to demonstrate the achievable performance gain under GPU sharing with the
increasing SPMD parallelism. For EP2, we only increase the parallelism to 6, since the Non-Exclusive
Space Sharing will cross to Space/Time Sharing when the parallelism reaches 7. For all other EP kernels,
varying the parallelism from 1 to 8 will always achieve the specified sharing scenario. Further modeled
performance improvements are also demonstrated in Figures 24 and 25 for the BS and MG kernel with
the same parallelism variation from 1 to 8. Thus, the achievable speedups of all three benchmarks
(parallelism of 6 for EP2, 8 for all others) can be summarized in Table 7.

Table 7. Theoretical achievable speedups.

Benchmark Exclusive Space Non-Exclusive Space Space/Time Time
EP 7.99 2.56 1.38 1.28
BS 7.61 2.93 1.12 1.03
MG 2.67 2.28 1.13 1.02

Our described sharing modeling uses the CUDA stream programming style targeting kernel execution
parallelism (PS-1). No I/O concurrency between SPMD kernels can be achieved. Thus the profiles of
the kernel itself in terms of I/O time percentage are one of the determinants of sharing performance
improvements. Other than I/O time, the problem size of each kernel determines the number of SMs
and SM execution rounds to be occupied and, thus, also determines the performance gain under GPU
sharing.

Exclusive Space Sharing can achieve complete inter-kernel parallelism when the kernel problem size
is small; thus, with very little I/O for both EP1 and BS1. Close to 8-times speedups can be achieved.
Since MG1 has relatively higher I/O intensity, 2.67-times speedups can be achieved.

In Non-Exclusive Space Sharing, all kernels are to be executed within a single SM round. Even with
more blocks sequentially sharing the SM execution within a round, the total execution time of the SM
round can still be much less than the sequential execution time of each single block, as we have already
demonstrated in Figure 15, 16, 21 and 22. Depending on the kernel nature (memory access pattern,
etc.), significant performance gain still can be achieved in Non-Exclusive Space Sharing. Moreover,
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according to our model analysis, if blocks from one kernel leave more space sharing opportunities, more
performance gains can be achieved. We can observe from 2- to 3-times speedups for three benchmarks
with Non-Exclusive Space Sharing.

Under Space/Time and Time Sharing, multiple kernels are executed across many SM rounds. The
performance gains depend upon the number of “left-over” blocks from the first SM round (Space/Time)
and the last SM round (Time). In other words, the amount of “Space Sharing” determines the
performance potential. For EP3, a great percentage of blocks from the second kernel can space-share
with the first kernel, resulting in 38% performance gain. Similar results are also demonstrated with BS3
and MG2. For EP4, the second kernel can still space-share part of the first kernel’s last SM round, plus
only 2 SM rounds for each kernel; thus, it is able to provide 28% improvement. For both BS4 and MG4,
only 2–3% of improvement can be achieved. In the case of MG4, each kernel takes 2 full SM rounds,
leaving no possible space (SM round)-sharing for the next kernel. In the case of BS4, the last execution
round only use 1 block per SM. However, since the total number of SM rounds is 4, which involves 3
full rounds, the improvement potential is also comparatively small. Thus, while Space/Time Sharing can
still achieve speedup with some “Space Sharing”, Time Sharing can achieve limited speedup with only
sharing the last SM round of the previous kernel.

5.3. Sharing Efficiency Exploration and Improvement Potential Analysis

In this section, we will utilize our model to provide optimization considerations targeting improved
GPU sharing efficiency. We will consider a few schemes, including providing further I/O concurrency
for specific Time Sharing scenarios, optimizing the SPMD parallelisms as well as providing kernel-level
optimizations and Sharing Scenario Casting. For each of the optimization schemes, applications are to
be provided and analyzed with further benchmarking as an optimization performance demonstration.

5.3.1. Time Sharing: Concurrent Kernel Execution vs. Concurrent I/O

The previously analyzed sharing scenarios are based on the CUDA stream Programming Style
(PS)-1, which aims at concurrent kernel execution for all compute-intensive applications. From the
modeling performance results, we are able to observe considerable kernel execution concurrency for
Exclusive/Non-Exclusive Space and Space/Time Sharing. However, Time Sharing cannot achieve much
performance improvements, especially with large kernel size and many SM execution rounds. Under
PS-1, a very limited I/O concurrency can be achieved. Meanwhile, very limited kernel execution
concurrency can happen under Time Sharing; choosing an optimum CUDA stream programming style
for a specific SPMD GPU program is essential.

Therefore, if the SPMD kernels time share the GPU under PS-1 and I/O, time is not negligible.
When time-sharing cannot achieve much performance gain with modeling analysis, we choose to use
PS-2 targeting I/O concurrency to achieve an optimized sharing efficiency as one of the optimization
strategies using the model.

Under this optimization strategy, the execution model can only achieve sequential Tcomp, due to PS-2.
However, the non-negligible Tdata in and Tdata out can be both inter-overlapped and overlapped with Tcomp,
as shown in Figure 26. We use Ttm and Ttm op io to represent the execution time of Time Sharing under
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PS-1 and optimized I/O concurrency under PS-2, respectively. As Ttm can be derived using previous
Equation (19), Ttm op io can be derived with Equation (21).

Ttm op io = Tdata in + NSPMD PTcomp + Tdata out (21)

Figure 26. Comp-intensive kernels: concurrent I/O.
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Thus, for a given SPMD GPU benchmark that has been profiled as Time Sharing and achieves low
performance gain under GPU time sharing, with the help of our analytical model, Equation (21) will
possible give the optimized achievable performance gain under PS-2 versus PS-1 (Time Sharing) given
by Equation (19).

By utilizing the MG benchmark with the size of W (64x64x64, 40 iterations and 4,096 blocks per
kernel) shown in Table 4, we here demonstrate the achievable performance improvement from I/O
concurrency under Time Sharing with the effective Programming Style suggestion from the model. With
profiling results in Table 4, comparing Equation (21) with Equation (19) gives us a theoretical potential
performance gain (NSPMD P from 2 to 8) when switching to PS-2. As the model suggests that PS-2 can
bring more performance benefits, we conduct the same MG benchmark on the GPU to study the actual
performance gain with varied NSPMD P. The GPU virtualization implementation is used for process-level
SPMD program GPU sharing as the example experimentation. By increasing the number of processes
(NSPMD P) from 2 to 8, we are able to achieve 6% performance gain with concurrent I/O compared with
pure Time Sharing, as shown in Figure 27. Thus, considering kernels with the Time Sharing scenario
with our modeling analysis, choosing an optimized programming style leads to an improved GPU sharing
efficiency.

5.3.2. Exclusive Space Sharing: Utilization of SMs vs. Optimizable SPMD Kernel Grid Size

While Exclusive Space Sharing applies to kernels that execute small problem sizes, each SPMD
kernel block is exclusively executed on one or more SMs. As a parallel SPMD program is to execute
a certain big problem size and distribute it across processes/threads, under Exclusive Space Sharing,
a GPU kernel from each process/thread exclusively takes one or more SM. From what we understand
from the model, an optimized performance could be achieved only when all SMs are utilized. This is
especially helpful in improving the SPMD program, which does not fully utilize all SM resources when
written. Thus, here, we use kernel EP, shown in Table 4, to demonstrate the achievable performance gain
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with the optimized problem/kernel size per process/thread, while maintaining the same total problem
size. Here, we consider three benchmark cases with the same EP kernel shown in Table 4, but launched
with a different number of processes, as shown in Table 8.

Figure 27. I/O concurrency optimization for MG.
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Our optimization principle is to make the SPMD program utilize all GPU SM resources by optimizing
the kernel problem/grid sizes, while maintaining the kernel problem sizes. In other words, our
optimization technique is to increase the number of blocks per SPMD kernel by reducing the computation
workload of each kernel block, so that more block-level parallelism can be obtained, and thus, the initial
unused SMs can be utilized. Figure 28 shows the performance comparison for the 3 benchmarks in
Table 8 with optimized kernel block sizes. The three EP SPMD benchmarks have different total problem
sizes (with the varied number of parallel processes), but the same kernel problem size. Please note here
that we still use the process-level emulated SPMD program as the benchmark study example, and the
GPU execution times are experimentally derived through our virtualization implementation. As shown in
Figure 28, the shared GPU execution time for EP-2P can be reduced with up to 7.2 times speedups when
all SMs has been utilized, while EP-4P and EP-8P can achieve 3.6 and 2 times speedups, respectively.
These speedups depend highly on the number of unutilized SMs when SPMD programs exclusively
space-share the GPU. Meanwhile, since the computation intensity of the GPU kernel threads primarily
depends on the kernel itself, not all kernels can be optimized for more blocks with a maintained problem
size. Here, our benchmark is purely to demonstrate the optimization technique based on our previous
modeling analysis and potential performance improvements. We also note that the original Exclusive
Space Sharing scenario might be switched to Non-Exclusive Space Sharing (when the total number of
blocks from all SPMD kernels exceeds NSM); we will define this as Sharing Scenario Casting in the
following analyses. However, here, our main purpose is to optimize utilizing all SM resources for an
SPMD program under Exclusive Space Sharing.
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Figure 28. SM utilization optimization for EP.
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Table 8. Benchmarks profiles - exclusive space sharing and kernel size optimization.

Processes Problem Size (Kernel) # of Blocks per Kernel Problem Size (SPMD Program) # of SM Utilized
EP-2P 2 M=24 1 M=25 2 out of 14
EP-4P 4 M=24 1 M=26 4 out of 14
EP-8P 8 M=24 1 M=27 8 out of 14

5.3.3. Maintained SPMD Problem Size/Sharing Scenario vs. SPMD Parallelisms

There are cases when partial SM resources are not used in Exclusive Space Sharing. Here, we focus
on the scheme in which all SM resources are utilized by SPMD kernels. In other words, the total number
of GPU kernel blocks from an SPMD program are large enough to cover at least NSM. In this scheme,
we are carrying out studies on the impact of SPMD parallelism on the performance of GPU sharing in
general, when the total SPMD program problem size is maintained. The SPMD parallelism is denoted
as NSPMD P. As a motivation, our previous modeling analysis assumes that the Tcomp of all kernels starts
executing simultaneously and that the I/O hiding (concurrency between Tdata in and Tcomp) is offset by the
assumption that the first Tdata out is waiting on the last Tcomp to finish. Thus, the SPMD parallelism might
affect the GPU sharing performance. We note that the sharing scenario is also maintained here with the
maintained total number of kernel blocks, due to the maintained SPMD problem size.

Table 9. Benchmarks profiles - maintained SPMD problem sizes vs. SPMD parallelisms.

Processes Problem Size (Total) Problem Size (Kernel) # of Blocks per Kernel Scenario
BS-1P-NES 1 31.36M 31.36M 112 Non-Exclusive Space (NES)
BS-2P-NES 2 31.36M 15.68M 56 Non-Exclusive Space (NES)
BS-4P-NES 4 31.36M 7.84M 28 Non-Exclusive Space (NES)
BS-8P-NES 8 31.36M 3.92M 14 Non-Exclusive Space (NES)

MG-1P-TS 1 28x32x16 28x32x16 224 Time Sharing (TS)
MG-2P-TS 2 28x32x16 28x16x16 112 Time Sharing (TS)
MG-4P-TS 4 28x32x16 28x16x8 56 Time Sharing (TS)
MG-8P-TS 8 28x32x16 28x8x8 28 Time Sharing (TS)
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Since all SMs are utilized (Exclusive Space Sharing excluded), we consider two representative sharing
scenarios here: Non-Exclusive Space with one SM round and Time Sharing with multiple SM rounds.
We utilize two benchmarks, Black–Scholes and MG, to demonstrate the performance of an SPMD
program with a maintained SPMD problem size, but varied SPMD parallelisms and GPU kernel problem
sizes. Two benchmark profiles are shown in Table 9. Process-level SPMD programs are still used as the
study example with all GPU sharing time benchmarked using our virtualization implementation. Figure
29 and 30 demonstrate the performance gain by increasing the SPMD parallelism in terms of the number
of processes in our benchmark context for both BS and MG. We can see 16% and 14% performance
gain here for BS and MG, respectively, by increasing the number of processes from 1 to 8. This is
primarily due to the currency between Tdata in and Tcomp with the increased SPMD parallelism. Therefore,
for a SPMD program to solve a maintained big problem size, our experimental studies demonstrate that
increasing the SPMD parallelism (such as the number of parallel processes) can improve the GPU sharing
efficiency with the aid of further I/O hiding.

Figure 29. Performance: maintained SPMD problem size (BS).
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Figure 30. Performance: maintained SPMD problem size (MG).
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5.3.4. Sharing Scenario Casting: Maintaining Both SPMD Problem Sizes and SPMD Parallelisms

For a given SPMD parallel program, since each GPU kernel holds the same number of blocks, the
corresponding sharing scenario is determined by maintaining both SPMD problem size and NSPMD P. As
we discussed earlier in optimization for Exclusive Space Sharing, we increased the number of blocks per
kernel to allow unutilized SMs to be utilized. In other words, we increased the number of blocks for each
kernel while maintaining each kernel’s problem size. This is done by possibly changing the computation
intensity of each thread to allow more threads/blocks involved to solve the problem of the same size.

Table 10. Benchmarks profiles - sharing scenario casting.

Processes
Problem
Size (Total)

Problem Size
(Kernel)

# of Blocks
per Kernel

Thread Compute
Intensity

Scenario

EP-NES-Orig
(Original)

8 M=28 M=25 8 213 Non-Exclusive
Space (NES)

EP-ST-Cast1 8 M=28 M=25 16 212 Space/Time (ST)

EP-ST-Cast2 8 M=28 M=25 32 211 Space/Time (ST)

EP-ST-Cast3 8 M=28 M=25 64 210 Space/Time (ST)

EP-TS-Cast 8 M=28 M=25 128 29 Time Sharing (TS)
ES-ST-Orig
(Original)

8 800K atoms 100K atoms 48 1.2K Space/Time (ST)

ES-NES-Cast 8 800k atoms 100k atoms 8 4.8K
Non-Exclusive
Space (NES)

ES-ST-Cast 8 800k atoms 100k atoms 24 2.4K Space/Time (ST)

ES-TS-Cast 8 800k atoms 100k atoms 96 0.6K Time Sharing (TS)

With the same technique, here, we focus on the possible optimization by using Sharing Scenario
Casting for a given SPMD program with all SMs already utilized. We specifically consider the case of
sharing scenarios with a single SM round (Non-Exclusive Space Sharing) and with multiple SM rounds
(Space/Time or Time Sharing). Two benchmarks are utilized: the original EP under Non-Exclusive
Space Sharing (EP-NES-Orig) and the original Electrostatics under Space/Time Sharing (ES-ST-Orig),
as shown in Table 10. For both benchmarks, we cast the sharing scenarios by modifying the kernel sizes
(number of blocks), while maintaining the kernel problem size. In other words, the compute intensity
of each kernel thread is adjusted accordingly. With a varied kernel thread-level compute intensity set
for each benchmark, we are able to cast EP-NES-Org up to Space/Time and Time Sharing, as well as
EP-ST-Orig from Space/Time down to Non-Exclusive Space and up to Time Sharing. In Figures 31 and
32, we compare the performance of scenario casting for both benchmarks. The similar process-level
SPMD program is launched with the support of a GPU virtualization infrastructure, and thus, the time
that all kernels spend on sharing the GPU is experimentally derived accordingly. As we can see from
both figures, casting the sharing scenario to Time Sharing can bring a certain amount of performance gain
: 63.1% for EP and 93.9% for ES. This is due to the increased number of warps being simultaneously
scheduled within a SM execution round, due to the increased kernel sizes. On the other hand, casting
ES-ST-Orig back to Non-Exclusive Space Sharing reduces the performance by 3.53-times. Thus we
demonstrate that increasing the number of blocks per SPMD kernel with casting up to the Time Sharing
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scenario can achieve improved GPU sharing performance. We here also note that the changeability of
compute intensity for each kernel thread highly depends on the kernel coding. In other words, only
certain kernels written with thread-level intensity control (such as a certain number of iterations) can be
optimized using Sharing Scenario Casting. Therefore, not all kernels’ sharing scenario can be cast. Here,
we merely use EP and BS as the demonstrations of our Sharing Scenario Casting optimization technique
to achieve an improved GPU sharing efficiency.

Figure 31. Sharing Scenario Casting (EP).
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Figure 32. Sharing Scenario Casting (ES).
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5.4. Performance Gains with GPU Sharing for SPMD Programs

As we theoretically analyzed the performance gain using GPU sharing under multiple sharing
scenarios previously with the model, we experimentally demonstrate the performance advantage of
using our GPU sharing approach for SPMD programs in this section. In other words, stream-level
(CUDA streams) GPU sharing among kernels coming from different SPMD processes/threads achieves
certain speedups over non-sharing (sequential kernel execution) depending on the kernel profiles and
corresponding sharing scenarios. As an experimental setup, we here use the five aforementioned
benchmark kernels in Table 4 and launch each benchmark with 8 processes. Since process-level
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GPU sharing is achieved through our GPU virtualization infrastructure, we here empirically derive
the actual total time that all SPMD processes spend on executing the GPU kernels within the single
Daemon Process. The comparison baseline is the actual total time that all SPMD processes sequentially
execute GPU kernels within the Daemon Process with no inter-kernel concurrency being achieved.
Figure 33 demonstrates the actual experimental performance advantage when using GPU sharing over
non-sharing, and Figure 34 shows the experimental speedups for all five benchmarks when launched
with 8 processes. While both figures demonstrate up to 7.97-/2.68-times speedups for EP/BS under
Exclusive/Non-Exclusive Space Sharing, ES and MG under Space/Time and Time Sharing can achieve
15% and 4% performance gain, respectively. Furthermore, I/O-intensive benchmark VecM under time
sharing achieves 36% performance gain under GPU sharing. The experimental results also show a good
agreement with the previously analyzed performance gain through the model. Thus, we are able to
demonstrate both achievable and accurately analyzable performance gain with GPU sharing for SPMD
programs.

Figure 33. Performance: GPU sharing vs. non-sharing.
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Figure 34. Experimental speedups with GPU sharing.
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6. Conclusions

In this paper, we conducted extensive studies on providing efficient GPU resource sharing for the
HPC heterogeneous platforms under the SPMD programming model. We formally defined efficient
GPU sharing conditions and analyzed a series of GPU sharing scenarios from pure space-sharing
to multiplexed time-sharing. A series of GPU sharing execution models have been introduced for
each of the sharing scenarios, and we provide a theoretical prediction of the attainable performance
gain over the non-sharing scenario. Initial performance benchmarking was conducted to validate the
accuracy of the proposed sharing scenario modeling, followed by the detailed performance analysis
for each of the sharing scenarios using varied benchmark profiles. Based on our theoretical analysis,
we further experimentally studied potential performance improvements for GPU sharing from multiple
perspectives, including: the problem size of the SPMD program; the GPU kernel size; and the SPMD
parallelisms and sharing scenarios’ switching/optimizations. Based on these factors, we proposed
optimization techniques for different sharing scenarios, including the optimization of further I/O
concurrency, SM utilization of the GPU, the SPMD parallelism and Sharing Scenario Casting. While
our optimization strategies provided necessary coding and optimization suggestions to the parallel
programmers, the utilized benchmarks for each strategy demonstrated a certain amount of performance
gain compared to native SPMD program/kernel coding under GPU sharing. Moreover, our experimental
studies also demonstrated the achievable performance gain and the advantage of using our stream-level
GPU sharing approach for SPMD programs to eliminate resource under-utilization, as well as providing
good agreement with the theoretical modeling analysis on the achievable performance gain under varied
GPU sharing scenarios.
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