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Abstract: Dynamic and heterogeneous smart spaces cause challenges for security because 

it is impossible to anticipate all the possible changes at design-time. Self-adaptive security 

is an applicable solution for this challenge. This paper presents an architectural approach 

for security adaptation in smart spaces. The approach combines an adaptation loop, 

Information Security Measuring Ontology (ISMO) and a smart space security-control 

model. The adaptation loop includes phases to monitor, analyze, plan and execute changes 

in the smart space. The ISMO offers input knowledge for the adaptation loop and the 

security-control model enforces dynamic access control policies. The approach is novel 

because it defines the whole adaptation loop and knowledge required in each phase of the 

adaptation. The contributions are validated as a part of the smart space pilot 

implementation. The approach offers reusable and extensible means to achieve adaptive 

security in smart spaces and up-to-date access control for devices that appear in the space. 

Hence, the approach supports the work of smart space application developers. 
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1. Introduction 

The smart space trend has initiated several research projects and publications, from technologies to 

applications. Smart spaces—such as smart homes, smart buildings and smart cities—offer available 

information and devices for end-users’ purposes without a pre-defined configuration or application 

behavior. Smart spaces are dynamic, and moreover, utilized technologies are heterogeneous. 

Consequently, it is not possible to envision all the possible situations where the smart space application 

will be utilized, which creates a challenge for software designers. Self-adaptation is a possibility to 

respond to this challenge by postponing decision making from design-time to runtime. Self-adaptation 

is a software’s capability to configure and tune its functionality at runtime, in order to tackle changing 

situations. Challenges related to smart space security are complex—due to the dynamicity and 

heterogeneity of smart spaces. Firstly, the required security objectives vary between situations,  

e.g., sometimes integrity is the essential security objective but in other situations the user’s privacy is 

the first priority. Secondly, the security needs of a smart space application vary between situations. For 

instance, an application utilizing entertainment or critical control information has variable 

requirements for security effectiveness, i.e., for the security level. Thirdly, smart spaces change 

continuously, as new devices appear and leave. These devices must be able to use the smart space’s 

available security mechanisms. However, the same security mechanisms are not applicable in all smart 

spaces. For example, one smart space may support only one particular authentication mechanism while 

another provides three different mechanisms. 

These challenges demand an adaptive security solution that is able to change and modify the used 

security mechanisms autonomously at runtime. The importance of self-adaptation in smart spaces is 

also recognized in [1]. A reference model called MAPE-K (Monitor, Analyze, Plan and Execute) has 

been introduced as a solution for self-adaptation. This model is generic, i.e., it can be applied for 

various quality and functionality adaptations, and thus it was selected as the reference model for 

security adaptation in this work. In the MAPE-K model, the Monitor collects information that is 

analyzed to recognize adaptation needs. Thereafter, the Plan phase creates an adaptation plan for 

execution. These four phases constitute an adaptation loop supported by knowledge. Currently, several 

security-adaptation approaches exist [2,3]. The first survey reveals that the existing security-adaptation 

approaches concentrate on specific security objectives. The second survey shows that the existing 

approaches have a lack in the adaptation loop coverage, i.e., the approaches do not define the whole 

MAPE loop. Moreover, Yuan et al. note that the abstract architecture for security adaptation is not 

presented in the existing approaches [3]. These architecture-level problems complicate the reusability 

and extensibility of the existing security-adaptation approaches. The MAPE-K model separates 

knowledge from the adaptation loop. However, existing security-adaptation approaches do not support 

this separation but utilize hard-coded adaptation decisions, which is not sufficient in dynamic smart 

spaces. Moreover, smart spaces require flexible access control, which is able to handle the situations 

when new devices and information constantly appear in the smart space. However, the existing 

approaches are not able to offer this flexibility for dynamically changing access control needs. 

This paper concentrates on architecture, knowledge and access control problems. Hence, the paper 

makes the following contributions: (1) Architecture for the security-adaptation loop is defined and 

mapped to the MAPE model. Hence, the architecture covers all the adaptation phases in a clearly 
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defined form. The adaptation loop selects from the security mechanisms and configures the parameters 

of those mechanisms at runtime. (2) The knowledge is mapped to the security-adaptation architecture, 

in order to encompass the knowledge part of the MAPE-K reference model. In our solution, knowledge 

is made accessible to the security adaptation by means of ontologies. Compared with the existing 

approaches, our solution is novel because it makes it possible to minimize the amount of hard-coded 

knowledge and supports knowledge addition and modifications. (3) A runtime security-control model 

for dynamic authorization and access control is defined. The security-control model defines how 

shared information is effectively secured and controlled in smart spaces. 

The novelty of contributions comes from the integration, which builds up the consistent  

security-adaptation architecture. The architecture covers all adaptation phases from monitoring to 

execution with dynamic access control. In contrast to the existing approaches, knowledge is separated 

from the architecture, and mappings from the architecture to knowledge are presented. Thus, the 

presented security adaptation does not require hard-coded rules for the analysis and planning phases 

because ontologies form the knowledge for the adaptation. Finally, the whole approach is validated as 

part of the wider smart space pilot implementation. 

Background information and related work are described in Section 2. The whole adaptation 

approach is presented in Section 3. Section 4 describes the implementation of the approach by means 

of a use case. A discussion of the approach and future research are summarized in Section 5. Finally, 

the Conclusions Section closes the paper. 

2. Background and Related Work 

2.1. Smart Spaces  

Smart spaces are physical spaces where devices cooperate and share information to intelligently 

provide services for the users. Cook et al. define a smart environment as one that is able to acquire and 

apply knowledge about the environment and its inhabitants in order to improve their experience in that 

environment [4]. The terms smart space and smart environment are widely used interchangeably— 

this article uses the term smart space. 

Cooperation and information sharing requires that devices and Smart Space Applications (SSAs) 

are able to interoperate. This interoperation is able to occur at different levels, which are called 

interoperability levels, defined in [5,6]. The presented interoperability levels from bottom to top are 

Connection, Communication, Semantic, Dynamic, Behavioral and Conceptual interoperability. The 

Connection interoperability level focuses on network connectivity, whereas the Communication level 

focuses on data syntax. However, these two lower-most interoperability levels are out of the scope of 

this paper. The Semantic interoperability level concentrates on understanding data from the 

communication level. Next, the Dynamic level focuses on context changes and the Behavioral level 

matches actions together. Finally, the Conceptual interoperability level focuses on abstracting; 

representing easy-to-use knowledge to the other interoperability levels, and making deductions based 

on data, context and actions. Thus, conceptual interoperability creates meaning from the information, 

context and behavior in the smart spaces. Hence, this is the level where the “smartness” is built for the 

smart space. 
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The SSA consists of a set of software agents that communicate and share information with each 

other. Therefore, the deployment of the SSA can be distributed to several smart space devices,  

i.e., agents of the SSA are executed in different devices instead of one centralized device. These agents 

and the composed SSA act in dynamically changing smart spaces, which may offer a huge amount of 

information. Context-awareness is a means to handle this information flow in order to provide 

reasonable information and services for the user. Similarly, security in smart spaces requires  

context-awareness in order to provide reasonable security for different situations and actions. From the 

interoperability-level viewpoint, SSAs and context-awareness occur at the Dynamic and  

Behavioral levels. 

Establishing a smart space requires an appropriate infrastructure—in this paper, the Smart-M3 

concept [7] will be utilized. In the Smart-M3, the Semantic Information Broker (SIB) forms a 

backbone for the smart space. The SIB takes care of information sharing between agents—called 

Knowledge Processors (KPs). Agents are able to make queries and subscriptions, and insert semantic 

information in the SIB. Consequently, various devices are able to interoperate, i.e., share semantic 

information, by means of the SIB and agents inside devices, as illustrated in Figure 1. The SIB utilizes 

semantic web technologies—especially Resource Description Framework (RDF) [8] and SPARQL 

query language. From the interoperability-level point of view, the SIB embodies the Semantic 

Interoperability level. In the Sofia project [9], three different Smart-M3 concept implementations were 

made for different usages. This paper utilizes the implementation called RIBS [10], which contains 

mechanisms to secure communication and is able to work in resource-restricted devices—such as a 

WLAN access point. 

Figure 1. Smart spaces formed by Semantic Information Brokers (SIBs) and  

Knowledge Processors (KPs). 

 
 

Security challenges caused by the dynamicity and heterogeneity of smart spaces are mentioned 

above. Moreover, traditional security challenges, e.g., key exchange and resource restrictions,  

are present in the smart spaces. Similarly, openness and free utilization, which are characteristics of 

smart spaces, affect security. Nevertheless, this paper focuses on security challenges due to dynamicity 

and heterogeneity by presenting a security-adaptation approach with a dynamic access control. 

2.2. Security Adaptation 

Kephart et al. define autonomic computing as computing systems that can manage themselves by 

using high-level objectives given by administrators [11]. The autonomic element contains the  

MAPE-K control loop composed of the Monitor, Analyze, Plan and Execute phases, supported by 
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Knowledge. A similar structure is also applied in [12,13] as a reference model for autonomic 

computing. However, the names of the phases vary. For instance, Dobson et al. use the terms Collect, 

Analyze, Decide and Act [12]. In contrast, Psaier et al. define a control loop that joins the Analyze and 

Plan phases into one Diagnosing phase [14]. The loop concentrates on self-healing, which is a form of 

autonomic computing. However, in this paper the MAPE-K loop will be utilized as a reference 

architectural model. The terms autonomic computing, self-management and self-adaptive are utilized 

interchangeably for instance in [13,15]. This article utilizes the term self-adaptive and its short-form 

adaptive to refer to software’s ability to adapt itself at runtime. Adaptability has been defined as the 

ability of software to adapt its functionality according to the environment and user [16]. From the 

security viewpoint, functionality means security mechanisms intended to support the required  

security objectives. 

Elkhodary et al. survey four approaches to adaptive security in [2]—namely Extensive Security 

Infrastructure [17], Strada Security API [18], Willow Architecture [19] and the Adaptive Trust 

Negotiation Framework (ATNAC) [20]. Moreover, the recent survey from Yuan and Malek [3] 

compares over 30 self-protection approaches. The extensible Security Adaptation Approach (ESAF) 

distinguishes security mechanisms from the application to the middleware layer [21]. Hence, the 

application communicates the required security to the middleware without any knowledge of the used 

security mechanism. In contrast, Context-sensitive adaptive authentication utilizes context information 

to replace static authentication mechanisms [22]. Hence, in situations where a lower authentication 

level is sufficient it is possible to utilize other attributes, e.g., location-based authentication, instead of 

passwords. The GEMOM (Genetic Messaging-Oriented Secure Middleware)—covered also  

in [3]—offers self-healing and adaptation features to ensure optimal security strength and 

uninterrupted operation in changing environments and threats [23]. The GEMOM applies the 

Monitoring part of the MAPE-K model by means of security measuring [24]. 

In the security adaptation, the Monitoring phase utilizes security measuring or observes events that 

affect security. Security measures can be produced by means of the decomposition approach, where 

security objectives are divided into smaller parts until the measurable components are found [25]. 

Garcia et al. presented a similar technique for generic software measurement in [26] by categorizing 

measures as Base Measures, Derived Measures and Indicators. Base Measures represent raw measures, 

which are further composed into Derived Measures. Indicators are on the highest abstraction  

level—and are able to compose Base Measures, Derived Measures and other Indicators. Figure 2 

illustrates the structure of these measures. The indicator for the particular security objective is on the 

highest level. The Indicator is derived from the Derived measures, Base Measures and other indicators. 

Structuring measures hierarchically ensures that measures can be reused and extended. Hence, security 

measures will be applied to Monitoring in this article. The Monitoring phase uses base measures.  

The results of the base measures are composed in the Analysis phase to reveal the current  

security level. 

The Analyze phase utilizes monitoring results. However, it is not enough to know the current 

security level but the required security level also has to be known. The required security level can be 

defined at design-time, or alternatively, the Analyze phase can reason the required level at runtime. 

Deciding on an appropriate security requirement set is a challenging task. Defining security 

requirements for design-time purposes is extensively covered in [27]. The presented security 
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requirements engineering framework takes into account assets, threats, business goals, and system 

context. All these aspects can be modeled in order to achieve the most extensive security adaptation 

approach. For example, Salehie et al. [28] concentrate on the variability of assets and how this affects 

security, and how adaptive security is able to deal with these challenges. This is an important 

viewpoint and starts from assets, which initially set the requirements for all security. It is said that an 

asset is an entity that someone places value upon [29], and thus, it needs protection. However, we do 

not model requirements and assets in this granularity. On the contrary, we will utilize context 

information to recognize the importance and role of handled data, i.e., asset value, which in turn leads 

to required securities. 

Many uncertainties relate to security, and thus, getting accurate numbers to describe security for 

adaptation purposes is challenging. Sahinoglu [30] utilizes variance values to cover uncertainties in 

risk analysis. Similarly, in security adaptation, results from monitoring and analysis contain variance in 

some range. Uncertainties affect the achieved security and the recognized adaptation need but 

uncertainties do not affect security adaptation architecture or the utilization of knowledge itself.  

Thus, these uncertainties are out of the scope of this article. 

Figure 2. The Structure of Measures. 

 

2.3. Adaptation Knowledge from Ontologies 

The MAPE-K model does not define how the knowledge has to be offered. However, in order to 

follow the separation of the concerns principle, we introduce knowledge as a separately identifiable 

architectural element by utilizing ontology orientation to represent a self-sufficient model of security 

concepts. Ontology can be defined as a shared knowledge standard or knowledge model, defining 

primitive concepts, relations, rules and their instances, which comprise topic knowledge. It can be used 

for capturing, structuring and enlarging explicit and tacit topic knowledge across people, organizations 

and computer and software systems [31]. Several security ontologies have been listed in [32].  

In addition, our earlier work [33] compared security ontologies from the runtime applicability and 

measuring viewpoints. Ontologies, designed for runtime usage, often concentrate on the service 

discovery and matchmaking, e.g., ontologies in [34,35]. However, these ontologies do not cover 

security measuring. In contrast, Savolainen et al. [36] present a security taxonomy for design time 

usage, which also contains a high-level security measuring part. At the moment, the most extensive 

security ontology is proposed by Herzog et al. [37], known as Ontology of Information Security (OIS). 

The OIS contains over 250 concepts, which describe security threats, countermeasures, assets and 

security goals, etc. In this paper, security goals and countermeasures are called security objectives and 

mechanisms, respectively. The OIS lists the following security objectives: confidentiality, integrity, 

availability, authentication, accountability, anonymity, authenticity, authorization, correctness, 
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identification, non-repudiation, policy compliance, secrecy and trust. Nevertheless, the OIS does not 

contain a security-measuring part. In contrast, Garcia et al. presented the measurement terminology in 

an ontology form called Software Measurement Ontology (SMO) in [26]. Consequently, we have 

combined the Information Security Measuring Ontology (ISMO) from OIS and SMO in [38]. The 

ISMO makes it possible to present security measures via a common vocabulary and map defined 

measures to security concepts, e.g., security objectives and mechanisms. In the ISMO, security 

measures are defined in detail—containing descriptions on how the particular measuring has to be 

performed and how the base measures can be further combined into indicators. Hence, the ISMO 

offers knowledge for design-time and runtime purposes, e.g., what kind of measuring probe to 

implement at design time and how to utilize measuring results at runtime. This paper utilizes 

knowledge from the ISMO. Furthermore, context knowledge is vital for security adaptation, in order to 

describe an environment and user actions. For this purpose, we utilize the Context Ontology for Smart 

Spaces (CO4SS) [39] in this paper. In [40] we defined the taxonomy of context information for 

security. The taxonomy maps security-related context information to physical, digital and situation 

context levels. The physical context describes an infrastructure where the SSA is running. The digital 

context presents the role of the smart space, e.g., public space. Finally, the situation context describes 

the user’s role and activity within the smart space. Moreover, the role of the exchanged/stored data is 

described in the situation context. 

Our earlier work in [41] presented ontology-based security adaptation. In that work, risk-based 

security measures were stored in the ontology to support security monitoring. Moreover, the ontology 

contained knowledge about how much each security mechanism decreases the particular security risk, 

which supports the Planning phase. In [40] we presented a micro-architecture for security adaptation. 

However, in that architecture the ontology usage was tightly coupled inside the architecture. In this 

article, the architecture is developed towards the MAPE-K reference model and the ontologies will be 

separated out to their own interoperability level, i.e., to the Conceptual level. 

2.4. Access Control over Semantic Information 

To control access to shared semantic information, fine-grained authorization models have been 

introduced for RDF. These approaches include approaches where access control is implemented as an 

additional layer on top of the repository, as in [42], and approaches where access-control information 

has also been integrated into repositories. In the triple-level access control [43], RDF resources are 

protected with access-restriction properties. Essentially, these properties are links to access policy 

graphs that specify the owner of the RDF resource as well as those predicates to which this  

protection applies. 

Some researchers have proposed models where RDF-level access control decisions are implicitly 

derived from existing higher-level policies and context information. The policy-based access control 

model [44] uses metadata to define permit or prohibit conditions. Jain and Farkas [45] introduce an 

access-control model where RDF class hierarchy is utilized to manage and derive access control 

policies. Flourish et al. [46] propose a high-level policy-specification language for annotation RDF 

triples with access-control information. Moreover, approaches for access-control reasoning, based on 
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concepts and their relations represented by ontologies, have been introduced by Kim et al. [47] and 

Cho et al. [48]. 

However, none of these reasoning solutions are directly applicable for smart spaces. In smart 

spaces, access control is enforced by information-brokering devices, which are not aware of  

application-specific policies. Also, semantic reasoning for real-time security control is a challenging 

task as the reasoning problems are, at the worst case, only solvable in exponential time with respect to 

the input size [49,50]. Consequently, to enable real-time security enforcement, efficient and scalable 

solutions are needed. These solutions should enable smart spaces to support different reasoning 

applications, which may be based on expressive and complex security ontologies. 

Our earlier work defined solutions [10,51] for securing communication between smart space 

devices and controlling information sharing. In [51], we proposed an RDF node-level access-control 

model for a semantic information broker. The model is simpler than other RDF access-control models 

as each security policy can be expressed using a single RDF triplet and, in an optimized 

implementation, be presented with a single bit. In this article, the model is formally defined and 

generalized, and its granularity is enlarged to protect semantic relationships in addition to semantic 

information. 

2.5. From Quality Variability to Quality Adaptation 

In our approach, building a capability for quality adaptation begins at design-time. Consequently, 

our earlier work combines quality-, model-, and knowledge-driven software development.  

Our previous work presented the quality-variability model [52]. The variability model defines binding 

times for variations, i.e., design, assembly, start-up and runtime, which defines the latest time point 

when quality can be changed. This work concentrates on the situation where security variation occurs 

at runtime—called security adaptation. Quality variability is closely related to architectures, and thus, 

the approach for the knowledge-based quality-driven architecture design and evaluation was presented 

in [53]. The approach contains three steps: (1) Modeling the quality requirement. (2) Modeling the 

software architecture and transforming the requirements to the models. (3) Quality evaluation. Steps 

one and two are divided into the knowledge and software engineering processes, whereas step three is 

divided into the quantitative and qualitative evaluation processes. In that study, quality ontologies for 

reliability and security were utilized as a knowledge base. Now, we will also bring ontology-based 

knowledge from design-time for automatic runtime usage. 

Lastly, the design steps to produce an application with security adaptation features were  

presented [54]. The following steps were recognized: (1) Required security objectives—defines all 

security objectives for the application. (2) Adaptive security objectives—selects objectives, which will 

be adapted at runtime. (3) Mechanism variants for the selected objectives—selecting security 

mechanisms and their parameters, which can be adapted at runtime. (4) Measurements for triggering  

adaptation—selecting security measurements to monitor the adaptation needs of the selected security 

objectives. (5) Architecture design—designing the selected security mechanisms and measurements 

into the application architecture in a way that supports runtime adaptation. The contribution of this 

paper relates to step five, i.e., presenting security-adaptation architecture and mapping it to the 

knowledge retrieved from the ontologies. 
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3. The Concept for Adaptive Security 

The security-adaptation approach is presented in this section. Firstly, we give an overview of the 

approach, and thereafter, each part of the approach is presented in its own sub-section. The approach is 

not bound to any particular security objective or security mechanism. Nevertheless, the approach 

contains all the necessary components required to build adaptive security for smart spaces.  

The presented concept is instantiated by means of a case study in Section 4. The case study illustrates 

the approach from the authentication and authorization viewpoints. 

The adaptation approach combines solutions from different interoperability levels. Figure 3 

illustrates the proposed solutions—mapped to the interoperability levels and design-time and runtime 

phases. Sub-Sections 3.1—3.3 concentrate on these levels one-by-one. 

Knowledge, required in security adaptation, is set on the Conceptual interoperability level. The 

knowledge is described with ontologies—namely the Information Security Measuring Ontology 

(ISMO) and the Context Ontology for Smart Spaces (CO4SS). Hence, security- and context-related 

knowledge is offered to other interoperability levels from the Conceptual level at runtime.  

Ontology-based knowledge ensures that smart space applications (SSA) are able to understand security 

and context situations in a uniform way. Moreover, the architect utilizes knowledge from ontologies at 

design-time to implement the appropriate monitoring probes and adaptation actions for the SSA, c.f., 

connections from ontologies to Monitoring probes and Adaptation actions in Figure 3. In other words, 

these components are specific for the designed SSA. In contrast, the Analyzer and Planner components 

search required knowledge at runtime.  

The security-adaptation loop—based on the MAPE reference model—and the SSA are located on 

the Behavioral and Dynamic interoperability levels. The architect designs and implements the required 

software components at design-time. These components are as follows: Pure application logic, 

monitoring probes, security mechanisms with adaptation actions, analyzer and planner. The adaptation 

logic is located in the Planner component. However, the architecture does not dictate the utilized 

adaptation logic, i.e., the internal functionality of the Planner component. The plan phase is described 

in Subsection 3.2.3. At runtime, the SSA utilizes monitoring probes to observe security and context 

changes. The Analyzer component analyses the consequences of the changes based on knowledge 

retrieved from the ontologies at runtime. Sequentially, the Plan component creates an adaptation plan 

for responding to changes. Finally, the adaptation plan is enforced by the executors. In the security 

adaptation these executors are the selected security mechanisms. For example, “a new mobile device 

has arrived in the smart space” is a change observed by means of monitoring. The SSA analyzes the 

security consequences of a new device and decides how to adapt to this change. Adaptation actions 

can, e.g., affect information sharing on the semantic level or reset the communication parameters. 

On the Semantic interoperability level, the RIBS constitutes the smart space infrastructure. The 

RIBS takes care of information sharing between smart space devices and SSAs. Hence, various 

devices are able to interoperate via the RIBS by sharing semantic information, which is presented by 

means of RDF. The Semantic level has to contain security solutions, which protect and control the 

sharing of semantic information. Therefore, we propose a semantic level security-control model to 

enable efficient access control. The security-control model enables SSAs to prepare security policies 

so that the RIBS does not have to support complex ontologies or perform runtime security reasoning. 
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Applications requesting and providing information must unambiguously define the semantics of shared 

information. However, the presented dynamic access control ensures that variations are handled at 

runtime, without design-time rules.  

Figure 3. Interoperability levels and proposed solutions. 

 
 

At this point, it is necessary to emphasize the difference between semantic and conceptual 

interoperability levels. However the semantic technologies, i.e., RDF and OWL, are applied on both 

levels the difference comes from the abstraction level of the knowledge. The Semantic level contains 

separated pieces of information, e.g. temperature is minus five or a password length is seven 

characters. In contrast, the Conceptual level makes it possible to deduct the causes of the semantic 

information, e.g., water will freeze or the authentication level is low. 

3.1. Security Adaptation Concepts from Ontologies 

The right knowledge is an essential part of the security adaptation. In our solution, knowledge will 

be offered from the Conceptual interoperability level by means of ontologies. Ontologies make it 

possible to update and extend the existing knowledge. Moreover, ontologies support reusability and 

offer knowledge in a machine-readable form. Knowledge requirements for the security adaptation are 

threefold, c.f., Figure 4. Firstly, security knowledge is needed to describe security mechanisms, 

security objectives, threats and their relationships. Secondly, measuring concepts are needed to 

monitor the achieved security, i.e., the current and/or past security. Thirdly, context knowledge is 

needed to describe the state of the smart space from situational, digital and physical viewpoints. The 

situational context is intended to describe the user’s role in the smart space and the role of the 

exchanged/stored data. In contrast, the digital context depicts the role of the smart space. Lastly, the 

physical context presents the execution platform and smart space infrastructure. The knowledge is 

arranged in two separate ontologies, i.e., ISMO [38] and CO4SS [39], which together contain over  
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300 concepts and their connections. The ISMO describes security and measuring knowledge, while 

CO4SS contains context knowledge.  

Figure 4 summarizes the main dependencies of these ontologies, and thus, it contains only the main 

concepts. The additional concepts and connections are presented in Figures 6–10 in Subsection 3.2. It 

is notable that the content in Figure 4 is laid in the conceptual level in Figure 3 (the highest level).  

The context knowledge from the CO4SS sets the required security objectives and levels. For example, 

dealing with professional information in an office environment has different security requirements than 

handling the same information in a public environment, which may contain additional threats. The 

ISMO describes which security mechanism supports the particular security objective and how the 

security objectives mutually relate. However, the applicable mechanisms depend on the physical 

context of the smart space, which describes the execution platform and operating system. For instance, 

the used operating system supports only a particular security mechanism, therefore, in Figure 4 the 

Physical context is connected to Security mechanisms with an offers connector. 

Triggering the security adaptation requires that both security and context concepts are monitored. 

The monitoring focuses on measurable attributes (attribute), and thus, security and context are 

connected to the Attribute, c.f., Figure 4. In Figure 4, the connections to Attribute start from the 

Security concepts and Context concepts frames, which means that all of those concepts can contain 

measurable attributes. Examples of attributes are a key length from the security side and the number of 

smart space devices from the context side. Naturally each attribute contains its own measures. 

Figure 4. Dependencies of security and context ontologies. 

 
 

Figure 3 shows that knowledge from ontologies is utilized at design-time and runtime alike. At 

design-time, the software architect implements a set of monitoring probes, which require knowledge of 

the measures. Moreover, the architect searches which security mechanisms to implement from ISMO. 

Additional details of the design-time use of ISMO are presented in [38,53]. At runtime, the SSA 

automatically utilizes knowledge from the ISMO. The application has to know what measures to 
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utilize, how to analyze results, and finally, how to create an adaptation plan. These knowledge 

requirements are described in detail in the following sections. 

Smart spaces create a need to update knowledge every now and then. There can be several reasons 

for updates: new security mechanisms appear, vulnerabilities are found, the threat landscape changes 

or the execution environment changes. The SSA has to be aware of these changes, which is ensured by 

up-to-date knowledge. Utilizing ontologies as the knowledge source offers an advantage from a 

knowledge updating and enhancement view point. ISMO and CO4SS are presented in an OWL format, 

and thus, updates can be made to ontologies without modifying SSAs, which only retrieve knowledge 

from ontologies. 

3.2. Architecture for Security Adaptation 

The security-adaptation approach follows the MAPE model. The Monitor phase collects 

information by means of monitoring probes. The Analyze phase calculates the security level achieved, 

reasons the required security level, and calls the Plan phase if the required securities are not achieved. 

The Plan phase creates a plan to adapt, and finally, the Execute phase enforces the adaptation plan. The 

following descriptions of these phases show, how they utilize knowledge from the Conceptual 

interoperability level. Figure 5 presents a legend for figures used in the next sections. 

Figure 5. Symbol definitions. 

 

3.2.1. Monitor 

The Monitor phase gathers information from the environment and the SSA itself. The purpose of 

monitoring is to collect those small information pieces, which are then utilized to reveal an adaptation 

need. The target of monitoring can be at any level—from a low-level network technology to a  

high-level description of the user situation. These monitoring targets are called attributes—the 

encryption key length and the number of unknown devices in the smart space are examples of 

monitored attributes. Monitoring utilizes security measures, and thus, the measuring related 

terminology is utilized in the Monitoring phase. The Monitor phase uses Base measures to collect raw 

data by means of Monitoring probes. It is notable that Figure 4 presents the Measure concept, and the 

Base measure is one subclass of the Measure. 

At design time, the software architect implements Monitoring probes into the SSA and environment 

based on the Measurement method descriptions from the ISMO, c.f., Figure 6. If the architect creates a 

new Base measure and Monitoring probe, knowledge about what attribute the probe measures is added 
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into the ISMO. The Monitoring probe is a concrete code snippet, which is able to observe the 

particular attribute, e.g., by retrieving a key length from the utilized encryption library. In other words, 

the Monitoring probe is the implementation of the Measurement method. Each Monitoring probe is 

intended to observe only one attribute from the environment or SSA. Therefore, implemented probes 

can be easily reused. 

Figure 6 depicts knowledge from the ISMO, i.e., the Conceptual level, and its relation to the SSA 

and the environment in the Monitoring phase. The SSA and environment contain several attributes and 

each attribute has its own Monitoring probe implementation. At runtime, the ISMO provides 

knowledge about useful Base measures. The environment contains several probes but only a certain set 

is needed in each particular situation. For instance, in a situation where communication integrity is not 

needed it is useless to utilize integrity-related Base measures. Hence, the knowledge from the ISMO 

reveals which probes to use. Consequently, it is vital that the ISMO contains the connections depicted 

in Figure 6 because that information shows what attribute each probe is able to measure. 

Figure 6. Knowledge from the Information Security Measuring Ontology (ISMO) for the  

Monitoring phase. 

 

3.2.2. Analyze 

The Analyze phase reveals the current security levels for the required security objectives and 

decides which levels are sufficient for the current situation. Hence, the Analyze phase combines the 

Base measure results from the Monitoring phase to Indicators. The Indicator presents the security level 

of the security objective in that particular smart space situation. In other words, Base measures indicate 

that some changes have occurred in the smart space, whereas, the Analyze phase reveals the 

consequences of these changes, i.e., it builds a meaning for the information in that situation. 

The ISMO contains Derived measures and Indicators, which combine the Base measure results. 

Base measures, Derived measures and Indicators are sub-classes of the Measure concept, depicted in 

Figure 4. The ISMO follows a terminology defined in [26], and thus, Derived measures use the 

Measurement function and Indicators use Analysis models to perform the combining process. The 

Measurement function can be a simple mathematical operation, e.g., base_measure_1 + 

base_measure_2. In contrast, Analysis models contain more complex structures including conditional 

clauses and Boolean operations. For instance, the result from the Analysis model can be the integrity 

level of communication. 

Figure 7 shows concepts for the Analyze phase from the ISMO. Each indicator has Analysis 

models, which use Base measures, Derived measures and Indicators. Every Security objective has its 
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own Indicator—e.g., authentication is a security objective, which has an Indicator called the 

authentication level. However, the Indicator is able to use several Analysis models, depending on the 

situation in hand. For example, a different Analysis model has to be used when authentication is based 

on fingerprints, passwords or a multi-factor authentication mechanism. In the multi-factor 

authentication case, the Analysis model, which combines analysis models from a single mechanism, is 

applied. Therefore, each Analysis model has a property that binds it to the security mechanism—from 

the above example, multi-factor authentication is seen as an individual security mechanism. Similarly 

as the Base measures, Indicators are also defined for Attributes. At design-time, the architect brings the 

Analyzer component into the SSA and the Analyzer component searches knowledge from the Analysis 

models to calculate security-level indicators for the SSA at runtime. 

Figure 7. The concepts from the ISMO for the Analyze phase. 

 
 

The security level indicators are compared to the required security levels. As depicted in Figure 4, 

the context information sets the required security objectives and levels. In [40], we defined the context 

concepts, which affect the required security as follows: (i) The user’s role in the smart space. (ii) The 

actions performed in the smart space. (iii) The role and importance of the data. (iv) The role of the 

smart space. Furthermore, user preferences are able to affect the required security level. 

Figure 8 shows the context information rules that define the required authentication level for 

different situations. However, the rule sets are an example—not the extensive rule sets to define 

authentication requirements. In these rules, the role of the smart space, i.e., Private, Public or Office, 

constitutes the main categorization between the rule sets. In the private smart space, e.g., home smart 

space, the role of the data and its importance define how strong authentication has to be used. Thus, in 

a situation where the user consumes entertainment data—like news—authentication level 1 is 

sufficient. However, in a situation where the high importance level control information is handled, e.g., 

a home alarm system, authentication level 4 is required. In contrast, in public smart spaces, like freely 

available smart city services, authentication is not required at all. Finally, in an office smart space the 

user’s action is also taken into account in the rules. Similar context-based rule sets can be defined for 

other security objectives, i.e., confidentiality, integrity, availability, etc. Based on these rules, the SSA 

is aware of the required security objectives and levels in different situations. 
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The final step in the Analyze phase is to compare the Indicator results to the required security 

objectives and levels. If some indicators show that the required security level is not achieved, the 

Planning phase will be triggered. 

Figure 8. An example of context information to define security objectives and levels. 

 

As a whole, the Analyze phase requires a lot of knowledge, which is available from the ontologies. 

Based on the knowledge, the SSA builds an individual view point of the environment and achieved 

security. In order to produce the correct results, knowledge maintenance is important. Analysis models 

and the rule sets for the definition of requirements can be added and updated without modifying the 

application logic. The utilization of ontologies makes this flexibility possible, i.e., the knowledge is not 

hard coded inside the application. 

3.2.3. Plan 

The Plan phase decides how to adapt the SSA when the required securities are not achieved. The 

Plan phase uses the results from the Analyze phase as input information, i.e., (i) the unfulfilled security 

objective. (ii) The current and required security level. (iii) The used security mechanism. Furthermore, 

ontologies offer knowledge to make an adaptation plan. In some situations, only certain security 

mechanisms are supported, and thus, the Plan phase has to take these restrictions into account. 

We have recognized three alternative ways to create the adaptation plan: 

(1) The SSA utilizes pre-defined configuration alternatives. 

(2) The SSA searches alternative security mechanisms or individual attributes to adapt, based on 

knowledge from the ISMO.  

(3) The SSA asks the user how to proceed. 

The first one is the simplest case. At design-time, the architect implements configuration 

alternatives inside the SSA. Thus, the Plan phase selects one of these pre-defined configurations at 

runtime. Naturally, dynamism is restricted in this alternative. However, this is enough for simple 
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devices and applications. As an example, for a situation where the required level of communication 

confidentiality is not achieved, the pre-defined configuration can be “Start to use the TLS connection”.  

The second planning alternative changes the security mechanism or adapts individual attributes. 

When changing the whole security mechanism, the Planner component searches alternative 

mechanisms from the ISMO. In the ISMO, each security mechanism contains a link to the supported 

security objectives. For the required security objective, the ISMO can contain several security 

mechanisms. However, it is probable that only few of those are applicable in the current situation.  

For instance, the user’s device supports fingerprint authentication but the smart space infrastructure 

does not offer this possibility. Hence, the adaptation plan has to take into account these restrictions 

from the context information. Alternatively, the Planner component can adapt individual attributes. To 

achieve this, the SSA searches the causes for the current security level by means of the same Analysis 

model, which showed that the adaptation was needed. In other words, the Analysis model is used to 

search Attributes, which have affected the current security level. Therefore, the SSA knows which 

attribute to adapt in order to affect the security level. Figure 9 illustrates this alternative—colored 

rectangles refer to the concepts presented in Figure 4. The Analysis model uses Base measures to 

observe Attributes. If the Attribute can be adapted its adaptableWith property shows an action for how 

to adapt the Attribute. The smart space may contain attributes that affect the achieved security level but 

all of these cannot be adapted. For instance, if the smart space contains an external threat that cannot 

be removed other attributes have to be adapted to mitigate threat effects. Finally, the Planner 

component decides on the adapted Attribute and the Action to be performed. To make this decision the 

Planner component may utilize goal, constraint or utility function based decision-making. At the 

moment, our approach is clearly goal orientated, i.e., the context sets the required security objectives 

and levels (goals) and the purpose of the planning is to find a configuration that satisfies the goal. 

However, the decision-making algorithm is out of the scope of this paper but the architecture does not 

restrict decision-making algorithms utilized internally in the Planner component. When the Planner has 

to take trade-offs into account more sophisticated decision making will be needed, for instance for 

utility functions. 

The third case is for a situation where the SSA is not able to create an enforceable adaptation plan. 

The following reasons can lead to this alternative: (i) The required knowledge is not defined in the 

ontologies. (ii) Knowledge is available but creating an adaptation plan would consume too many 

resources. Therefore, the only way to proceed is to give a warning message to the user and ask for 

instructions on how to continue. 

From these alternatives, the second one is the most dynamic and autonomous without hard-coded 

adaptation plans. Hence, it is the preferred alternative.  

3.2.4. Execute 

The final step in the adaptation is the Execute phase, where the created adaptation plan is executed. 

In other words, it is the straightforward realization of the adaptation plan. At design-time, the software 

architect has to design variation points inside the SSA. The variation point ensures that it is possible to 

adapt security mechanisms and attributes at runtime. Figure 9 contains the Action to adapt concept. 

From the Execute phase point of of view the action is a component, which modifies the related 
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Attribute. Figure 10 shows a runtime situation, where the Planner component calls the Executor and 

offers the adaptation plan. Based on the adaptation plan the Executor signals an implementation 

component. 

Figure 9. Planning using an Analysis Model. 

 

Figure 10. Execute phase. 

 
 

The execution can affect different layers in a device where the SSA is running. Moreover, the 

execution can indirectly affect the whole smart space infrastructure. For example, when the SSA 

adapts a communication protocol the application has to establish a new connection to the smart space 

infrastructure by using new parameters or a new mechanism. The execute phase can, for example, 

control how information can be shared by defining security policies according to the Security Control 

Model described in the next section. 

 

3.3. Runtime Security Control Model 

Security knowledge in the conceptual interoperability level provides a means to present security 

policies, which control the behavior of smart space devices and applications. However, analyzing and 

planning access-control decisions at runtime, when information is queried and modified, can be 
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computationally costly. In smart spaces the information is shared using SIBs, which are unaware of 

applications’ conceptual policies and hence unable to enforce these policies. SIBs can be assumed to 

be aware only of a minimal set of standard security primitives, which are associated to information 

elements instead of the meaning of this information. In addition, as smart space devices may have 

limited computing capabilities, solutions based on cryptography are often unfeasible. Therefore, 

efficient solutions are needed to protect information sharing and to control information access in a 

fine-grained manner at the level of semantic data.  

This subsection generalizes and formalizes our previously presented RDF access control approach [51] 

into a conceptual security control model. The control model has been verified with RDF but it can be 

applied to any information presentation system, which is based on subject-predicate-object triples. It 

specifies how access-control policies and security control information over resources are structured 

and presented. Runtime costs are minimized by requiring that each policy is presented with a single 

information triple. The security control model is based on context and security measurement concepts, 

which are used to authorize actions. Hence, the model can be applied efficiently and flexibly in various 

dynamic security-control situations.  

Figure 11 depicts the security relationships in the security control model. The model has a 

relationship with three software components, presented in the top-right corner of the figure. Smart 

space applications insert, query, modify or subscribe to information resources. The access control 

component authorizes and controls these operations. Application specific security adaptation 

components administer the behavior of the access-control component. This administering is done by 

controlling the relationships between resources as specified by the security control model. 

Figure 11. Runtime security-control model for smart spaces. 

 
 

Each piece of information, i.e., each information resource, can have a relationship with one or 

several context and security measurement resources. Each relationship presents one access control 

statement and is described using triplets in the form: “Information, SecurityPredicate, 

Context/Measurement”. Security predicates are properties that define authorizing or accounting 

relationships for the security control. Predicates, which are to be used when authorizing transactions, 

are presented in Table 2. Predicates for accounting can be found in Table 2. Context/measurement 
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refers to any resource that the security adaptation component selects based on the ontologies and 

policy information from the conceptual level.  

When the SSA queries or modifies information, only some contexts and measurements are active. 

The access control component uses resources, which are active for the application in the current 

situation. Active resources are found through the control context concept, which can be realized as a 

resource. Security adaptation components define which measurement and context resources are active 

with triplets: “ControlContext, ‘hasActive’, Context/Measurement”. Determination of what resources 

are active is a dynamic and constantly running process, which may involve different  

security-adaptation applications. ControlContext resources are fixed in the sense that the access control 

and security adaption components must know them. For instance, each SSA that is connected to a SIB 

and has an open communication socket may have a dedicated ControlContext resource. In this case, 

the active resources could be URIs representing the end-user’s identity or security level. These URIs 

can be resolved and activated by the security adaptation component in the Monitor and Analyze 

phases, when the user authenticates. 

3.3.1. Authorization Predicates 

An important use case for the security-control model is authorization over resource access. Policy 

predicates enabling authorization are defined in Table 1. The granularity of the security-control model 

protects individual resources and also semantic relationships because of control over access to the 

resource properties. The security-control model supports the use of allow and disallow policies. 

Different policies can be used in conjunction to the set conditions of the authorizations (e.g., a user can 

access information but only if a contextual requirement is met). To prevent contradictory behavior due 

to the simultaneous use of allow and disallow policies, the proposed approach is that ‘disable’ policies 

override “allow” policies. 

The security control model enables efficient runtime access control. An access-control component 

does not need to do heavy reasoning at the time applications are querying or modifying information, 

instead, security adaptation Analysis and Planning phases can be done in advance when  

adaptation-triggering events occur. The access control component needs to locate the relevant security 

relationships, presented with triples, between context or measurement resources and a target sources. 

When an SSA queries or modifies information, the access control component checks whether there are 

active policies allowing or denying the action. 

When the amount of active and authorizing context and measurement resources is n, the access 

control component must do at most 2*n truth queries (“is there an allow or deny relationship between 

the active resource and the accessed resource?”) to resolve the authorization of a transaction on a 

target. The access control component must also find active resources for each used control context 

resource. Implementations may further speed this up by keeping the list of control context specific 

active resources in the cached memory. 
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Table 1. Authorisation policy predicates. 

Predicate Description 

GetAllowedFor Authorizes reading a URI or literal value 

SetAllowedFor Authorizes modifying a URI or literal value 

PropertyCreationAllowedFor Authorizes adding a new URI or literal node under the URI node 

PropertyRemovalAllowedFor Authorizes the removal of a URI or literal node from the URI 
node 

UseAsPropertyAllowedFor Authorizes use of this node under other URI nodes 

GetDisabledFor Prevents reading a URI or literal value 

SetDisabledFor Prevents modifying a URI or literal value 

PropertyCreationDisabledFor Prevents adding a new URI or literal node under the URI node 

PropertyRemovalDisabledFor Prevents the removal of a URI or literal node from the URI node 

UseAsPropertyDisabledFor Prevents the use of this node under other URI nodes 

IsAuthorisedBy Sets a node under access control and specifies authority. There 
may be several authorities in one broker. 

Table 2. Predicates for access control accounting. 

Predicate Description 

HasBeenAuthoredBy Identifies a resource’s author 

HasAddedPredicate Identifies authors who have added predicates under the resource 

IsSignedWith Link to a signature proving authenticity and the origin of the resource 

HasSecurityContext Link to any security measurement or context resource which was active 
when the data was stored (needed to verify e.g. trustworthiness of data ) 

IsAuthorisedBy Specifies the authority that controls security. If such relationship to a 
known security authority is missing, access can be directly authorized 
without any other checks. 

CanBeMonitored Allows or disallows logging (e.g. due to performance or privacy)  

HasBeenReadBy Identifies contexts (users) where data has been successfully queried 

HadInvalidReadAttemptBy Identifies contexts (users) with rejected read requests   

HadInvalidWriteAttemptBy Identifies contexts (users) who have made rejected write requests   

3.3.2. Accounting Predicates 

In addition to authorization, the security control model supports other real-time security control 

situations. Table 2 presents predicate definitions for access accounting activities, which are needed to 

determine the authenticity or trustworthiness of information. The table defines the relationships for 

accounting predicates, which are used to log access requests, both successful and unsuccessful. This 
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information is needed, e.g., when trying to detect malicious or harmful modifications and intrusions 

and when reasoning which nodes may have been potentially compromised due to harmful information. 

The table also lists IsSignedWith and HasSecurityContext predicates, which users can use to verify the 

authenticity and trustworthiness of information. Trustworthiness may depend on context or 

measurement, which were active when the information was stored. 

4. Implementation of Adaptive Security 

4.1. Case Description 

The validation was based on a use case from the smart space pilot—called Seamless Usage of 

Multiple Smart Spaces (SUM-SS) [55]. The SUM-SS pilot combines four smart spaces, i.e., smart 

personal space, smart home, smart office and smart city. An end user facilitates information from these 

smart spaces via his/her mobile phone, which constitutes his/her personal smart space. In the personal 

smart space, the user is able to store information from other smart spaces, like calendar information 

and documents from the office space. The home smart space offers capabilities to monitor energy 

consumption; control light and wall sockets and control home automation via the Lon network etc. The 

smart city offers public information and facilitates everyday life in an urban environment—for 

instance, by offering information on parking areas and traffic jams. Furthermore, mobile devices and 

televisions are able to consume entertainment content from a cloud, which is supported by the 

Cam4Home platform [56]. Consequently, the SUM-SS pilot opens up possibilities to select a smart 

space use case for the validation purposes. Hence, the use case selected for the validation purposes 

concentrates on illustrating the following issues: 

1. The SSA running in an end user’s mobile phone utilizes the adaptation loop to ensure an 

appropriate authentication level in different situations. 

2. Security- and context-related knowledge is retrieved from ontologies. 

3. RIBS controls access over shared information by using the security control model.  

Use case description: The homeowner leaves the home in the morning, by car. During the drive 

she wants to check that the front door of her house is locked properly. The owner is able to check a 

lock status via her mobile phone without any additional authentication.  

During the working day, a maintenance man arrives on the front door of the house and rings a 

doorbell. The doorbell sound is played in the owner’s mobile phone and a video stream from the front 

door of the house is delivered. Hence, when she recognizes the maintenance man at the door, she is 

able to open the door remotely. However, her current authentication level is not strong enough for the 

remote door opening, and thus, re-authentication is requested.  

After a while, the maintenance man is ready and leaves the house. The owner is informed and she 

locks the front door again. Now the time has passed and the authentication level is dropped. 

Nevertheless, re-authentication is not needed because the door can be locked with a lower 

authentication level. 

The home owner arrives home and opens the front door locally by utilizing the NFC (Near Field 

Communication) feature of her mobile phone. The mobile phone authenticates the user and then the 

mobile is authenticated through NFC. Inside the house, the owner adjusts the lighting—and the earlier 
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achieved authentication level is enough for these actions. After a while, the owner wants to turn down 

the heating system in the house. However, controlling the home automation system is a critical action 

and too much time has passed from the last authentication. Thus, authentication with a stronger 

authentication level is required. 

4.2. Case Implementation 

Figure 12 shows the deployment of the use case from the security adaptation viewpoint. The use 

case implements user authentication in an adaptive manner by using password-based authentication. 

Our previous demonstration utilized a gait-based authentication [57]. The construction contains six 

nodes, i.e., homeowner’s mobile device, RIBS, smart door, lighting, Lon server and the maintenance 

man’s mobile device. The main actions in the use case are performed with the homeowner’s mobile 

device Nokia C7. Hence, it contains application logic agents to retrieve and insert information into the 

RIBS. These agents are implemented with Qt C++. In this case, the adaptation will be performed from 

the homeowner’s viewpoint, and thus, adaptation-related components are located in her device. The 

smart door node contains lock, camera and doorbell agents, which offer related functionalities. 

Similarly, the lighting node and the Lon server node contain agents to utilize those devices. The RIBS 

is executed inside a WLAN access point—in order to offer a good connectivity. The RIBS supports the 

Transport Layer Security (TLS) protocol [58] to secure communication between agents and the RIBS. 

The last node is the maintenance man’s mobile device that contains a visitor agent. The visitor agent 

makes it possible to ring the doorbell that is available publicly from the home smart space. 

Figure 12. The deployment of the use case.  

 
 

Monitoring probes are components that implement measurement methods for base measures  

(c.f., Figure 6). For password-based authentication the use case utilizes the following base measures:  

(1) Password length. (2) The number of special characters in the password. (3) Password usage time.  

(4) Session duration. The change of these base measures is informed to the Analyze component. 

Naturally, Base measures 1 and 2 change when the password is changed. In contrast, Base measures 3 

and 4 change constantly, and thus, the changed values are informed to the Analyze component at a 

certain intervals.  

The Analyze component combines the monitoring results to authentication level indicator by means 

of the Analysis model (c.f., Figure 7). The Analyzer component retrieves the right analysis model from 
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the ISMO. Analysis models are described by a natural language, which combines English and Boolean 

algebra. We made this decision in our previous work [38] in order to facilitate the preparation of 

Analysis models. Thus, Analysis models can be modified and added without experience of ontology 

query languages. The Analysis model utilized in this case is presented in Figure 13. The analysis 

model uses four base measures—either directly or via the Password type indicator—as depicted in the 

figure. Moreover, the figure presents Monitoring probes, which implement measurement methods for 

base measures. 

Figure 13. Analysis model used in the use case. 

 
 

The above-presented Analysis model produces the achieved authentication level. Moreover, the 

Analyze component analyzes the current situation in order to decide the required authentication level. 

For this purpose, rules presented in Figure 8 are utilized.  

Table 3 summarizes user actions, situations and the achieved and required authentication levels. The 

achieved authentication level means the level before adaptation. Hence, Actions 1, 3 and 5 do not 

require adaptation because the achieved level is higher than the required level. Other actions require 

adaptation and the Planner component is called. 

The Plan component selects how the adaptation is performed. In this case, the Planner component 

searches the causes of the current security level from the analysis model (c.f., Figure 9). Figure 14 lists 

the attributes of password authentication. In the ISMO base measures from Figure 13 are connected to 

these attributes by means of a definedFor property. Now there are two possible ways to adapt. Firstly, 

the re-authentication of the user affects the session duration attribute. Secondly, calling the change 

password function affects password usage time—and depending on a new password—the length and 

number of special characters attributes. Based on this knowledge, the Planner component selects an 

appropriate action to adapt. Table 3 listed user actions. Action numbers 2 and 4 are handled with  

re-authenticate adaptation. The user action number 6 leads to the change-password adaptation action 

because the one-month usage time, i.e., 720 h, boundary has been exceeded. 
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Table 3. Achieved and required authentication levels in different situations. 

Action Situation and 
Input Information for the Analysis Model 

Achieved 
Auth. Level 

Required 
Auth. Level 

1. Check the lock 
status 

Check the lock status 
Normal password selected 708 h ago. 
Session duration: 2 h 

2 0 

2. Open the front door Remote opening 
Normal password selected 710 h ago. 
Session duration: 4 h 

2 3 

3. Lock the front door Remote locking 
Normal password selected 712 h ago. 
Session duration: 2 h 

2 1 

4. Open the front door Local opening 
Normal password selected 719 h ago. 
Session duration: 7 h 

0 3 

5. Modify lighting Local modification 
Normal password selected 719 h ago. 
Session duration: 0.02 h 

3 1 

6. Modify home 
automation 

Local modification 
Normal password selected 721 h ago. 
Session duration: 2 h 

1 2 

 

Figure 14. Actions to adapt different parameters. 

 
 

Lastly, the Execute component performs the created adaptation plan. Both adaptation actions also 

have an effect outside of the homeowner’s device: It requires re-authentication into the RIBS or calling 

the password-change function from the RIBS. However, in both cases the initiative for these actions is 

made in the Execute component inside the homeowner’s device.  

Figure 15 shows the screenshot of the ISMO in the Protégé ontology tool. The screenshot contains 

concepts instantiated for the use case purposes. The ISMO is also available in web: https://sofia-

community.com/projects/sontologies/—needs registration. The page contains ISMO and links to 

imported ontologies.  
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Figure 15. ISMO in Protégé. 

 
 

The RIBS is responsible for enforcing access control over brokered information. It enforces that 

only authenticated and authorized users can insert and modify information. The authorization checks 

follow the runtime security-control model, as illustrated in Figure 16. The agents in the homeowner’s 

terminal are responsible for administering the authorization policies, which are stored in the RIBS for 

each RDF resource. When a user is authenticated, appropriate context and measurement resources are 

activated. In the use case, the maintenance man is mapped to a visitor context and the homeowner is 

mapped to a resource, which represents owner’s identity. Further, all users are mapped to security 

measurement resources, which describe the authentication level. When users query or modify 

information, the SIB checks whether these active RDF resources authorize access to the requested 

resources. All authenticated users are given access to non-critical information inside the home e.g., the 

lighting. The homeowner has access to every piece of information. However, access to the most 

critical information requires that the owner have a sufficient authentication level. 

The RIBS has been optimized to provide fast and low-power consuming information access.  

The implementation indexes all incoming RDF data, and thus, enables RDF URIs as well as literals to 

be directly addressed. Relationship information is stored to a three-dimensional (subject-predicate-

object) array, i.e., to a bit cube. As security policies are presented with a single bit, which is either on 

or off, they can be quickly checked and the amount of required memory will not increase even when 

the security configuration becomes more complex. 

4.3. Lessons Learned 

Implementing and performing these use cases showed several advantages from the presented 

approach. Firstly, all knowledge is retrieved from ontologies. Thus, content from the analysis model 

(c.f., Figure 13) and rules for setting the required authentication levels (c.f., Figure 8) do not need to be 

coded into the SSA. Hence, knowledge can be modified and extended without coding work. Secondly, 

adaptive user authentication enhanced usability. However, as the authentication level decreased the 

user was able to perform Action 3 (see Table 3). In contrast, using a static authentication requires that 
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all actions be set as equally critical, which in turn means that all actions require the highest 

authentication level. Thirdly, from the implementation view point the presented adaptation loop clearly 

defined the required components. In addition, knowledge—required in each component—was defined 

explicitly. Therefore, the approach description can act as an implementation guideline. Finally, the 

security-control model in the RIBS supported flexible access control. The access control information is 

described in the RIBS as RDF information, and thus, separated access-control lists are not needed. 

Figure 16. Examples of authorizing relations in the runtime security-control model. 

 
 

However, improvement ideas are also recognized. The first consideration relates to the selected 

security objective—in the use case user authentication was in the focal point. Supporting other security 

objectives does not require changes to the adaptation approach and utilization of knowledge from the 

ontologies. Nevertheless, the content of the ontologies has to be extended with new knowledge related 

to security objectives. This knowledge does not need to be created from scratch but the existing 

knowledge has to be described in a machine-readable form by means of the ontologies. The second 

issue relates to the definition of the Analysis model. During the case implementation it was noticed 

that defining the Analysis model is a complex and time-consuming task—although only three variables 

were used. Thus, automation is needed in the future in order to define extensive analysis models. 

5. Discussion 

5.1. The Advantages of the Approach 

Achieving security in smart spaces requires dynamic security solutions. The presented adaptation 

approach for security ensures that the achieved security corresponds to each situation faced in the 

smart space. Further, the introduced security-control model ensures the appropriate information access 

in changing smart spaces. Thus, the introduced security-adaptation approach offers several advantages: 

Firstly, the approach is generic—security objectives and mechanisms can be freely selected. Hence, 

the approach is able to offer adaptation for one security objective, or alternatively, a set of security 
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objectives can be implemented in an adaptive manner. Similarly, the adaptation approach is 

independent on the used security mechanism. 

Secondly, the adaptation approach is based on knowledge from ontologies, which cover the 

knowledge part of the MAPE-K model. This separation of concerns, i.e., separation of generic 

knowledge from application logic, improves reusability. The knowledge can be updated and extended 

easily and quickly without modifying the SSA. Moreover, the ontologies ensure that there is a uniform 

way to present security terminology. 

Thirdly, the commonly known MAPE model ensures that the required components are clearly 

defined, i.e., Monitoring, Analyzing, Planning and Executing. Clearly defined components support 

reusability, which facilitates the architects’ work. The Monitoring utilizes security measures and the 

Analysis utilizes extendable analysis models. In each phase the required knowledge is retrieved from 

the ontologies. 

Fourthly, smart spaces consist of devices and applications that can enter and leave the space at any 

time. Various situations require dynamic access-control policies that are enforced automatically. The 

security-control model provides an approach for enforcing the access control for different situations. 

The model is expressive but still straightforward, and hence, more suitable for runtime enforcement 

than the previous RDF level access-control proposals. 

5.2. The Challenges of the Approach and Future Research 

Firstly, the use cases showed that creating analysis models is a complex task. Therefore, a tool, or at 

least guidelines, for the analysis model definition is needed in the future. The tool has to present the 

possible variables and their value ranges. In addition, the tool has to check that contradicting analysis 

models are not created. 

Secondly, in the future mutual relationships between security objectives have to be taken into 

account during the Analyze and Plan phases. The ISMO already contains basic connections between 

security objectives, e.g., authorization demands identification. Therefore, analysis models have to 

notice these dependencies when recognizing adaptation needs. Similarly, the Plan phase is able to 

utilize this knowledge when searching applicable adaptation actions. For instance, the need to adapt 

authorization causes the utilized identification scheme to change. Furthermore, trade-offs and 

dependencies on other qualities like performance, reliability and usability are topics for  

future research.  

Thirdly, the performance cost of the approach is a natural question. However, end users were not 

able to recognize decreased performance during the case study. It is clear that the performance 

overhead can be noticed if a huge amount of base measures and complex analysis models are used. 

Therefore, it is important to adjust the analysis models and the number of base measures for device 

resources. The performance penalty caused by the RDF access control depends on the amount of 

requested RDF resources. In a performance test case with the RIBS implementation, the average 

request times were around one per cent longer when compared to a case where all requests were 

authorized without any checks [51]. 

The last issue relates to the security of the adaptation approach. It is possible that an attacker may 

try to modify some parts of the adaptation loop in order to attack the smart space. For instance, 
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manipulating the Monitoring or Analyzing parts might mean that a decreased security level is not 

recognized. Or alternatively, the Plan phase may create an inappropriate adaptation plan, which is 

advantageous for the attacker. Hence, it is extremely important to protect these components and ensure 

the authenticity and integrity of knowledge. 

5.3. The Maturity of the Approach 

The approach was developed during a three-year research project. The development was performed 

incrementally by utilizing different use cases and smart space set-ups. In previous cases, we have 

experienced different adaptation ideas and worked on different phases of security adaptation. Table 4 

summarizes the previous validation cases. 

Table 4. Previous validation cases. 

Validation Case Description 

Risk-based security 
adaptation in a 
greenhouse [41,57]. 

A greenhouse with a shopping area constitutes a public smart space. In the 
smart space threats increase the risk levels and security mechanisms decrease 
risks. Hence, the monitoring concentrates on recognizing threats. In this case, 
confidentiality and integrity were considered. Furthermore, users authenticated 
by means of gait information identified from the measurements of acceleration 
sensors inside the mobile phone. 

Adaptive user 
authentication [38]. 

The first case that utilized knowledge from the ISMO. It adapts user 
authentication by monitoring authentication-related measures: password length, 
age, variation of characters and session duration. Important information was 
available only when an acceptable authentication level was reached. The user’s 
re-authentication was requested when the session duration was exceeded. 

Role- and popularity-
based access-control 
simulations [51,59]. 

Controlling access to information according to the user’s role or popularity of 
information. Popularity is a measure that indicates how many readers or how 
many authors an RDF resource has. These adaptation cases were simulated 
with the smodels logic solver. 

Adding new 
knowledge into the 
ISMO [54]. 

The paper and related case example showed how easily knowledge in the 
ISMO can be extended. Moreover, design steps to develop adaptive security 
were presented. 

6. Conclusions  

In smart spaces, it is not possible to take all the security requirements into account at design-time. 

Hence, this paper presented a self-adaptation approach for smart space security. The presented 

approach contains an adaptation loop the Monitor, Analyze, Plan, and Execute model—in a clearly 

defined form. The monitor phase utilizes monitoring probes to observe security-relevant attributes 

from the smart space and smart space application. The monitored results are analyzed in order to reveal 

if the required security is not achieved. The Plan phase creates an adaptation plan, which will be 

enforced in the Execute phase. The adaptation approach requires a lot of knowledge, which is retrieved 

from the ontologies. The utilization of ontologies ensures a flexible and extensible way to manage and 
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use knowledge in machine-readable form. The ISMO provides security- and measuring-related 

knowledge and CO4SS offers context knowledge. For access control, the security-control model was 

presented, which utilizes context information and provides dynamic access control. Hence, the 

security-control model provides a flexible and efficient mechanism to control information sharing in 

smart spaces. 

The presented approach was validated by means of a use case. The use case illustrated (i) all the 

phases of the adaptation loop, (ii) how ontologies offer knowledge for adaptation at runtime, (iii) that 

access control enforced the semantic information. The advantages of the presented approach are 

evident. Firstly, the approach is independent of security objectives and mechanisms. Second, the 

approach provides a reusable architecture to develop adaptive security applicable for different kinds of 

smart spaces. Thirdly, the components for the security adaptation are clearly defined, which help in 

adopting the approach. Finally, the utilization of ontologies ensures that knowledge can be updated and 

extended easily. 

In the future, new and wider analysis models are needed. Thus, a tool will be developed for defining 

a wider set of analysis models for various security objectives. 
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